首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
矿渣胶凝材料固化软土的力学性状及机制   总被引:4,自引:0,他引:4  
利用矿渣胶凝材料固化软土,既可利用工业废渣,又能减少水泥的用量。以矿渣胶凝材料固化黏土、砂土二种软土。发现矿渣胶凝材料加固软土的效果远好于水泥、石灰,其9 %掺量的固化土28 d的无侧限强度达到2.0 MPa以上,普遍高于15 %掺量的水泥固化土,且其28 d固化土的软化系数普遍高于90 %以上,固化黏土后CBR值远高于同掺量的石灰固化土。X衍射结构分析表明,矿渣胶凝材料水化时产生的高强难溶的矿物晶体是其固化软土效果好的主要原因。因此,矿渣胶凝材料是一种性能优异的软土加固材料。  相似文献   

2.
Clay soils, especially clay soils of high or very high swelling potential often present difficulties in construction operations. However, the engineering properties of these clay soils can be enhanced by the addition of cement, thereby producing an improved construction material. Higher strength loss of cement stabilized clay soils after soaking in water is attributed to water absorbing capacity of the clay fraction (e.g. montmorillonite). Kaolinite and illitic soils are largely inert and resist to water penetration. These clays generally develop satisfactory strengths resulting to low strength reduction [Croft, 1967]. The swelling clays such as bentonite soaked in water, due to environmental conditions, result to volume increase causing macro and micro-fracturing in engineering structures. These fractures accelerate water penetration and consequently cause greater strength loss [Sällfors and Öberg-Högsta, 2002]. The water intrusion during soaking creates swelling and disrupts the cement bonds. The development of internal and external force systems in soil mass, due to soaking conditions, establish the initiation of slaking. Internal force system of a stabilized clayey soil consists of the resultant stresses established by the bonding potential of a cementing agent and the swelling potential of a clay fraction. In an effort to study this influence of soaking conditions and final absorbed water content on the stabilization parameters (cement, compaction, curing time), both unconfined compressive strength and slaking (durability) tests were carried out on two different cement stabilized clayey mixtures consisted of active bentonite, kaolin and sand.  相似文献   

3.
以人工制备的方法配制了不同氯盐含量的土样,并掺入不同含量的普通硅酸盐水泥对其进行固化处理。采用无侧限抗压强度试验对氯盐含量对水泥固化土的应力应变特征影响规律进行分析。试验结果表明:随着氯盐含量的增加,水泥固化土的无侧限抗压强度和变形模量降低,破坏应变随之增大,应力-应变关系曲线由脆性破坏向塑性破坏转化; 增加水泥用量可以减缓氯盐对水泥固化土的不良影响; 但水泥固化土变形模量与无侧限抗压强度的比值与氯盐含盐量大小无明显关系。  相似文献   

4.
王领  沈水龙  白云  彭少杰 《岩土力学》2010,31(3):743-747
对于使用水泥与上海黏性土进行混合加固的土体,其强度增长特性与水泥含量、加固土的初期pH值、养护时间有关。以上海4类黏土为研究对象,对加固土的强度增长特性进行了试验研究;探讨了加固土的养护时间、水泥含量、初期pH等与加固土强度的关系。试验结果表明,当上海黏土中水泥含量或者加固土的初期pH值大于某一临界值时,水泥加固土的强度将迅速增加,对于上海黏土,该临界pH值为11.7,对应的水泥含量为17%~20%。但当水泥含量达到一定值后,它对土体的pH值的影响开始变小,而且水泥土的强度趋于稳定的时间变长。  相似文献   

5.
Clay soil with low-bearing capacities can present great problems underlying pavement and light structures due to uncertainty associated with their performance. This paper describes a sonic based testing methodology for quality control of a surface stabilized soil. From an engineering aspect, an increase in water content has a number of disadvantageous consequences: cohesion decreases, the soil swells, the alternating dry-out/shrinkage and wetting/swelling effects destroy the rock or a soil structure. Cement is mixed into the soil to increase both the strength and the usability of local soils in constructions purposes. This is to overcome the problems by strengthening the soil underlying the structure or diminishing the leads transmitted from the foundation to the soil. The compressive strength of the stabilized soil is highly dependent on the type of soil, moisture content, cement content, and compaction work, and can therefore vary significantly in the field. The authors performed the quality control by measuring the sonic and tensile strength velocity in the stabilized soil that has been correlated to compressive strength in native materials. The improvement of the soil materials by the addition of cement could make the material suitable as filling materials, foundation and/or a road base construction. The quality control for the stabilized soils was investigated using sonic measurements and strength gain. The test methods were performed to evaluate the degree of improvement achieved through the measurement of compression and shear-wave velocities of the soil under study. Scanning electron microscopy and electron dispersive X-ray analyses were performed on raw and laboratory treated for qualitative understanding the strength minerals formed during stabilization. The sonic test showed a considerable improvement with curing time and percentages of stabilizer. Mineralogical studies indicated the formation of silica and alumina hydrates along with interwoven structure of cement treated clay particles suggesting adequate mixing of the soil and binder owing to the strength of the soil materials.  相似文献   

6.
城市河道淤泥特性及改良试验初探   总被引:4,自引:1,他引:3       下载免费PDF全文
以南京内秦淮河疏浚淤泥为例,通过土工试验、XRD和X射线荧光光谱试验等方法,研究了城市河道淤泥的物理性质、矿物成分、化学成分等特性。试验结果显示:秦淮河淤泥粘粒含量低、有机质含量极高,矿物成分主要有石英和少量粘土矿物等。为了实现淤泥的资源化处理,运用水泥、石灰无机固化材料对淤泥进行固化改良试验及改性土无侧限抗压强度试验,结果表明随着水泥掺量增加,水泥固化土由塑性破坏向脆性破坏过渡,破坏应变在1.8%~2.2%,而石灰固化土均表现为脆性破坏,且破坏应变小于水泥土,为1%左右。水泥固化土28d强度为670kPa,固化效果优于石灰,但略低于处理一般软土的固化土强度。研究结果对处置城市河道淤泥有一定参考价值。  相似文献   

7.
郭印  徐日庆  邵玉芳  齐静静 《岩土力学》2006,27(Z1):534-538
通过无侧限抗压强度试验对比分析了有机质含量、水泥和石膏掺量对水泥固化土和XGL2005固化土强度形成规律的影响。分析结果表明,XGL2005固化土的强度均不同程度地高于水泥固化土的强度,而且强度增长也快于水泥固化土。结合抗压强度试验和扫描电镜试验分析了固化土微观结构变化和强度发展之间的对应关系。  相似文献   

8.
水泥加固不同地区软土的试验研究   总被引:1,自引:0,他引:1  
陈慧娥  王清 《岩土力学》2007,28(2):423-426
对不同地区软土经水泥加固后的强度形成特征进行了研究。进行直接剪切试验及无侧限抗压试验测定了水泥加固土的力学指标,发现不同地区的软土经水泥加固后力学性质存在很大差异,从试样的粒度成分、有机质含量及加固后试样的微观结构特征等方面对此进行解释。结果表明,试样的粒度成分及有机质含量会对加固效果产生很大影响,黏粒含量越大,有机质含量越高,对水泥加固土强度的形成越不利。为在用水泥进行不同性质的软土加固处理时采取合理的附加措施提供了理论依据。  相似文献   

9.
Chian  S. C.  Bi  J. 《Acta Geotechnica》2021,16(4):1127-1145

In nature, soils are often composed of varying amounts of clay, silt and sand. Variation of the percentage of these compositions can affect the final strength of the soils when stabilised with cement. In this study, focus was placed on clayey soils with different gradation of sand impurities up to 40% in mass. An extensive study of such clayey soils treated with cement was investigated. For the results, it is noted that water:cement ratio was a major influence of strength development of cement-treated clayey soils. In contrast, the soil:cement ratio was found to have minor effects on the strength development. The presence of sand impurities has a significant reduction on the strength development of the cement-treated clayey soil mixture due to more free water available for hydration. The use of free-water:cement ratio is adopted which was shown to be capable of adjusting for such change in amount of free water and water holding capacity of the clay which is determined with Atterberg’s liquid limit tests. The effects of gradation (fine, coarse and well-graded) of the sand impurities were found to affect strength development minimally, owing to similarities in their liquid limits when mixed with clay. Ordinary Portland cement (OPC)-treated clayey soils produced a more rapid gain in strength but lower final strength at 28 days of curing as compared with Portland blast furnace cement (PBFC). This is found to be persistent for different gradation of sand impurities. A linear correlation can be established based on the log of the unconfined compressive strengths developed at different curing age, with slopes of these linear trends found to be similar for PBFC and OPC-treated clayey soil specimens. Finally, a strength prediction model comprising of these findings is developed. The parameters adopted in this model coincide with values proposed by past studies, thereby validating the robustness of the model. The practical benefits from this study offer a quality control scheme to forecast long-term performance of cement-treated clayey soils as well as optimise cement dosage in cement stabilisation to produce a more cost-effective and less environmental-invasive usage of the technology in geotechnical applications.

  相似文献   

10.
为了验证固化剂GX08加固杭州海湖相软土的效果及考察有机质对水泥固化的不利影响,对固化土的强度特性进行了试验研究。结果表明,有机质的添加会显著阻碍固化土强度的增长,而固化剂GX08能有效增强固化土的强度;固化土强度与有机质含量存在二次函数关系,与水泥掺量呈线性关系,与固化剂GX08掺量和龄期都以对数函数的形式相关;将总灰水比C/W用于固化土强度模型的建立,通过对试验数据的分析与整理,建立了同时考虑固化土中有机质含量、水泥掺量、固化剂掺量和龄期影响的固化土综合强度预测模型。最后对模型进行了推广使用,验证了模型的适用性。  相似文献   

11.
Flowable fill is a self-levelling and self-compacting, cementitious material which is primarily used as a backfill. It is a mixture of fine aggregates, small amount of cement, water and a by-product material. In this present experimental study, three industrial by-products namely fly ash, rice husk ash and quarry dust were used as constituent materials in flowable fill. Mix proportions were developed for different combination of these industrial by-products, in addition to small amount of cement content. The main objective of the present investigation is to study the stress–strain behaviour of these mixes, namely unconfined compressive strength (UCS), strain corresponding to peak stress, strain corresponding to fracture and modulus of elasticity. In addition, several mixes were tested for few other properties such as flowability, density, water-absorption and volume changes. The range of strengths, strains and moduli of elasticity obtained for these flowable fill mixtures represents different types of clay soils ranging from soft clays to very stiff clays. Thus, industrial by-products such as fly ash, rice husk ash and quarry dust can be beneficially added in flowable fill that offers comparable strengths to soils used for conventional fills and many other low-strength applications.  相似文献   

12.
通过系列室内试验,研究了硫酸盐长期浸泡环境下GGBS-MgO固化黏土的物理和力学性质及微观特征变化规律,并与水泥固化黏土进行对比,揭示了GGBS-MgO固化黏土抵抗硫酸盐侵蚀的机制。与水泥固化黏土相比,硫酸盐浸泡条件下GGBS-MgO固化黏土表面完整度较好;质量变化率在浸泡120 d时仅为水泥固化黏土的0.25倍;固化黏土体pH略小于同期水泥固化黏土;浸泡初期GGBS-MgO固化黏土强度增长达20%,同周期时无侧限抗压强度较水泥固化黏土高15%~80%。X射线衍射试验(XRD)表明,硫酸盐侵蚀下GGBS-MgO固化黏土中水化硅酸钙(C-S-H凝胶)的峰值高于水泥固化黏土,而钙矾石(AFt)的XRD图谱峰值明显低于水泥固化黏土。电镜扫描试验结果表明,两种固化黏土中钙矾石形态明显不同:钙矾石在水泥固化黏土中以团聚型晶体存在,可具较强膨胀性,而在GGBS-MgO固化黏土中则以细短形态分布于颗粒间,可有效填充试样孔隙,使其具备良好的抗硫酸盐侵蚀能力。  相似文献   

13.
刘鑫  范晓秋  洪宝宁 《岩土力学》2011,32(6):1676-1682
为研究水泥砂浆固化土剪切强度特性和合理确定水泥砂浆固化土工程应用的配比,从掺砂量、水泥掺入比、原料土含水率及砂料粒径入手,对水泥砂浆固化土进行了室内固结不排水三轴(CU)试验研究。结果表明,掺砂可以改善固化土强度;随掺砂量的增加,黏聚力和有效黏聚力先增加后减小,转折点的掺砂量为最佳掺砂量(10%左右),内摩擦角和有效内摩擦角不断增加,一定掺砂量下增加水泥掺入比可有效地提高固化土的强度;随着含水率的增加,固化土的黏聚力呈近似线性减小的关系,而内摩擦角几乎保持不变,采用水泥砂浆处理高含水率软弱地基时适当提高掺砂量,可以较大幅度改善固化土的力学性质;在掺料配比一定的情况下砂料粒径对固化土的抗剪强度指标存在一定的影响。采用单一粒径砂料的固化土抗剪强度更高,该单一粒径在固化土级配良好的前提下,不均匀系数Cu趋于最大、曲率系数Cc趋于最小  相似文献   

14.
固化铅污染土的干湿循环耐久性试验研究   总被引:2,自引:0,他引:2  
曹智国  章定文  刘松玉 《岩土力学》2013,34(12):3485-3490
在商用高岭土、膨润土与商业黄砂混合物中加入硝酸铅溶液,添加水泥和石灰两种固化剂,采用室内压实制样方法获得固化的铅污染土试样。进行干、湿循环试验,测试固化体的质量损失和无侧限抗压强度等参数随干、湿循环次数的变化规律,评价固化铅污染土的干、湿耐久性。测试结果表明,本试验8种配比的试样都满足干、湿循环的要求;黏土矿物为膨润土的试样干、湿循环耐久性比黏土矿物为高岭土的试样要差;水泥固化土的干、湿循环耐久性要略优于石灰固化土;加入 8 000 mg/kg的铅可略增大土体的抗干、湿循环耐久性。水泥和石灰固化/稳定化重金属污染土时,土体中含水率是保证加固效果的关键参数之一。土体中含水率应能满足固化剂充分水化、水解、火山灰和碳酸化反应之需要。  相似文献   

15.
The presence of heavy metals at high concentrations (percent levels) in soils has been a growing concern to human health and the environment, and the cement stabilization is considered to be an effective and practical approach to remediate such soils. The compressibility of such stabilized soils is an important consideration for redevelopment of the remediated sites for building and/or roadway construction. This paper investigates the effects of high levels of zinc concentration on the compressibility of natural clay stabilized by cement additive. Several series of laboratory compression (oedometer) tests were conducted on the soil specimens prepared with the zinc concentrations of 0, 0.1, 0.2, 0.5, 1, and 2 %, cement contents of 12 and 15 %, and curing time of 28 days. The results show that the yield stress and compression index at the post-yield state decrease with an increase in the zinc concentration regardless of the cement content. The observed results are attributed to the decrease in the cement hydration of the soil. Overall, this study demonstrates that the cementation structure of the soils is weakened, and the compressibility increases with the elevated zinc concentration, particularly at relatively high levels of zinc concentration.  相似文献   

16.
以伊犁地区S315线蜂场至尼勒克段低液限粉黏土为研究对象,以碱激发材料为固化剂,对粉质黏土和其固化土开展了路用性能指标试验与冻融循环试验,并利用电镜扫描试验(SEM)与X射线衍射试验(XRD)研究了固化土的微观特征,探讨了碱激发材料对粉质黏土路用性能指标与抗冻融特性的影响.试验结果表明,固化土的无侧限抗压强度与抗剪强度...  相似文献   

17.
为研究超细水泥含量对水泥固化软土的早期力学性能的影响,本文通过在普通水泥中加入不同掺量的超细水泥组成复合水泥固化剂用以固化软土。具体研究不同超细水泥掺量、不同初始含水率、及不同养护围压条件下,复合水泥固化剂对固化软土早期抗压强度及刚度的影响。采用自制K0围压养护装置(施加不同轴向压力的方式)、无侧限抗压强度仪(UCS)、X射线衍射仪(XRD)、电镜扫描仪(SEM)和低场核磁共振孔隙测试仪(NMR)等试验手段获取复合水泥固化软土不同龄期的抗压强度、刚度及微观结构的变化规律,并揭示其固化机理。研究结果表明:(1)相同轴向压力作用下,随着超细水泥掺量的增加,固化软土的抗压强度和弹性模量均有提高,其中复合固化剂中的活性颗粒发生水化反应生成大量胶凝产物用以黏聚土颗粒和填充孔隙,惰性颗粒用于填充土颗粒间的孔隙;(2)随着含水率的提高,固化软土中孔相对发育,从而使固化软土结构致密性减弱,抗压强度降低;(3)在K0围压养护7d时,固化软土的抗压强度和弹性模量随着轴向压力的提高而增加,表明养护围压对软土颗粒的压缩作用能提高固化软土的密实性,同时围压对固化软土产生有效应力,与水化产物共同促进固化软土形成密实的土骨架,进而使其在7d内具有较高的抗压强度。基于试验结果,建立轴向压力、含水率和超细水泥掺量等多因素的固化软土强度预测公式,并提出复合水泥固化软土结构模型,为工程实践提供理论基础。  相似文献   

18.
Peat has been considered as an organics remnant that suffers decomposition process throughout times under overburden pressure. Composition of peats normally consists of organics materials which sometimes exceed 75% specifically from woods that grows in marshes and places in conditions where deficiencies of oxygen exist. Usually peat area related with swampy and normally a low shear strength region. High compressibility is significant and often related to problematic soil for construction purposes. In this article, extensive number of studies are reviewed to understand the behavior of the peat after being stabilized. New findings indicated that the peat contents differs from one location to another, thus inevitably gives different behavior. Many improvisation methods have been put forward such as chemical stabilization, cement stabilization, deep mixing and fiber reinforcement to name a few to enhance the strength properties of the peat. This is mainly for construction reliability purposes. However, the suitability of the ground improvement for peat thus depend on its fundamental properties and cost involve for any dedicated ground construction work. This paper review the properties of peat in Malaysia and reviewed recent development in the peaty soil stabilization in Malaysia. It is also compared the materials used for the peat stabilization and the expansive clay soils as the main two problematic soils.  相似文献   

19.
Nowadays, improving the strength and deformation properties of soft soils by deep soil mixing is a commonly used technique. There is also an increasing interest in the use of this technique for foundation/structural elements and excavation retaining walls applications. The compressive strength and elastic modulus of the soil mix material are key parameters in the design of these structures. However, there is very limited information available on the impact of exposure to air drying (in the case of retaining wall) on the strength and stiffness of cement stabilized soils. The aim of this study is to investigate the effects of different curing conditions (immersion in water, cycles of wetting and drying, continuous air drying) on the mechanical properties of soils treated with cement in the laboratory. Free–free resonance tests and unconfined compression tests were performed on specimens of silt and sand treated with blastfurnace slag cement. Strength increases more rapidly than stiffness between 7 and 30 days. The strength of stabilized soils submitted to cyclic wetting and drying before the cement hydration process is complete continues to increase. As long as the periods of drying do not induce microcracks, the stiffness of the treated soil specimens also increases with time. However, the stiffness is lower than for the specimens cured in water indicating a disruptive effect of the imposed wetting–drying cycles on stiffness. Continuous exposure to air drying inhibits strength development due to insufficient water for hydration. Significant stiffness decreases were observed on specimens of stabilized silt and are attributed to microcracking.  相似文献   

20.
本文开展了一系列不同液限高分子吸水树脂固化工程泥浆无侧限抗压强度试验, 探讨了泥浆土液限对固化效率的影响规律, 对比研究了掺入高岭土对泥浆固化强度的改进程度, 最后基于XRD和SEM试验揭示了液限和高岭土对固化泥浆强度影响的微观机理。结果表明: 随着泥浆土液限的增大, 固化泥浆土强度逐渐降低, 固化效率随着泥浆土液限增大显著衰减, 当液限增加10%, 固化泥浆土强度qu平均减少48.2%。然而高岭土的掺入则显著提升了固化泥浆土的强度, 并且强度增长率随着龄期逐渐增大, 对于龄期为90天时, 增加40%高岭土能够提升固化泥浆土强度qu 1.17倍。微观结构试验表明泥浆土液限变化对水化产物产量的影响较小, 固化泥浆土强度随泥浆土液限减小主要是由于固化泥浆土孔隙随着泥浆土液限增大而增多, 使得微观结构松散从而导致强度降低。高岭土的掺入则显著提升了固化泥浆土的水化产物产量, 增强了固化泥浆土胶结强度, 从而提升了固化泥浆土强度。因此, 在实际工程中, 一方面可以通过调配泥浆土液限来提高固化效率; 另一方面可以通过掺入高岭土或者一些高岭土基废弃物(如高岭土尾矿)来提高固化强度, 实现“以废制废”绿色环保的理念。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号