首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Quantitative evaluation of management strategies for long-term supply of safe groundwater for drinking from the Bengal Basin aquifer (India and Bangladesh) requires estimation of the large-scale hydrogeologic properties that control flow. The Basin consists of a stratified, heterogeneous sequence of sediments with aquitards that may separate aquifers locally, but evidence does not support existence of regional confining units. Considered at a large scale, the Basin may be aptly described as a single aquifer with higher horizontal than vertical hydraulic conductivity. Though data are sparse, estimation of regional-scale aquifer properties is possible from three existing data types: hydraulic heads, 14C concentrations, and driller logs. Estimation is carried out with inverse groundwater modeling using measured heads, by model calibration using estimated water ages based on 14C, and by statistical analysis of driller logs. Similar estimates of hydraulic conductivities result from all three data types; a resulting typical value of vertical anisotropy (ratio of horizontal to vertical conductivity) is 104. The vertical anisotropy estimate is supported by simulation of flow through geostatistical fields consistent with driller log data. The high estimated value of vertical anisotropy in hydraulic conductivity indicates that even disconnected aquitards, if numerous, can strongly control the equivalent hydraulic parameters of an aquifer system.  相似文献   

3.
This study integrated surface and subsurface stratigraphic data with geophysical logs and hydrogeologic data in order to characterize the hydraulic properties of the Silurian dolomite in northeastern Wisconsin. Silurian stratigraphy consists of predictable alternations of characteristic facies associations. A vertical profile of hydraulic conductivity, obtained from short-interval packer tests in a core hole that penetrates a majority of the Silurian section, indicates that hydraulic conductivity ranges over five orders of magnitude (10–1 to 10–6 cm/s). Matrix conductivity is generally low and varies with texture; the finer-grained restricted-marine and transitional facies being less permeable than the coarser-grained open-marine facies. High-conductivity values are generally associated with bedding-plane fractures, and fracture frequency is greater in the restricted-marine facies. High-flow features in 16 wells were identified using fluid-temperature/resistivity and heat-pulse flowmeter logs. Natural-gamma logs were used to identify the stratigraphic position of flow features in each well and to correlate flow features to specific stratigraphic horizons. By combining stratigraphic, geophysical, and hydrogeologic data, 14 high-permeability zones within the Silurian aquifer have been identified and correlated in wells more than 16 km apart. These zones parallel bedding, appear most pronounced at contacts between contrasting lithologies, and are most abundant in restricted-marine lithologies. Electronic Publication  相似文献   

4.
An approach is presented to quantify sensitivity of advective contaminant travel time to porosities of hydrogeologic units (HGUs) along the flowpaths when the porosities of different HGUs are correlated. The approach is an extension of the previous sensitivity analysis technique for independent input porosity cases. It is applicable in situations where a calibrated groundwater flow model exists, but a full contaminant transport model is not available. Three sensitivity indices are introduced based on the decomposition of covariance between the advective contaminant travel time and individual input porosities of HGUs. When the input HGU porosities are correlated, the three sensitivity indices quantify the total, intrinsic and correlated contributions from each individual HGU porosity, which should be considered in order to determine the relative importance to the uncertainty in advective contaminant travel time of the input HGU porosities contributing either independently or correlatedly. Two simple one-dimensional flow examples are presented to illustrate the applications of the approach to scenarios when each HGU has distinct porosity and situations of spatially variable porosity field. The approach is applicable to more complex multi-dimensional cases where advective contaminant travel time can be calculated based on simulated flow results from groundwater flow models.  相似文献   

5.
A hydrogeologic model that has been used by many researchers and consultants to describe an area of South Lake Tahoe, California, USA impacted by MTBE contamination describes a relatively homogeneous unconfined aquifer comprised of poorly sorted glacial outwash deposits, within which water-supply wells are able to exert significant alteration in natural groundwater flow. A re-examination of the area’s hydrogeology is presented, which supports a layered heterogeneous aquifer system constructed of alternating fine and coarser-grained glacio-lacustrine depositional units. This re-evaluation was accomplished through a review of lithologic logs across an area of approximately 1 km2, combined with observations of significant hydraulic head differences and knowledge of the depositional environments controlled by Pleistocene Lake Tahoe high stands. Many of the fine-grained units observed at depths from 6 to 15 m, although relatively thin, are generally continuous and serve as significant barriers to groundwater flow. The vertical migration of contamination across these fine-grained units to deeper groundwaters was facilitated by cross-screened monitoring wells installed as part of site investigation activities. This conclusion highlights the importance of geologic characterization and proper monitoring well construction at contaminated site investigations.
Electronic supplementary material   The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Michaela NovakEmail:
  相似文献   

6.
Buried valleys are ancient river or stream valleys that predate the recent glaciation and since have been filled with glacial till and/or outwash. Outwash deposits are known to store and transmit large amounts of groundwater. In addition to their intrinsic hydraulic properties, their productivity depends on their hydraulic relationships with the adjacent bedrock formations. These relationships are examined using a steady-state three-dimensional groundwater flow model through a section of a buried valley in northeastern Ohio, USA. The flow domain was divided into five hydrostratigraphic units: low-conductivity (K) till, high-K outwash, and three bedrock units (Pottsville Formation, Cuyahoga Group and Berea Sandstone). The model input was prepared using the data from well logs and drilling reports of residential water wells. The model was calibrated using observed heads with mean residual head error of 0.3 m. The calibrated model was used to quantify flux between the buried valley and bedrock formations. Mass balance was calculated to within an error of 2–3 %. Mass balance of the buried valley layer indicates that it receives 1.6 Mm3/year (≈40 % of the total inflow) from the adjacent bedrock aquifers: Pottsville Formation contributes 0.96 Mm3/year (60 %) while the Berea Sandstone 0.64 Mm3/year (40 %).  相似文献   

7.
A tritium (3H) profile was constructed in a long-screened well (LSW) of the Fontainebleau Sands Aquifer (France), and the data were combined with temperature logs to gain insight into the potential effects of the ambient vertical flow (AVF) of water through the well on the natural aquifer stratification. AVF is commonly taken into account in wells located in fracture aquifers or intercepting two different aquifers with distinct hydraulic heads. However, due to the vertical hydraulic gradient of the flow lines intercepted by wells, AVF of groundwater is a common process within any type of aquifer. The detection of 3H in the deeper parts of the studied well (approximate depth 50 m), where 3H-free groundwater is expected, indicates that shallow young water is being transported downwards through the well itself. The temperature logs show a nearly zero gradient with depth, far below the mean geothermal gradient in sedimentary basins. The results show that the age distribution of groundwater samples might be biased in relation to the age distribution in the surroundings of the well. The use of environmental tracers to investigate aquifer properties, particularly in LSWs, is then limited by the effects of the AVF of water that naturally occurs through the well.  相似文献   

8.
A multi-layered aquifer, typical of riverbank alluvial deposits in Korea, was studied to determine the hydrologic properties. The geologic logging showed that the subsurface of the study site was comprised of four distinctive hydrogeologic units: silt, sand, highly weathered and fresh bedrock layers. The electrical resistivity survey supplied information on lateral extension of hydrogeologic strata only partially identified by a limited number of the geologic loggings. The laboratory column tracer test for the recovered core of the sand layer resulted in a hydraulic conductivity of 5.00×10−2 cm/s. The slug tests performed in the weathered rock layer yielded hydraulic conductivities of 4.32–7.72×10−4 cm/s. Hydraulic conductivities for the sand layer calculated from the breakthrough curves of bromide ranged between 2.08×10−3 and 2.44×10−2 cm/s with a geometric mean of 6.89×10−3 cm/s, which is 7 times smaller than that from the laboratory column experiment. The trend of increasing hydraulic conductivity with an increase in tracer travel length is likely a result of the increased likelihood of encountering a high conductivity zone as more of the aquifer is tested. The combined hydrogeologic site characterization using hydraulic tests, tracer tests, and column test with geologic loggings and geophysical survey greatly enhanced the understanding of the hydrologic properties of the multi-layered alluvial aquifer.  相似文献   

9.
Recent work in southern Ontario, Canada, demonstrates anomalously high vertical groundwater flow velocities (>1 m/year) through a thick (as much as 60 m), sandy silt till aquitard (Northern till), previously assumed to be of very low permeability (hydraulic conductivity <10–10 m/s). Rapid recharge is attributed to the presence of fractures and sedimentary heterogeneities within the till, but the field-scale flow regime is poorly understood. This study identifies the nature of physical groundwater pathways through the till and provides estimates of the associated groundwater fluxes. The aquitard groundwater flow system is characterized by integrating details of the outcrop and subsurface sedimentary characteristics of the till with field-based hydrogeologic investigation and numerical modeling. Outcrop and subsurface data identify a composite internal aquitard stratigraphy consisting of tabular till beds (till elements) separated by laterally continuous sheet-like sands and gravels (interbeds) and boulder pavements. Individual till elements contain sedimentary heterogeneities, including discontinuous sand and gravel lenses, vertical sand dikes, and zones of horizontal and vertical fractures. Hydrogeologic field investigations indicate a three-layer aquitard flow system, consisting of upper and lower zones of more hydraulically active and heterogeneous till separated by a middle unit of relatively lower hydraulic conductivity. Groundwater pathways and fluxes in the till were evaluated using a two-dimensional aquitard/aquifer flow model which indicates a step-wise flow mechanism whereby groundwater moves alternately downward along vertical pathways (fractures, sedimentary dikes) and laterally along horizontal sand interbeds within the till. This model is consistent with observed hydraulic-head and isotope profiles, and the presence of tritiated pore waters at various depths throughout the till. Simulations suggest that a bulk aquitard vertical hydraulic conductivity on the order of 1×10–9 m/s is required to reproduce observed hydraulic-head and tritium profiles. Electronic Publication  相似文献   

10.
The onshore Georgina Basin in northern Australia is prospective for unconventional hydrocarbons; however, like many frontier basins, it is underexplored. A well-connected hydraulic fracture network has been shown to be essential for the extraction of resources from the tight reservoirs that categorise unconventional plays, as they allow for economic flows of fluid from the reservoir to the well. One of the fundamental scientific questions regarding hydraulic stimulation within the sub-surface of sedimentary basins is the degree to which local and regional tectonic stresses act as a primary control on fracture propagation. As such, an understanding of present-day stresses has become increasingly important to modern petroleum exploration and production, particularly when considering unconventional hydrocarbon reservoirs. This study characterises the regional stress regime in the Georgina Basin using existing well data. Wellbore geophysical logs, including electrical resistivity image logs, and well tests from 31 petroleum and stratigraphic wells have been used to derive stress magnitudes and constrain horizontal stress orientations. Borehole failure features interpreted from wellbore image and caliper logs yield a maximum horizontal stress orientation of 044°N. Integration of density log data results in a vertical stress gradient of 24.6 MPa km–1. Leak-off and mini-fracture tests suggest that this is the minimum principal stress, as leak-off values are generally shown to be at or above the magnitude of vertical stress. The maximum horizontal stress gradient is calculated to be in the range of 31.3–53.9 MPa km–1. As such, a compressional stress regime favouring reverse/reverse–strike-slip faulting is interpreted for the Georgina Basin.  相似文献   

11.
Flowing fluid electrical conductivity (FFEC) logging is a hydrogeologic testing method that is usually conducted in an existing borehole. However, for the 2,500-m deep COSC-1 borehole, drilled at Åre, central Sweden, it was done within the drilling period during a scheduled 1-day break, thus having a negligible impact on the drilling schedule, yet providing important information on depths of hydraulically conductive zones and their transmissivities and salinities. This paper presents a reanalysis of this set of data together with a new FFEC logging data set obtained soon after drilling was completed, also over a period of 1 day, but with a different pumping rate and water-level drawdown. Their joint analysis not only results in better estimates of transmissivity and salinity in the conducting fractures intercepted by the borehole, but also yields the hydraulic head values of these fractures, an important piece of information for the understanding of hydraulic structure of the subsurface. Two additional FFEC logging tests were done about 1 year later, and are used to confirm and refine this analysis. Results show that from 250 to 2,000 m depths, there are seven distinct hydraulically conductive zones with different hydraulic heads and low transmissivity values. For the final test, conducted with a much smaller water-level drawdown, inflow ceased from some of the conductive zones, confirming that their hydraulic heads are below the hydraulic head measured in the wellbore under non-pumped conditions. The challenges accompanying 1-day FFEC logging are summarized, along with lessons learned in addressing them.  相似文献   

12.
The hydrogeologic influence of the Elkhorn fault in South Park, Colorado, USA, is examined through hydrologic data supplemented by electrical resistivity tomography and self-potential measurements. Water-level data indicate that groundwater flow is impeded by the fault on the spatial scale of tens of meters, but the lack of outcrop prevents interpretation of why the fault creates this hydrologic heterogeneity. By supplementing hydrologic and geologic data with geoelectrical measurements, further hydrogeologic interpretation is possible. Resistivity profiles and self-potential data are consistent with the interpretation of increased fracturing within 70 m of the fault. Further interpretation of the fault zone includes the possibility of a vertical groundwater flow component in a fractured and relatively high permeability damage zone and one or more relatively low permeability fault cores resulting in a conduit-barrier behavior of the fault zone at the meter to tens-of-meters scale. Calculated hydraulic heads from the self-potential data reveal additional complexity in permeability structure, including a steeper hydraulic gradient immediately west of the interpreted fault trace than suggested by the well data alone.  相似文献   

13.
Numerical models provide a way to evaluate groundwater systems, but determining the hydrostratigraphic units (HSUs) used in constructing these models remains subjective, nonunique, and uncertain. A three-step machine-learning approach is proposed in which fusion, estimation, and clustering operations are performed on different data sets to arrive at HSUs at different scales. In step one, data fusion is performed by training a self-organizing map (SOM) with sparse borehole hydrogeologic (lithology, hydraulic conductivity, aqueous field parameters, dissolved constituents) and geophysical (gamma, spontaneous potential, and resistivity) measurements. Estimation is handled by iterative least-squares minimization of the SOM quantization and topographical errors. Application of the Davies-Bouldin criteria to k-means clustering of SOM nodes is used to determine the number and location of discontinuous borehole HSUs with low lateral density (based on borehole spacing at 100 s m) and high vertical density (based on cm-scale logging). In step two, a scaling network is trained using the estimated borehole HSUs, airborne electromagnetic measurements, and numerically inverted resistivity profiles. In step three, independent airborne electromagnetic measurements are applied to the scaling network, and the estimation performed to arrive at a set of continuous HSUs with high lateral density (based on sounding locations at meter (m) spacing) and medium vertical density (based on m-layer modeled structure). Performance metrics are used to evaluate each step of the approach. Efficacy of the proposed approach is demonstrated to map local-to-regional scale HSUs using hydrogeophysical data collected at a heterogeneous surficial aquifer in northwestern Nebraska, USA.  相似文献   

14.
An analysis method for transient groundwater flow during slug tests performed in vertical cutoff walls is presented. The analytical solution for evaluating hydraulic conductivity of vertical cutoff walls is derived by applying the method of images to the previously developed analytical solution that is exclusively applicable to an infinite aquifer. Two distinct boundary conditions are considered to account for the configuration of the vertical cutoff wall: the wall‐soil formation interfaces with or without the existence of filter cakes, that is, constant‐head boundary and no‐flux boundary conditions. A series of type curves is constructed from the analytical solution and compared with those of a partially penetrated well within an aquifer. The constant‐head boundary condition provides faster hydraulic head recovery than the aquifer case. On the other hand, the no‐flux boundary condition leads to a delayed hydraulic head recovery. The greater the shape factor and well offset from the center of the cutoff wall, and the smaller the width of the cutoff wall, the greater the effect of the boundary condition observed in the type curves. This result shows the significance of considering proper boundary conditions at the vertical cutoff wall in analyzing slug tests. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Groundwater for domestic and irrigation purposes is produced primarily from shallow parts of the Bengal Basin aquifer system (India and Bangladesh), which contains high concentrations of dissolved arsenic (exceeding worldwide drinking water standards), though deeper groundwater is generally low in arsenic. An essential first step for determining sustainable management of the deep groundwater resource is identification of hydrogeologic controls on flow and quantification of basin-scale groundwater flow patterns. Results from groundwater modeling, in which the Bengal Basin aquifer system is represented as a single aquifer with higher horizontal than vertical hydraulic conductivity, indicate that this anisotropy is the primary hydrogeologic control on the natural flowpath lengths. Despite extremely low hydraulic gradients due to minimal topographic relief, anisotropy implies large-scale (tens to hundreds of kilometers) flow at depth. Other hydrogeologic factors, including lateral and vertical changes in hydraulic conductivity, have minor effects on overall flow patterns. However, because natural hydraulic gradients are low, the impact of pumping on groundwater flow is overwhelming; modeling indicates that pumping has substantially changed the shallow groundwater budget and flowpaths from predevelopment conditions.  相似文献   

16.
The Tongue Creek watershed lies on the south flank of Grand Mesa in western Colorado, USA and is a site with 1.5 km of topographic relief, heat flow of 100 mW/m2, thermal conductivity of 3.3 W m–1 °C–1, hydraulic conductivity of 10-8 m/s, a water table that closely follows surface topography, and groundwater temperatures 3–15°C above mean surface temperatures. These data suggest that convective heat transport by groundwater flow has modified the thermal regime of the site. Steady state three-dimensional numerical simulations of heat flow, groundwater flow, and convective transport were used to model these thermal and hydrological data. The simulations provided estimates for the scale of hydraulic conductivity and bedrock base flow discharge within the watershed. The numerical models show that (1) complex three-dimensional flow systems develop with a range of scales from tens of meters to tens of kilometers; (2) mapped springs are frequently found at locations where contours of hydraulic head indicate strong vertical flow at the water table, and; (3) the distribution of groundwater temperatures in water wells as a function of surface elevation is predicted by the model.  相似文献   

17.
孟庆敏 《物探与化探》1998,22(4):241-246
1997年9月23日~10月8日,在甘肃省安西—敦煌地区用Y11B航空物探(电/磁)综合站和GPS导航定位进行了地下水勘查试生产工作。用均匀大地模型,结合已知的水文地质资料,初步圈定了淡水区、过渡类型水区、咸水区和苦水区及泉水湖。所推断的水质和土壤含盐量与大的水文地质单元和1:20万水文地质普查报告都吻合得很好,且细节更为清楚。对差异较大的地方做了分析和解释。  相似文献   

18.
Geophysical logs provide a strong mechanism for interpretation and determination of the depositional environments, facies and also help in interpretations of hydrogeologic units. Spontaneous potential (SP) and resistivity logs can be used as an indicator of textural parameters. Pondicherry region has a complicated geology and with formation of different ages. The boreholes (BH) of this region are examined for litholog, SP and resistivity from four different BH locations, viz, Ariyankuppam, Chinnaverampattinam, Thavalakuppam and Nallavadu. These locations were studied and interpreted by using the shapes of the curves to identify the depositional environments, and this was later compared with the vertical litholog profile. Comparing the variation of these logs, the lateral variation of sedimentary facies was also attempted. The average resistivity values of Ariyankuppam, Chinnaverampattinam, Thavalakuppam and Nallavadu are 42.4, 30.4, 50.4 and 28.3?Ωm, respectively. Majority of the resistivity values corresponds from fine- to medium-grained sand, clayey pebbles, fine to very coarse sand and clayey sand with lignite. Frequency of resistivity values in each BH were identified for determining the dominant representative grain size. The study has pointed out the lithological variation of the system laterally and vertically using geophysical well logs.  相似文献   

19.
Soil disturbance caused during the installation of vertical drains reduces the in situ hydraulic conductivity of soft deposits in the immediate vicinity of the drains, resulting in a slower rate of consolidation than would be expected in the absence of disturbance. Experimental investigations have revealed the existence of two distinct zones, a smear zone and a transition zone, within the disturbed zone around the vertical drain. The degree of change in the hydraulic conductivity in the smear and transition zones is difficult to assess without performing of laboratory tests. Based on the available literature, four different profiles of hydraulic conductivity versus distance from the vertical drain were identified. Closed-form solutions for the rate of consolidation for each of these four hydraulic conductivity profiles were developed. It is found that different variations of the hydraulic conductivity profiles in the disturbed zone result in different rates of consolidation.  相似文献   

20.
The vertical hydraulic gradient in an unconfined sand aquifer frequently exceeds the horizontal gradient when measured close to a surface discharge boundary, around an abstraction bore or close to a saline interface. The vertical gradient can be efficiently investigated using a multi-channel manometer board connected to a bundled piezometer installed using hollow-stem-auger-drilling techniques. The design and construction of a manometer board is described. Manometer board data from a site in a 30-m-deep fresh-water aquifer adjacent to a pumping bore are described. The bore is screened in the lower part of the aquifer and the impacts of partial penetration are evident on the manometer board results. Data are then described from the centre of a coastal sand spit where fresh water overlies saline water. Fluid electrical conductivity measurements from the individual tubes of the bundled piezometer are used to derive fluid density at each of the bundled piezometer ports. The average fluid density of water above the mini-piezometer port at each depth is then calculated using Gaussian quadrature. The environmental-water head profiles are compared to point-water and fresh-water head profiles and the implications of the incorrect use of point-water or fresh-water head vertical profiles are clearly demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号