首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Two Earth-directed coronal mass ejections (CMEs), which were most effective in energetic (1–50 MeV) particle acceleration during the first 18 months since the Solar and Heliospheric Observatory (SOHO) launch, occurred on April 7 and May 12, 1997. In the analysis of these events we have deconvoluted the injection spectrum of energetic protons by using the method described by Anttila et al. In order to apply the method developed earlier for data of a rotating satellite (Geostationary Operational Environmental Satellites, GOES), we first had to develop a method to calculate the omnidirectional energetic particle intensities from the observations of Energetic and Relativistic Nuclei and Electrons (ERNE), which is an energetic particle detector onboard the three-axis stabilized SOHO spacecraft. The omnidirectional intensities are calculated by fitting an exponential pitch angle distribution from directional information of energetic protons observed by ERNE. The results of the analysis show that, compared to a much faster and more intensive CMEs observed during the previous solar maximum, the acceleration efficiency decreases fast when the shock propagates outward from the Sun. The particles injected at distances <0.5 AU from the Sun dominate the particle flux during the whole period, when the shock propagates to the site of the spacecraft. The main portion of particles injected by the shock during its propagation further outward from the Sun are trapped around the shock, and are seen as an intensity increase at the time of the shock passage.  相似文献   

2.
In this work, solar flare energetic particle fluxes (Ee 42 keV) observed by the HI-SCALE instrument onboard Ulysses, a spacecraft that is probing the heliosphere in 3-D, are utilized as diagnostics of the large-scale structure and topology of the interplanetary magnetic field (IMF) embedded within two well-identified interplanetary coronal mass ejection (ICME) structures. On the basis of the energetic solar flare particle observations firm conclusions are drawn on whether the detected ICMEs have been detached from the solar corona or are still magnetically anchored to it when they arrive at 2.5 AU. From the development of the angular distributions of the particle intensities, we have inferred that portions of the ICMEs studied consisted of both open and closed magnetic field lines. Both ICMEs present a filamentary structure comprising magnetic filaments with distinct electron anisotropy characteristics. Subsequently, we studied the evolution of the anisotropies of the energetic electrons along the magnetic field loop-like structure of one ICME and computed the characteristic decay time of the anisotropy which is a measure of the amount of scattering that the trapped electron population underwent after injection at the Sun.  相似文献   

3.
For the first time during the mission, the Anisotropy Telescopes instrument on board the Ulysses spacecraft measured constant zero anisotropy of protons in the 1.3/2.2 MeV energy range, for a period lasting more than three days. This measurement was made during the energetic particle event taking place at Ulysses between 25 November and 15 December 1998, an event characterised by constant high proton fluxes within a region delimited by two interplanetary forward shocks, at a distance of 5.2 AU from the Sun and heliographic latitude of 17°S. We present the ATs results for this event and discuss their possible interpretation and their relevance to the issue of intercalibration of the two telescopes.  相似文献   

4.
The high-altitude dayside cusps (both northern and southern) are extremely dynamic regions in geospace. Large diamagnetic cavities with significant fluctuations of the local magnetic field strength have been observed there. These cusp diamagnetic cavities are always there day after day and are as large as 6 RE Associated with these cavities are charged particles with energies from 20 keV up to 10 MeV. The intensities of the cusp energetic ions have been observed to increase by as much as four orders of the magnitude when compared with regions adjacent to the cusp which includes the magnetosheath. Their seed populations are a mixture of ionospheric and solar wind particles. The measured energetic ion fluxes in the high-altitude cusp are higher than that in both the regions upstream and downstream from the bow shock. Turbulent electric fields with an amplitude of about 10 mV/m are also present in the cusp, and a cusp resonant acceleration mechanism is suggested. The observations indicate that the dayside high-altitude cusp is a key region for transferring the solar wind mass, momentum, and energy into the Earth’s magnetosphere.  相似文献   

5.
Giant pulsations are nearly monochromatic ULF-pulsations of the Earth’s magnetic field with periods of about 100 s and amplitudes of up to 40 nT. For one such event ground-magnetic observations as well as simultaneous GEOS-2 magnetic and electric field data and proton flux measurements made in the geostationary orbit have been analysed. The observations of the electromagnetic field indicate the excitation of an odd-mode type fundamental field line oscillation. A clear correlation between variations of the proton flux in the energy range 30–90 keV with the giant pulsation event observed at the ground is found. Furthermore, the proton phase space density exhibits a bump-on-the-tail signature at about 60 keV. Assuming a drift-bounce resonance instability as a possible generation mechanism, the azimuthal wave number of the pulsation wave field may be determined using a generalized resonance condition. The value determined in this way, m = −21±4, is in accord with the value m = −27±6 determined from ground-magnetic measurements. A more detailed examination of the observed ring current plasma distribution function f shows that odd-mode type eigenoscillations are expected for the case ∂f/∂W ≥ 0, much as observed. This result is different from previous theoretical studies as we not only consider local gradients of the distribution function in real space, but also in velocity space. It is therefore concluded that the observed giant pulsation is the result of a drift-bounce resonance instability of the ring current plasma coupling to an odd-mode fundamental standing wave. The generation of the bump-on-the-tail distribution causing ≥f/≥W ≥ 0 can be explained due to velocity dispersion of protons injected into the ring current. Both this velocity dispersion and the necessary substorm activity causing the injection of protons into the nightside magnetosphere are observed.  相似文献   

6.
A chorus generation mechanism is discussed, which is based on interrelation of ELF/VLF noise-like and discrete emissions under the cyclotron wave-particle interactions. A natural ELF/VLF noise radiation is excited by the cyclotron instability mechanism in ducts with enhanced cold plasma density or at the plasmapause. This process is accompanied by a step-like deformation of the energetic electron distribution function in the velocity space, which is situated at the boundary between resonant and nonresonant particles. The step leads to the strong phase correlation of interacting particles and waves and to a new backward wave oscillator (BWO) regime of wave generation, when an absolute cyclotron instability arises at the central cross section of the geomagnetic trap, in the form of a succession of discrete signals with growing frequency inside each element. The dynamical spectrum of a separate element is formed similar to triggered ELF/VLF emission, when the strong wavelet starts from the equatorial plane. The comparison is given of the model developed using some satellite and ground-based data. In particular, the appearance of separate groups of chorus signals with a duration 2–10 s can be connected with the preliminary stage of the step formation. BWO regime gives a succession period smaller than the bounce period of energetic electrons between the magnetic mirrors and can explain the observed intervals between chorus elements.  相似文献   

7.
On the basis of the currents induced by electron fluxes in the Scintillating Fibre Detector (SFD) onboard the EQUATOR-S satellite launched on 2 December 1997, an in-situ acceleration of radiation belt electrons is found to possibly contribute to the increase of the flux of electrons with energies greater than 400 keV. The data acquired between 16 December 1997 and 30 April 1998 on the 500–67300 km, 4° inclination EQUATOR-S orbit show that the increase of the energetic electron flux corresponds to the enhanced geomagnetic activity measured through the Dst index.  相似文献   

8.
The strong increase in the flux of relativistic electrons during the recovery phase of magnetic storms and during other active periods is investigated with the help of Hamiltonian formalism and simulations of test electrons which interact with whistler waves. The intensity of the whistler waves is enhanced significantly due to injection of 10–100 keV electrons during the substorm. Electrons which drift in the gradient and curvature of the magnetic field generate the rising tones of VLF whistler chorus. The seed population of relativistic electrons which bounce along the inhomogeneous magnetic field, interacts resonantly with the whistler waves. Whistler wave propagating obliquely to the magnetic field can interact with energetic electrons through Landau, cyclotron, and higher harmonic resonant interactions when the Doppler-shifted wave frequency equals any (positive or negative) integer multiple of the local relativistic gyrofrequency. Because the gyroradius of a relativistic electron may be the order of or greater than the perpendicular wavelength, numerous cyclotron, harmonics can contribute to the resonant interaction which breaks down the adiabatic invariant. A similar process diffuses the pitch angle leading to electron precipitation. The irreversible changes in the adiabatic invariant depend on the relative phase between the wave and the electron, and successive resonant interactions result in electrons undergoing a random walk in energy and pitch angle. This resonant process may contribute to the 10–100 fold increase of the relativistic electron flux in the outer radiation belt, and constitute an interesting relation between substorm-generated waves and enhancements in fluxes of relativistic electrons during geomagnetic storms and other active periods.  相似文献   

9.
New observations of energetic helium ion fluxes in the Earth’s radiation belts have been obtained with the CAMMICE/HIT instrument on the ISTP/GGS POLAR spacecraft during the extended geomagnetically low activity period April through October 1996. POLAR executes a high inclination trajectory that crosses over both polar cap regions and passes over the geomagnetic equator in the heart of the radiation belts. The latter attribute makes possible direct observations of nearly the full equatorial helium ion pitch angle distributions in the heart of the Earth’s radiation belt region. Additionally, the spacecraft often re-encounters the same geomagnetic flux tube at a substantially off-equatorial location within a few tens of minutes prior to or after the equatorial crossing. This makes both the equatorial pitch angle distribution and an expanded view of the local off-equatorial pitch angle distribution observable. The orbit of POLAR also permitted observations to be made in conjugate magnetic local time sectors over the course of the same day, and this afforded direct comparison of observations on diametrically opposite locations in the Earth’s radiation belt region at closely spaced times. Results from four helium ion data channels covering ion kinetic energies from 520 to 8200 KeV show that the distributions display trapped particle characteristics with angular flux peaks for equatorially mirroring particles as one might reasonably expect. However, the helium ion pitch angle distributions generally flattened out for equatorial pitch angles below about 45°. Significant and systematic helium ion anisotropy difference at conjugate magnetic local time were also observed, and we report quiet time azimuthal variations of the anisotropy index.  相似文献   

10.
Three main physical processes (and associated properties) are currently used to describe the flux and anisotropy time profiles of solar energetic particle events, called SEP profiles. They are (1) the particle scattering (due to magnetic waves), (2) the particle focusing (due to the decrease of the amplitude of the interplanetary magnetic field (IMF) with the radial distance to the Sun) and (3) the finite injection profile at the source. If their features change from one field line to another, i.e. if there is a cross IMF gradient (CFG), then the shape of the SEP profiles will depend, at onset time, on the relative position of the spacecraft to the IMF and might vary significantly on small distance scale (e.g. 106 km). One type of CFG is studied here. It is called intensity CFG and considers variations, at the solar surface, only of the intensity of the event. It is shown here that drops of about two orders of magnitude over distances of 104 km at the Sun (1° of angular distance) can influence dramatically the SEP profiles at 1 AU. This CFG can lead to either an under or overestimation of both the parallel mean free path and of the injection parameters by factor up to, at least, 2/3 and 18, respectively. Multi-spacecraft analysis can be used to identify CFG. Three basic requirements are proposed to identify, from the observation, the type of the CFG being measured.  相似文献   

11.
Multiple inverted-V structures are commonly observed on the same auroral zone crossing by a lowaltitude orbiting satellite. Such structures appear grouped and apparently result from an ionospheric and/or magnetospheric mechanism of stratification. More than two years of AUREOL-3 satellite observations were analyzed to study their properties and their formation in the framework of the ionosphere-magnetosphere coupling model proposed by Tverskoy. This model predicts some natural periodicity in the electrostatic potential profile (and subsequently in the field-aligned current profiles) that could account for oscillations experimentally observed in the auroral zone, such as successive inverted-Vs. Experimental results obtained during quiet or moderately active periods demonstrate that the number of structures observed within a given event is well described by a scaling parameter provided by the hot plasma stratification theory and expressed in terms of the field-aligned current density, the total width of the current band, the plasma sheet ion temperature, and the height-integrated Pedersen conductivity of the ionosphere. The latitudinal width, in the order of 100/200 km at ionospheric altitudes, is relatively independent of the current density, and is determined not only by the existence of a potential difference above the inverted-Vs, but also by basic oscillations of the ionosphere-magnetosphere coupling system predicted by Tverskoy. The large number of cases studied by the AUREOL-3 satellite provides reliable statistical trends which permits the validation of the model and the inference that the multiple structures currently observed can be related directly to oscillations of the magnetospheric potential (or the pressure gradients) on a scale of 1000/2000 km in the near-Earth plasma sheet. These oscillations arise in the Tverskoy model and may naturally result when the initial pressure gradients needed to generate a large-scale field-aligned current have a sufficiently wide equatorial scale, of about 1 RE or more.  相似文献   

12.
We have analyzed high time resolution (6 s) data during the onset and the decay phase of several energetic (35 keV) ion events observed near the Earths bow shock by the CCE/AMPTE and IMP-7/8 spacecraft, during times of intense substorm/geomagnetic activity. We found that forward energy dispersion at the onset of events (earlier increase of middle energy ions) and/or a delayed fall of the middle energy ion fluxes at the end of events are often evident in high time resolution data. The energy spectra at the onset and the decay of this kind of events show a characteristic hump at middle (50–120 keV) energies and the angular distributions display either anisotropic or broad forms. The time scale of energy dispersion in the ion events examined was found to range from several seconds to 1 h depending on the ion energies compared and on the rate of variation of the Interplanetary Magnetic Field (IMF) direction. Several canditate processes are discussed to explain the observations and it is suggested that a rigidity dependent transport process of magnetospheric particles within the magnetosheath is most probably responsible for the detection of this new type of near bow shock magnetospheric ion events. The new class of ion events was observed within both the magnetosheath and the upstream region.  相似文献   

13.
We study a simple self-consistent model of a whistler cyclotron maser derived from the full set of quasi-linear equations. We employ numerical calculations to demonstrate dependencies of pulsation regimes of whistler-mode wave interactions with energetic electrons on plasma parameters. Possible temporal evolution of those regimes in real conditions is discussed; calculations are compared with case-study experimental data on energetic electron precipitation pulsations. A reasonable agreement of the model results and the observations has been found.  相似文献   

14.
Using observations with the ALOMAR SOUSY radar near Andenes (69.3°N, 16.0°E) from 1994 until 1997 polar mesosphere summer echoes (PMSE) have been investigated in dependence on geomagnetic K indices derived at the Auroral Observatory Tromsø (69.66°N, 18.94°E). During night-time and morning hours a significant correlation between the signal-to-noise ratio (SNR) of the radar results and the geomagnetic K indices could be detected with a maximum correlation near midnight. The correlation becomes markedly smaller in the afternoon and early evening hours with a minimum near 17 UT. This diurnal variation is in reasonable agreement with riometer absorption at Ivalo (68.55°N, 27.28°E) and can be explained by the diurnal variation of ionization due to precipitating high energetic particles. Therefore, a part of the diurnal PMSE variation is caused by this particle precipitation. The variability of the solar EUV variation, however, has no significant influence on the PMSE during the observation period.  相似文献   

15.
We present for the first time a statistical study of 50 keV ion events of a magnetospheric origin upstream from Earths bow shock. The statistical analysis of the 50–220 keV ion events observed by the IMP-8 spacecraft shows: (1) a dawn-dusk asymmetry in ion distributions, with most events and lower intensities upstream from the quasi-parallel pre-dawn side (4 LT-6 LT) of the bow shock, (2) highest ion fluxes upstream from the nose/dusk side of the bow shock under an almost radial interplanetary magnetic field (IMF) configuration, and (3) a positive correlation of the ion intensities with the solar wind speed and the index of geomagnetic index Kp, with an average solar wind speed as high as 620 km s–1 and values of the index Kp 2. The statistical results are consistent with (1) preferential leakage of 50 keV magnetospheric ions from the dusk magnetopause, (2) nearly scatter free motion of 50 keV ions within the magnetosheath, and (3) final escape of magnetospheric ions from the quasi-parallel dawn side of the bow shock. An additional statistical analysis of higher energy (290–500 keV) upstream ion events also shows a dawn-dusk asymmetry in the occurrence frequency of these events, with the occurrence frequency ranging between 16%-34% in the upstream region.  相似文献   

16.
We study an interval of 56 h on January 16 to 18, 1995, during which the GEOTAIL spacecraft traversed the duskside magnetosheath from X ≅ −15 to −40 RE and the EPIC/ICS and EPIC/STICS sensors sporadically detected tens of energetic particle bursts. This interval coincides with the expansion and growth of a great geomagnetic storm. The flux bursts are strongly dependent on the magnetic field orientation. They switch on whenever the Bz component approaches zero (Bz ≅ 0 nT). We strongly suggest a magnetospheric origin for the energetic ions and electrons streaming along these “exodus channels”. The time profiles for energetic protons and “tracer” O+ ions are nearly identical, which suggests a common source. We suggest that the particles leak out of the magnetosphere all the time and that when the magnetosheath magnetic field connects the spacecraft to the magnetotail, they stream away to be observed by the GEOTAIL sensors. The energetic electron fluxes are not observed as commonly as the ions, indicating that their source is more limited in extent. In one case study the magnetosheath magnetic field lines are draped around the magnetopause within the YZ plane and a dispersed structure for peak fluxes of different species is detected and interpreted as evidence for energetic electrons leaking out from the dawn LLBL and then being channelled along the draped magnetic field lines over the magnetopause. Protons leak from the equatorial dusk LLBL and this spatial differentiation between electron and proton sources results in the observed dispersion. A gradient of energetic proton intensities toward the ZGSM= 0 plane is inferred. There is a permanent layer of energetic particles adjacent to the magnetosheath during this interval in which the dominant component of the magnetic field was Bz.  相似文献   

17.
Radial transport theory for inner radiation zone MeV ions has been extended by combining radial diffusive transport and losses due to Coulomb friction with local generation of D, T and 3He ions from nuclear reactions taking place on the inner edge of the inner radiation zone. Based on interactions between high energy trapped protons and upper atmospheric constituents we have included a nuclear reaction yield D, T and 3He flux source that was numerically derived from a nuclear reaction model code originally developed at the Institute of Nuclear Researches in Moscow, Russia. Magnetospheric transport computations have been made covering the L-shell range L=1.0–1.6. The resulting MeV energy D, T and 3He ion flux distributions show a strong influence of the local nuclear source mechanism on the inner zone energetic D, T and 3He ion content.  相似文献   

18.
Energetic electrons (e.g., 50 keV) travel along field lines with a high speed of around 20 REs−1. These swift electrons trace out field lines in the magnetosphere in a rather short time, and therefore can provide nearly instantaneous information about the changes in the field configuration in regions of geospace. The energetic electrons in the high latitude boundary regions (including the cusp) have been examined in detail by using Cluster/RAPID data for four consecutive high latitude/cusp crossings between 16 March and 19 March 2001. Energetic electrons with high and stable fluxes were observed in the time interval when the IMF had a predominately positive Bz component. These electrons appeared to be associated with a lower plasma density exhibiting no obvious tailward plasma flow (<20 keV). On the other hand, no electrons or only spike-like electron events have been observed in the cusp region during southward IMF. At that time, the plasma density was as high as that in the magnetosheath and was associated with a clear tailward flow. The fact that no stable energetic electron fluxes were observed during southward IMF indicates that the cusp has an open field line geometry. The observations indicate that both the South and North high latitude magnetospheric boundary regions (including both North and South cusp) can be energetic particle trapping regions. The energetic electron observations provide new ways to investigate the dynamic cusp processes. Finally, trajectory tracing of test particles has been performed using the Tsyganenko 96 model; this demonstrates that energetic particles (both ions and electrons) may be indeed trapped in the high latitude magnetosphere.  相似文献   

19.
The formation of a zone of energetic electron precipitation by the plasmapause, a region of enhanced plasma density, following energetic particle injection during a magnetic storm, is analyzed. Such a region can also be formed by detached cold plasma clouds appearing in the outer magnetosphere by restructuring of the plasmasphere during a magnetic storm. As a mechanism of precipitation, wave-particle interactions by the cyclotron instability between whistler-mode waves and electrons are considered. In the framework of the self-consistent equations of quasi-linear plasma theory, the distribution function of trapped electrons and the electron precipitation pattern are found. The theoretical results are compared with experimental data obtained from NOAA satellites.  相似文献   

20.
An intensification of auroral luminosity referred to as an auroral break-up often accompanies the onset of geomagnetic pulsation (Pi 2) at the dip-equator. One such auroral break-up occurred at 2239 UT on 16 June, 1986, being accompanied by weak substorm activity (AE≈50 nT) which was recorded in all-sky image of Syowa Station, Antarctica (66.2°S, 71.8°E in geomagnetic coordinates). The associated Pi 2 magnetic pulsation was detected by a fluxgate magnetometer in the afternoon sector at the dip-equator (Huancayo, Peru; 1.44°N, 355.9° in geomagnetic coordinates; 12.1°S, 75.2°W in geographic coordinates; L = 1.00). In spite of the large separation of the two stations in longitude and latitude, the auroral break-up and subsequent luminosity modulation were seen to be correlated with the wave form of the ground Pi 2 pulsation. This occurred in such a way that the luminosity maximum was seen to occur at the phase of maximum amplitudes of Pi 2 wave form. We argue that the observed correlation could be interpreted as indicating a Pi 2-modulation of a field-aligned acceleration of the low energy electrons that may occur near the equator of the midnight magnetosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号