首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lower Cretaceous (Hauterivian) bioclastic sandstone turbidites in the Scapa Member (North Sea Basin) were extensively cemented by low-Mg calcite spars, initially as rim cements and subsequently as concretions. Five petrographically distinct cement stages form a consistent paragenetic sequence across the Scapa Field. The dominant and pervasive second cement stage accounts for the majority of concretions, and is the focus of this study. Stable-isotope characterization of the cement is hampered by the presence of calcitic bioclasts and of later cements in sponge spicule moulds throughout the concretions. Nevertheless, trends from whole-rock data, augmented by cement separates from synlithification fractures, indicate an early calcite δ18O value of+0·5 to -1·5‰ PDB. As such, the calcite probably precipitated from marine pore fluids shortly after turbidite deposition. Carbon isotopes (δ13C=0 to -2‰ PDB) and petrographic data indicate that calcite formed as a consequence of bioclastic aragonite dissolution. Textural integrity of calcitic nannoplankton in the sandstones demonstrates that pore fluids remained at or above calcite saturation, as expected for a mineral-controlled transformation. Electron probe microanalyses demonstrate that early calcite cement contains <2 mol% MgCO3, despite its marine parentage. Production of this cement is ascribed to a combination of an elevated aragonite saturation depth and a lowered marine Mg2+/Ca2+ ratio in early Cretaceous ‘calcite seas’, relative to modern oceans. Scapa cement compositions concur with published models in suggesting that Hauterivian ocean water had a Mg2+/Ca2+ ratio of ≤1. This is also supported by consideration of the spatial distribution of early calcite cement in terms of concretion growth kinetics. In contrast to the dominant early cement, late-stage ferroan, 18O-depleted calcites were sourced outwith the Scapa Member and precipitated after 1–2 km of burial. Our results emphasize that bioclast dissolution and low-Mg calcite cementation in sandstone reservoirs should not automatically be regarded as evidence for uplift and meteoric diagenesis.  相似文献   

2.
Carbonate concretions in the Lower Carboniferous Caton Shale Formation contain diagenetic pyrite, calcite and barite in the concretion matrix or in different generations of septarian fissures. Pyrite was formed by sulphate reduction throughout the sediment before concretionary growth, then continued to form mainly in the concretion centres. The septarian calcites show a continuous isotopic trend from δ13C=?28·7‰ PDB and δ18O=?1·6‰ PDB through to δ13C=?6·9‰ PDB and δ18O=?14·6‰ PDB. This trend arises from (1) a carbonate source initially from sulphate reduction, to which was added increasing contributions of methanogenic carbonate; and (2) burial/temperature effects or the addition of isotopically light oxygen from meteoric water. The concretionary matrix carbonates must have at least partially predated the earliest septarian cements, and thus used the same carbonate sources. Consequently, their isotopic composition (δ13C=?12·0 to ?10·1‰ PDB and δ18O=?5·7 to ?5·6‰ PDB) can only result from mixing a carbonate cement derived from sulphate reduction with cements containing increasing proportions of carbonate from methanogenesis and, directly or indirectly, also from skeletal carbonate. Concretionary growth was therefore pervasive, with cements being added progressively throughout the concretion body during growth. The concretions contain barite in the concretion matrix and in septarian fissures. Barite in the earlier matrix phase has an isotopic composition (δ34S=+24·8‰ CDT and δ18O=+16·4‰ SMOW), indicating formation from near‐surface, sulphate‐depleted porewaters. Barites in the later septarian phase have unusual isotopic compositions (δ34S=+6 to +11‰ CDT and δ18O=+8 to +11‰ SMOW), which require the late addition of isotopically light sulphate to the porewaters, either from anoxic sulphide oxidation (using ferric iron) or from sulphate dissolved in meteoric water. Carbon isotope and biomarker data indicate that oil trapped within septarian fissures was derived from the maturation of kerogen in the enclosing sediments.  相似文献   

3.
Petrography demonstrates the presence of three types of fibrous calcite cement in buildup deposits of the Kullsberg Limestone (middle Caradoc), central Sweden. Translucent fibrous calcite has intrinsic blue luminescence (CL) indicative of pure calcite. This cement has 2–5 mol% MgCO3, low Mn and Fe (≤ 100 p.p.m.), and is considered to be slightly altered to unaltered, primary low- to intermediate-Mg calcite. Grey turbid fibrous calcite has variable but generally low MgCO3 content (most analyses <2 mol%) and variable CL response, with Mn and Fe concentrations up to 1200 and 500 p.p.m., respectively. The heterogeneous characteristics of this variety of fibrous calcite are caused by diagenetic alteration of a translucent fibrous calcite precursor. Light-brown turbid fibrous calcite has low MgCO3 (near 1 mol%) and variable Mn (up to 800 p.p.m.) and Fe (up to 500 p.p.m.) concentrations, with an abundance of bright luminescent patches, which formed during alteration caused by reducing diagenetic fluids. The δ13C and δ18O values of all fibrous calcite form a tight field (δ13C=1·7 to 3·1‰ PDB, δ18O= ? 2·6 to ? 4·1‰ PDB) compared with fibrous calcite isotope values from other units. Fibrous calcite δ18O values are larger than adjacent meteoric or burial cements, which have δ18O δ ? 8‰ PDB. Consequently, most diagenetic alteration of Kullsberg fibrous calcite is interpreted to have occurred in the marine diagenetic realm. First-generation equant and bladed calcite cements, which pre-date fibrous calcite, are interpreted as unaltered, low-Mg calcite marine cements based on δ13C and δ18O data (δ13C = 2·3 to 2·7‰ PDB, δ18O= ? 2·8 to ? 3·5‰ PDB). Unlike fibrous cement, which reflects global sea water chemistry, first-generation equant and bladed calcite are indicators of localized modification of seawater chemistry in restricted settings. Kullsberg abiotic marine cements have larger δ18O values than most Caradoc marine precipitates from equatorial Laurentia. Positive Kullsberg δ18O values are attributed to lower seawater temperatures and/or slightly elevated salinity on the Baltic platform relative to seawater from which other marine precipitates formed.  相似文献   

4.
Septarian concretions in the Staffin Shales Formation (Kimmeridgian, Isle of Skye) allow controls on concretion rheology and septarian cracking to be investigated. Stratabound concretions consist of anhedral ferroan calcite microspar enclosing clay and minor pyrite. Intergranular volumes range from 77% to 88%, and calcite δ13C and δ18O values in most concretion bodies range from ?10·0‰ to ?17·3‰ and +0·3‰ to ?0·6‰ respectively, consistent with rapid and pervasive cementation in marine pore fluids. Septarian rupture occurred during incipient cementation, with a sediment volume reduction of up to 43%. Crack‐lining brown fibrous calcite records pore fluid re‐oxygenation during a depositional hiatus, followed by increasing Fe content and δ13C related to bacterial methanogenesis. Brown colouration results from an included gel‐like polar organic fraction that probably represents bacterially degraded biomass. A new hypothesis for concretion growth and septarian cracking argues that quasi‐rigid ‘proto‐concretions’ formed via binding of flocculated clays by bacterial extracellular polysaccharide substances (EPS). This provided rheological and chemical conditions for tensional failure, subcritical crack growth, volume contraction, calcite nucleation, and incorporation of degraded products into crack‐lining cements. Bacterial decay of EPS and syneresis of host muds provided internal stresses to initiate rupture at shallow burial. Development of septarian (shrinkage) cracks in muds is envisaged to require pervasive in situ bacterial colonization, and to depend on rates of carbonate precipitation versus EPS degradation and syneresis. Subsequent modification of septarian concretions included envelopment by siderite and calcite microspar, hydraulic fracturing associated with Cretaceous shallow burial or Palaeogene uplift; and cementation by strongly ferroan, yellow sparry calcite that records meteoric water invasion of the host mudrocks. An abundance of fatty acids in these spars indicates aqueous transport of organic breakdown products, and δ13C data suggest a predominantly methanogenic bicarbonate source. However, the wide δ18O range for petrographically identical cement (?1·3‰ to ?15·6‰) is difficult to explain.  相似文献   

5.
《Applied Geochemistry》1991,6(5):509-521
Bands of calcite and dolomite cements alternating with zones of nearly carbonate-free sand occur in the Stevens sandston aat North Coles Levee, San Joaquin, Valley, California. Temperatures calculated from O isotopes suggest that the calcite cement bands were emplaced episodically as a result of repeated injections of hot water from deeper in the section. Burial analysis suggests that these cements precipitated from 7 Ma to the present over the temperature range of 45 to ∼95°C.Carbon isotope data suggest that the C in the cements is a mixture derived from two sources, detrital shell material (δ13C(PDB)≈) and CO2 liberated from maturing kerogen (δ13C ≈ −24). Plots of δ13C vs time and depth of crystallization show that the cementation sequence was: (1) dolomite cements, possibly concretionary, precipitated at depths <1–2 km and at temperatures <45°C; (2) calcite cements with δ13C(PDB) values as low as −13, crystallized from depths between 1220 and 1820 m (4000 and 6000 ft) and at temperatures between 45 and 80°C; (3) calcite cements with δ13C(PDB) values approaching zero and calculated temperatures of crystallization up to the present reservoir temperature of 95±3°C.A log of δ13C vs calculated depth of crystallization correlates with the stratigraphic column at North Coles Levee. If the correlation is valid the light δ13 in each cement sample can be tied to its source. A model based on this interpretation suggests that the early, light C was derived from maturing kerogen in the Kreyenhagen Formation (Eocene) as it passed through the oil window between 4 and 5 Ma. The subsequent passage of younger sediments with less organic material produced correspondingly smaller amounts of light CO2 which was reflected in the relatively heavier C isotopes in the later cements.It is suggested that the epidsodic injections of hot water carried dissolved gases and minerals, principally calcite, upward from rocks as deep as 2–3 km below the Stevens sandstone and reprecipitated the calcite in more permeable zones in the rock. Degassing of CO2 from rising pore waters likely triggered the precipitation and accounts for the relatively large volumes of cement. The Sibson model for seismic pumping of pore fluids is considered a likely explanation for the observed cementation.  相似文献   

6.
Carbon, oxygen and sulphur isotope data for transects across two pyrite-bearmg carbonate concretions, and their host sediments, from the Upper Lias of N.E. England show symmetrical zonation. δ13CPDB values of the calcite cement (?12.9 to ?15.4%.) indicate that most of it originated from organic matter by bacterial reduction of sulphate, augmented with marine and, to a lesser extent, fermentation derived carbonate. Organic carbon (δ13CPDB = ?26.1 to ?37.0%.). reflects the admixture of allochtho-nous terrestrial organic matter with marine material and the selective preservation of isotopically light organic material through microbiological degradation.Two phases of pyrite are present in each concretion. The earlier framboidal pyrite formed throughout the sediment prior to concretionary growth and has δ34SCD values of ?22 to ?26%. indicating formation by open system sulphate reduction. The later euhedral phase is more abundant and reaches values of ? 2.5 to ? 5.5%. at concretion margins. This phase of sulphate reduction provided the carbonate source for concretionary growth and occurred in a partially closed system. The δ13C and δ34S data are consistent with mineralogical and chemical evidence which suggest that both concretions formed close to the sediment surface. The δ18O values of the calcite in one concretion (δ18OPDB = 2.3 to ?4.8%.) indicate precipitation in pore waters whose temperature and isotopic composition was close to that of overlying seawater. The other concretion is isotopically much lighter (δ18OPDB?8.9 to ?9.9%.) and large δ18O differences between concretions in closely-spaced horizons imply that local factors control the isotopic composition of pore waters.  相似文献   

7.
The Gordon Group carbonates consist of biota of the Chlorozoan assemblage, diverse non‐skeletal grains and abundant micrite and dolomite, similar to those of modern warm water carbonates. Cathodoluminescence studies indicate marine, meteoric and some burial cements. Dolomites replacing burrows, mudcracks and micrite formed during early diagenesis.

δ18O values (‐5 to ‐7%ō PDB) of the non‐luminescent fauna and marine cement are lighter than those of modern counterparts but are similar to those existing within low latitudes during the Ordovician because of the light δ18O values of Ordovician seawater (‐3 to ‐5%o SMOW). The δ18O difference (2%o) between marine and meteoric calcite indicates that Ordovician meteoric water was similar to that in modern subtropics. Values of δ13C relative to δ18O indicate that during the Early Ordovician there were higher atmospheric CO2 levels than at present but during the Middle and Late Ordovician they became comparable with the present because of a change from ‘Greenhouse’ to glacial conditions. δ18O values of Late Ordovician seawater were heavier than in the Middle Ordovician mainly because of glaciation.

Dolomitization took place in marine to mixed‐marine waters while the original calcium carbonate was undergoing marine to meteoric diagenesis.  相似文献   

8.
In this study, the stable isotope and trace element geochemistries of meteoric cements in Pleistocene limestones from Enewetak Atoll (western Pacific Ocean), Cat Island (Bahamas), and Yucatan were characterized to help interpret similar cements in ancient rocks. Meteoric calcite cements have a narrow range of δ18O values and a broad range of δ13C values in each geographical province. These Pleistocene cements were precipitated from water with stable oxygen isotopic compositions similar to modern rainwater in each location. Enewetak calcite cements have a mean δ18O composition of ?6.5%0 (PDB) and δ13C values ranging from ?9.6 to +0.4%0 (PDB). Sparry calcite cements from Cat Island have a mean δ18O composition of ?4.1%0 and δ13C values ranging from ?6.3 to + 1.1%0. Sparry cements from Yucatan have a mean δ18O composition of ?5.7%0 and δ13C values of ?8.0 to ?2.7%0. The mean δ18O values of these Pleistocene meteoric calcite cements vary by 2.4%0 due to climatic variations not related directly to latitude. The δ13C compositions of meteoric cements are distinctly lower than those of the depositional sediments. Variations in δ13C are not simply a function of distance below an exposure surface. Meteoric phreatic cements often have δ13C compositions of less than —4.0%0, which suggests that soil-derived CO2 and organic material were washed into the water table penecontemporaneous with precipitation of phreatic cements. Concentrations of strontium and magnesium are quite variable within and between the three geographical provinces. Mean strontium concentrations for sparry calcite cements are, for Enewetak Atoll, 620 ppm (σ= 510 ppm); for Cat Island, 1200 ppm (σ= 980 ppm); and for Yucatan, 700 ppm (σ= 390 ppm). Equant cements, intraskeletal cements, and Bahamian cements have higher mean strontium concentrations than other cements. Equant and intraskeletal cements probably precipitated in more closed or stagnant aqueous environments. Bahamian depositional sediments had higher strontium concentrations which probably caused high strontium concentrations in their cements. Magnesium concentrations in Pleistocene meteoric cements are similar in samples from Enewetak Atoll (mean =1.00 mol% MgCO3; σ= 0.60 mol% MgCO3) and Cat Island (mean = 0.84 mol% MgCO3; σ= 0.52mol% MgCO3) but Yucatan samples have higher magnesium concentrations (mean = 2.20 mol% MgCO3: σ= 0.84mol% MgCO3). Higher magnesium concentrations in some Yucatan cements probably reflect precipitation in environments where sea water mixed with fresh water.  相似文献   

9.
Calcite septarian concretions from the Permian Beaufort Group in the Maniamba Graben (NW Mozambique) allow controls on the composition and nature of diagenetic fluids to be investigated. The concretions formed in lacustrine siltstones, where they occur in spherical (1 to 70 cm in diameter) and columnar (up to 50 cm long) forms within three closely spaced, discrete beds totalling 2·5 m in thickness. Cementation began at an early stage of diagenesis and entrapped non‐compacted burrows and calcified plant roots. The cylindrical concretions overgrew calcified vertical plant roots, which experienced shrinkage cracking after entrapment. Two generations of concretionary body cement and two generations of septarian crack infill are distinguished. The early generation in both cases is a low‐Mn, Mg‐rich calcite, whereas the later generation is a low‐Mg, Mn‐rich calcite. The change in chemistry is broadly consistent with a time (burial)‐related transition from oxic to sub‐oxic/anoxic conditions close to the sediment–water interface. Geochemical features of all types of cement were controlled by the sulphate‐poor environment and by the absence of bacterial sulphate reduction. All types of cement present have δ13C ranging between 0‰ and −15‰(Vienna Peedee Belemnite, V‐PDB), and highly variable and highly depleted δ18O (down to 14‰ Vienna Standard Mean Ocean Water, V‐SMOW). The late generation of cement is most depleted in both 13C and 18O. The geochemical and isotopic patterns are best explained by interaction between surface oxic waters, pore waters and underground, 18O‐depleted, reducing, ice‐meltwaters accumulated in the underlying coal‐bearing sediments during the Permian deglaciation. The invariant δ13C distribution across core‐to‐rim transects for each individual concretion is consistent with rapid lithification and involvement of a limited range of carbon sources derived via oxidation of buried plant material and from dissolved clastic carbonates. Syneresis of the cement during an advanced stage of lithification at early diagenesis is considered to be the cause of development of the septarian cracks. After cracking, the concretions retained a small volume of porosity, allowing infiltration of anoxic, Ba‐bearing fluids, resulting in the formation of barite. The results obtained contribute to a better understanding of diagenetic processes at the shallow burial depths occurring in rift‐bound, lacustrine depositional systems.  相似文献   

10.
Stromatactis is a spar network whose elements in cross section have flat to undulose lower surfaces and digitate upper surfaces. The network is composed principally of isopachous crusts of centripetal cement and commonly occurs embedded in finely crystalline limestone. It is the cement filling of interconnected cavities. Stromatactis of Upper Silurian red stromatactis limestone from Gaspé Peninsula, Québec Appalachians, exhibits two types of cements: (1) an isopachous cement that lined the walls of the conduits and is interpreted as early marine; and (2) a later blocky cement that occupies the centres of cavities. The first cement is composed exclusively of non-ferroan calcite, whereas the second cement is mixed non-ferroan and ferroan calcite. The early isopachous cement is white on polished slabs and has a turbid aspect under transmitted light. In a few samples, the relative homogeneity of this early cement is broken by the presence of distinctive grey clear calcite. Under cathodoluminscence, the grey clear calcite is non-luminescent and exhibits well defined bladed crystal shapes, whereas the white turbid cement has a dull orange luminescence and indistinct crystal shapes. The relationships between the two cements indicate that the dull luminescent cement is a secondary form of the non-luminescent cement, and it is concluded that the dull cement is the product of alteration of the non-luminescent cement by burial or meteoric fluids. The later blocky cement has the same dull luminescence as the white turbid cement and is thought to have been precipitated from the same fluids as those responsible for the alteration of the early marine cements. Oxygen isotopic values of the dull cement of the early isopachous crusts (mean δ18O= -6.8%o are intermediate between those of the non-luminescent early marine cement (mean δ18O= -5.3%o) and the dull luminescent blocky cement (mean δ18O= -11.8%o), while carbon isotopic values do not differ significantly (δ13C=+2.9, +2.4 and +2.6%o, respectively). The alteration also has affected the distribution of some trace elements, particularly Mg. Both unaltered and altered cements contain less than 1% microdolomite inclusions, but the Mg content of the background calcite of unaltered cement is three times that of altered cement (14171 vs. 5502 ppm). Precursor early marine cement is thought to have been low-Mg calcite. The mean δ18O value (− 5.3%o) of unaltered early marine cement is higher than values for the oxygen isotopic signature of Silurian oceans provided by brachiopod shells.  相似文献   

11.
《Sedimentology》2018,65(2):360-399
Sedimentary gaps are a major obstacle in the reconstruction of a carbonate platform's history. In order to improve the understanding of the early diagenesis and the succession of events occurring during the formation of discontinuity surfaces in limestones, secondary ion mass spectrometry was used for the first time to measure the δ 18O and δ 13C signatures of 11 early cement and fabric stages in several discontinuity surfaces from the Jurassic carbonate platform of the Paris Basin, France. Pendant cements show a high variability in δ 18O, which was impossible to detect by the less precise microdrilling method. The morphology of a given cement can be produced in various environments, and dogtooth cements especially can precipitate in marine phreatic and meteoric phreatic to vadose environments. Marine dogtooth cements and micritic microbially induced fabrics precipitated directly as low‐magnesium calcite in marine waters, as attested to by the preservation of their initial δ 18O and δ 13C signals. Five discontinuity types are recognized based on high‐resolution geochemical analyses, and their palaeoenvironmental history can be reconstructed. Two exposure surfaces with non‐ferroan pendant or meniscus cements formed in the oxidizing vadose zone. A hardground displays marine fibrous cements and non‐ferroan dogtooth cements that formed in a subtidal environment in oxidizing water. Two composite surfaces have undergone both marine and subaerial lithification. Composite surface 1 displays non‐luminescent ferroan dogtooth cements that precipitated in reduced conditions in seawater, followed by brown‐luminescent dogtooth cements characteristic of a meteoric phreatic environment. Composite surface 2 exhibits microbially induced fabrics that formed in marine water with abundant organic matter. The latter discontinuity, initially formed in a subtidal environment, was subsequently exposed to meteoric conditions, as evidenced by ferroan geopetal cements. A high‐resolution ion microprobe study is essential to precisely document the successive diagenetic environments that have affected carbonate rocks and discontinuities with a polygenic and intricate history.  相似文献   

12.
The calcite fossils of the Derbyhaven Beds, Isle of Man, have δ13C values (+ 1·8 PDB) similar to modern, shallow-water marine skeletons, but the δ18O values (?6·1 PDB) are much lighter than modern skeletons. The light oxygen values indicate either re-equilibration with isotopically light water before cementation started, or Carboniferous sea water with δ18O of ?6‰. Aragonite dissolution was followed by precipitation of zoned calcite cement. In this cement, up to six intracrystalline zones, recognized in stained thin sections, show isotopic variation. Carbon varies from + 3-8 to + 1-2‰. and oxygen from ? 2-6 to ? 12-4‰. with decreasing age of the cement. This trend is attributed to increasing temperature and to isotopic evolution of the pore waters during burial. The zoned calcite is sequentially followed by dolomite and kaolinite cements which continue the trend towards light isotopic values. This trend is continued with younger, fault-controlled dolomite, and is terminated by vein-filling calcite and dolomite. The younger calcite, interpreted as a near-surface precipitate from meteoric waters, is unrelated to the older sequence of carbonates and has distinctly different carbon isotope ratios: δ13C ? 6-8‰.  相似文献   

13.
Carbonate cements in late Dinantian (Asbian and Brigantian) limestones of the Derbyshire carbonate platform record a diagenetic history starting with early vadose meteoric cementation and finishing with burial and localized mineral and oil emplacement. The sequence is documented using cement petrography, cathodoluminescence, trace element geochemistry and C and O isotopes. The earliest cements (Pre-Zone 1) are locally developed non-luminescent brown sparry calcite below intrastratal palaeokarsts and calcretes. They contain negligible Fe, Mn and Sr but up to 1000 ppm Mg. Their isotopic compositions centre around δ18O =?8.5‰, δ13C=?5.0‰. Calcretes contain less 13C. Subsequent cements are widespread as inclusion-free, low-Mg, low-Fe crinoid overgrowths and are described as having a‘dead-bright-dull’cathodoluminescence. The‘dead’cements (Zone 1) are mostly non-luminescent but contain dissolution hiatuses overlain by finely detailed bright subzones that correlate over several kilometres. Across‘dead'/bright subzones there is a clear trend in Mg (500–900 ppm), Mn (100–450 ppm) and Fe (80-230 ppm). Zone 1 cements have isotopic compositions centred around δ18O =?8.0‰ and δ13C=?2.5‰. Zone 2 cement is bright, thin and complexly subzoned. It is geochemically similar to bright subzones of Zone 1 cements. Dull Zone 3 cement pre-dates pressure dissolution and fills 70% or more of the pore space. It generally contains little Mn, Fe and Sr but can have more than 1000 ppm Mg, increasing stratigraphically upwards. The δ18O compositions range from ?5.5 to ?15‰ and the δ13C range is ?1 to + 3.20/00. Zone 4 fills veins and stylolite seams in addition to pores. It is synchronous with Pb, Ba, F ore mineralization and oil migration. Zone 4 is ferroan with around 500 ppm Fe, up to 2500 ppm Mg and up to 1500 ppm Mn. Isotopic compositions range widely; δ15O =?2.7 to ?9‰ and δ13C=?3.8 to+2.50‰. Unaltered marine brachiopods suggest a Dinantian seawater composition around δ15O = 0‰ (SMOW), but vital isotopic effects probably mask the original δ13C (PDB) value. Pre-Zone 1 calcites are meteoric vadose cements with light soil-derived δ13C and light meteoric δ18O. An unusually fractionated‘pluvial’δ15O(SMOW) value of around — 6‰ is indicated for local Dinantian meteoric water. Calcrete δ18O values are heavier through evaporation. Zone 1 textures and geochemistry indicate a meteoric phreatic environment. Fe and Mn trends in the bright subzones indicate stagnation, and precipitation occurred in increments from widespread cyclically developed shallow meteoric water bodies. Meteoric alteration of the rock body was pervasive by the end of Zone 1 with a general resetting of isotopic values. Zone 3 is volumetrically important and external sources of water and carbonate are required. Emplacement was during the Namurian-early Westphalian by meteoric water sourced at a karst landscape on the uplifted eastern edge of the Derbyshire-East Midland shelf. The light δ18O values mainly reflect burial temperatures and an unusually high local heat flow, but an input of highly fractionated hinterland-derived meteoric water at the unconformity is also likely. Relatively heavy δ13C values reflect the less-altered state of the source carbonate and aquifer. Zone 4 is partly vein fed and spans burial down to 2000 m and the onset of tectonism. Light organic-matter-derived δ13C and heavy δ18O values suggest basin-derived formation water. Combined with textural evidence of geopressures, this relates to local high-temperature ore mineralization and oil migration. Low water-to-rock ratios with host-rock buffering probably affected the final isotopic compositions of Zone 4, masking extremes both of temperature and organic-matter-derived CO2.  相似文献   

14.
The most ubiquitous syn-sedimentary cements affecting Mururoa atoll are composed of magnesian calcite. Three main types are distinguished: fibrous, bladed and sparitic on the basis of petrography, morphology and MgCO3 concentration of the constituting crystals, while peloid infills, a particular form of HMC chemical precipitation, also exist. Petrographic evidence and isotopic signatures are compatible with marine precipitation. Mururoa atoll was exposed several times to meteoric diagenesis resulting in varied diagenetic alterations including selective dissolution and partial dolomitization of Mg-calcite cements. These alterations are responsible for substantial modifications of the initial cement fabrics and may introduce unconformities in the diagenetic chronology. The first stage of the partial dissolution of Mg-calcite induces the development of chalky, white friable zones within the initially crystalline, hard cement layers. At ultrascale, this is due to the creation of micro-voids along the elongate cement fibres. Advanced dissolution includes total disappearance of cement portions as attested to by large voids within the cement crust and/or between superposed cement layers. Mg-calcite dissolution is related to meteoric diagenesis during periods of Quaternary exposure. The creation of voids within Mg-calcite layers is due to the mechanical removal of previously altered calcium carbonate, a process suggesting marine or non-marine water flow, probably in the vadose environment. Selective dolomitization of Mururoa cements involves alternations of calcite and dolomite which form successive cement-like rinds within primary cavities. At Mururoa, these alternations are the result of selective dolomitization of the pre-existing Mg-calcite cements rather than successive precipitation of calcite and dolomite. Selective dolomitization of Mg-calcite cements at Mururoa indicates that a given cement succession is not necessarily a simple chronological sequence. Oxygen isotope values of dolomites are enriched in δ186 by about 3‰ PDB within calcite-dolomite pseudo-alternations. The dolomitizing fluid at Mururoa seems similar to present marine water although some mixture with meteoric water is probable to favour dissolution associated with dolomitization.  相似文献   

15.
Upper Visean limestones in the Campine Basin of northern Belgium are intensively fractured. The largest and most common fractures are cemented by non-ferroan, dull brown-orange luminescent blocky calcite. First melting temperatures of fluid inclusions in these calcites are around -57°C, suggesting that precipitation of the cements occurred from NaCl-CaCl2-MgCl2 fluids. The final melting temperatures (Tmice) are between -5 and -33°C. The broad range in the Tmice data can be explained by the mixing of high salinity fluids with meteoric waters, but other hypotheses may also be valid. Homogenization temperatures from blocky calcite cements in the shelf limestones are interpreted to have formed between 45 and 75°C. In carbonates which were deposited close to and at the shelf margin, precipitation temperatures were possibly in the range 70-85°C and 72-93°C, respectively. On the shelf, the calcites have a δ18O around -9.3‰ PDB and they are interpreted to have grown in a fluid with a δ18O between −3.5 and +1.0‰ SMOW. At the shelf margin, blocky calcites (δ18O∼ - 13.5‰ PDB) could have precipitated from a fluid with a δ18O betweenn -4.0 and -1.1‰ SMOW. The highest oxygen isotopic compositions are comparable to those of Late Carboniferous marine fluids (δ18O= - 1‰ SMOW). The lowest values are more positive than a previously reported composition for Carboniferous meteoric waters (δ18O= -7‰ SMOW). Precipitation is likely to have occurred in marine-derived fluids, which mixed with meteoric waters sourced from near the Brabant Massif. Fluids with a similar negative oxygen isotopic composition and high salinity are actually present in Palaeozoic formations. The higher temperature range in the limestones near the shelf margin is explained by the upward migration of fluids from the ‘basinal’ area along fractures and faults into the shelf.  相似文献   

16.
Geochemical and petrographic data suggest early submarine cementation of hardgrounds from the Lincolnshire Limestone Formation, Middle Jurassic, England. The three hardgrounds, from Cowthick, Castle Bytham and Leadenham quarries, developed in tidal-inlet, on-barrier and lagoonal sub-environments of a carbonate barrier-island complex. At Cowthick early composite (acicular-bladed) radial-fibrous cements, which pre-date aragonite dissolution, completely fill intergranular pore-space at the hardground surface; away from it isopachous fringing cements decrease in thickness. Microprobe analyses demonstrate zoning within the fringes with magnesium concentrations (> 2 wt % MgCO3) higher than those in allochems or later, ferroan cement (?0.5 wt % MgCO3, 1.7 wt % FeCO3). At Castle Bytham early granular isopachous cements, which post-date aragonite dissolution, occur within 5 cm of the surface. At Leadenham early lithification is superficial and represented by ferruginous crusts and micritic internal sediment. Late blocky cement fills residual pore-space in all three examples. Carbon and oxygen isotopic composition of whole-rock samples taken at intervals away from each hardground surface demonstrate the increasing proportion of late 18O depleted cements (δ18O – 8 to – 10). Early cements must have a marine isotopic composition; different δ18O values from each hardground reflect the intensity of early lithification and exclusion of late cements at the hardened surface. There is no isotopic evidence for subaerial cement precipitation during possible emergence at Castle Bytham. Oyster samples (with δ18O, – 2.9 and δ13C, 2.4) give estimated palaeotemperatures of 22–25°C. Early cements from Cowthick are enriched in 18O and 13C (δ18O = 0 δ13C ? 3‰) compared to the oyster values. In conjunction with trace element data this is interpreted as evidence for high-magnesium calcite precursor cements which underwent replacement in a system with a low water: rock ratio. The intensity of early lithification is related to depositional environment: maximum circulation of sea-water producing the most lithified hardground (Cowthick). This is directly analogous to the formation of Recent hardgrounds.  相似文献   

17.
Giant calcite-cemented concretions, Dakota Formation, central Kansas, USA   总被引:1,自引:0,他引:1  
Giant spheroidal concretions (cannonball concretions; some nearly 6 m in diameter) in fluvial channel‐fill sandstones at two localities of the Dakota Sandstone formed by import of cement constituents at a burial depth of <1 km. During cannonball concretion growth a self‐organizational process restricted concretions to a relatively few but widely spaced, and locally, evenly spaced, sites. Other forms of calcite cements at these localities are cement patches in the form of intergrown grape‐size concretions (grapestone), and, locally, pervasive cement. An early episode of invasion by thermogenically generated H2S, which reacted with iron oxides on detrital grains, generated scattered pyrite crystals and decimetre‐scale spheroidal pyrite concretions. Intergranular volumes (IGV) in the concretions range from 36% to 27%. The absence of a trend in IGV and of carbon and oxygen‐isotope ratios from cannonball centres to margins indicates that these concretions did not cement progressively outwards from the centre. Rather, the modern spheres represent the spatial extent of nucleation sites that were not otherwise organized within that volume. Carbon and oxygen‐isotope values for concretion calcites plot along a swath between depleted values of δ18C of ?36‰ and δ18O of ?13‰ and enriched values of ?4‰ and ?6‰, respectively. Four groups of calcites are evident on the basis of trace‐element content and suggest that the calcite precipitated across a range of oxidation conditions that do not correlate strongly with the isotopic compositions. Although fluvial overbank sandstones have some pedogenic calcite, the channel sandstones have at most a trace of pedogenic calcite and carbonate rock fragments, so that the bulk of cement components were imported to the sandstones. Carbon and calcium sources for calcite cement include marine limestone, carbonate shells, and anhydrite in addition to HCO derived from oxidized methane, most likely derived from beds underlying or laterally in communication with Dakota sandstones. HCO in ascending formation waters, released during compaction, mixed with meteoric water whose temperature and composition varied with time, to generate the 7‰ range in δ18Ocalcite values measured.  相似文献   

18.
Three silicified limestone horizons of D1 age from the Visean of the Isle of Man contain calcitic concretions with peripheral silica crusts, occasionally surrounded by a further calcitic layer. Components of the original sediment include carbonate skeletons, carbonaceous grains, sponge spicules and muscovite. Diagenetic products include calcite, dolomite, pyrite, sphalerite, clays, feldspar and quartz. The concretions are composed of neomorphic calcite. The time of recrystallization and the identity of the neomorphic precurosor are both unknown. Displacive, fibrous calcite is chemically similar to neomorphic calcite and both are of early diagenetic age. Granular and rhombic ferroan calcites are of late diagenetic age and were precipitated from pore-waters with Sr/Ca, Mg/Ca and Fe/Ca ratios unlike those of seawater. The difference between early silicification which produced silica crusts and later diffuse silicification of the host sediment is related to a change in sediment transmissivity between the two silicification periods. A four-fold scheme of concretionary growth is proposed. The supply of silica is from sponge spicules and that of carbonate from seawater via porewater. The distribution of organic matter, either as sporadic large carcasses or as small carcasses concentrated in particular horizons, is believed to be vital for carbonate precipitation and controls the distribution of concretions. Awareness of the multiplicity of diagenetic changes is essential in interpretation of early porewater systems and in the origin of products which are often metastable and destined to subsequent changes. No single model is an explanation for all types of concretionary growth.  相似文献   

19.
Three categories of fibrous calcite from early to middle Caradoc platform-marginal buildups in east Tennessee can be delineated using cathodoluminescent microscopy, minor element chemistry and stable C-O isotopic composition. Bright luminescent fibrous cement has elevated Mn (>1000 p.p.m.), negative δ13C and intermediate δ18O values relative to other types of fibrous calcite. This cement reflects fibrous calcite that interacted with reducing Mn-rich fluids. Dully luminescent fibrous cement has elevated Fe (>400 p.p.m.), positive δ13C and negative δ18O values relative to other fibrous cements. This cement was stabilized by burial fluids. Nonluminescent fibrous cement has low Mn and Fe (generally below 400 p.p.m.) and positive δ13C and δ18O values relative to other types of fibrous calcite. The latter cement is interpreted to be the best material for determining the isotopic composition of calcite precipitated in equilibrium with early to middle Caradoc seawater, which is δ13C=1% PDB and δ18O=?4 to ?5‰ PDB. Results from this study and Ashgillian brachiopods indicate that the average δ18O composition of the Ordovician ocean, during nonglacial periods, was probably never more negative than ?3‰ SMOW. Assuming an Ordovician seawater δ18O value of ?1‰ SMOW, Holston Formation fibrous cements would have precipitated at temperatures between 27 and 36 °C, which is near the upper temperature limit for metazoans. A seawater δ18O value of ?2‰ SMOW yields temperatures ranging from 23 to 31 °C, while a ?3‰ SMOW value yields temperatures of 18–26 °C.  相似文献   

20.
The geochemical evolution of the fluids migra- ting at the Variscan thrust front in eastern Belgium has been investigated by a petrographic, mineralogical and geoche-mical study of ankerite, quartz and ferroan calcite veins hosted by lower Devonian rocks. Three vein generations have been recognized. The first generation consists of quartz, chlorite and ankerite filling pre- to early Variscan extensional fractures. The second generation is present as shear veins of Variscan age, and contains quartz, chlorite and ferroan calcite. The third generation consists of ankerite filling post-Variscan fractures. The oxygen and carbon isotopic composition of the two ankerite phases and of the ferroan calcites are respectively between –16.4 and –11.4‰ PDB between –17.8 and –1.7‰ PDB. This range is greater than that of calcite nodules in the lower Devonian siliciclastic sediments (δ18O= –15.6 to –11.1‰ PDB and δ13C= –13.4 to –10.2‰ PDB). This suggests precipitation of the carbonate veins from a fluid which was at most only partly isotopically buffered by the calcite nodules in the host rock. The calculated oxygen isotopic composition of the ambient fluid from which the calcite veins formed is between +7.8 and +10.0‰ SMOW. Two main fluid types have been recognized in fluid inclusions in the quartz and carbonates. The first fluid type is present as secondary fluid inclusions in the first and second vein generations. The fluid has a salinity of 0.5–7.2 eq. wt.% NaCl and a high, but variable, homogenization temperature (Th=124–188°C). Two origins can be proposed for this fluid. It could have been expelled from the lower Devonian or could have been derived from the metamorphic zone to the south of the area studied. Taking into account the microthermometric and stable-isotope data, and the regional geological setting, the fluid most likely originated from metamorphic rocks and interacted with the lower Devonian along its migration path. This is in agreement with numerical simulations of the palaeofluid and especially the palaeotempera-ture field, which is based on chlorite geothermometry and vitrinite reflectance data. The second fluid type occurs as secondary inclusions in the shear veins and as fluid inclusions of unknown origin in post-Variscan ankerite veins. Therefore, it has a post-Variscan age. The inclusions are characterized by a high salinity (18.6–22.9 eq. wt.% CaCl2). The composition of the fluid is similar to that which caused the development of Mississippi Valley-type Pb–Zn deposits in Belgium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号