首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Trace metal dynamics in a seasonally anoxic lake   总被引:1,自引:0,他引:1  
Selected results are presented from a detailed 12-month study of trace metals in a seasonally anoxic lake. Dissolved concentrations of Fe, Mn, organic carbon, Cd, Cu, Pb, Zn, and pH were determined in the water column and the interstitial waters on 39 occasions. Trace metal concentrations remained low throughout the year in both water column and pore waters. There was evidence for some remobilization at the sediment-water interface but sediments deeper than 3 cm acted as a sink throughout the year. Variations in the water concentrations were largely associated with increased loading during periods of heavy rainfall. During the summer, concentrations of Cu and Zn in the waters overlying the sediments were enhanced by release from decomposing algal material. Similarly, enhanced concentrations of Cd, Cu, Pb, and Zn were observed during periods of much reduced mixing during ice-cover. Although there were large seasonal variations in the concentrations of dissolved and particulate Fe and Mn, there were no comparable changes in the concentrations of trace metals.  相似文献   

2.
The distribution patterns of benthonic and planktonic foraminifera in cores from the Ionian Basin, central Mediterranean, were investigated in relation to the deposition of sapropel S-1. The sapropel is a dark organic-rich sediment deposited under anoxic conditions during the last marine stagnation in the Early Holocene. The major divisions between both benthonic and planktonic faunas correspond to changes in the core lithology and coincide with the transitions between pre-sapropel, sapropel/'oxidized layer' and post-sapropel sediments. The faunal evidence shows that the oxidized layer belongs to the sapropel sequence. The planktonic faunas have the same species composition as in the sapropel sediment and the high density of planktonic species continues into the oxidized layer. The oxidized layer is devoid of a benthonic fauna or contains a 'sapropel-associated' fauna composed of infaunal species with an affinity to high supply of organic material material and low oxygen. High depletion in the heavy oxygen isotope in the oxidized layer substantiates the faunal evidence. A peak in abundance of the planktonic species Globorotalia inflata at the top of the oxidized layer marks the time when turnover of the water masses ended the stagnation phase and sapropel sedimentation in the Ionian Basin at about 6000 BP. The distribution of the benthonic and planktonic foraminifera shows that the sapropel in the central part of the Ionian Basin was originally almost twice as thick as it is today. When oxygen returned to the deep sediments the top of the sapropel was oxidized to 4–7 cm below its original surface. Only the lower part of the sapropel is preserved. The remainder is now a red laminated layer, the 'oxidized layer'.  相似文献   

3.
The vertical distribution of reduced sulfur species (RSS including H2S/HS, S0, electroactive FeS) and dissolved Fe(II) was studied in the anoxic water column of meromictic Lake Pavin. Sulfide concentrations were determined by two different analytical techniques, i.e. spectophotometry (methylene blue technique) and voltammetry (HMDE electrode). Total sulfide concentrations determined with methylene blue method (∑H2SMBRS) were in the range from 0.6 µM to 16.7 µM and were substantially higher than total reduced sulfur species (RSSV) concentrations determined by voltammetry, which ranged from 0.1 to 5.6 μM. The observed difference in the sulfide concentrations between the two methods can be assigned to the presence of FeS colloidal species.Dissolved Fe was high (> 1000 µM), whereas dissolved Mn was only 25 µM, in the anoxic water column. This indicates that Fe is the dominant metal involved in sulfur redox cycling and precipitation. Consequently, in the anoxic deep layer of Lake Pavin, “free” sulfide, H2S/HS, was low; and about 80% of total sulfide detected was in the electroactive FeS colloidal form. IAP calculations showed that the Lake Pavin water column is saturated with respect to FeSam phase. The upper part of monimolimnion layer is characterized by higher concentrations of S(0) (up to 3.4 µM) in comparison to the bottom of the lake. This behavior is probably influenced by sulfide oxidation with Fe(III) oxyhydroxide species.  相似文献   

4.
《Applied Geochemistry》2002,17(7):923-933
The accumulation and storage of trace metals in coastal sediments is an environmental concern. It is, therefore, important to understand better how these metals are bound or released under different redox conditions. This study of Fe and trace metal fixation under continuously anoxic conditions in the bottom sediments and the lower water column of the Nordåsvannet fjord in western Norway contributes further to such understanding. It allows investigation of both an end member redox state and one important mechanism of Fe and trace metal accumulation in sediments, the pyritization of Fe and trace metals. Pyrite formation occurs both in the water column and in the sediments of the Nordåsvannet fjord and favours the fixing of Fe and trace metals in the bottom sediments of the fjord. Thus, these sediments act as a continuous sink for Fe and trace metals. The DOP, and the degrees of trace metal pyritization for Mo, Ni and Cr correlate with organic matter content. While it is generally thought that Fe is the factor limiting pyrite formation in anoxic environments, this study found that degrees of pyritization of Fe (DOP) are clearly below 100%, and the availability of metabolizable organic matter is limiting pyrite formation. This is an important finding, because it indicates that increased supply of organic and mineral matter by higher runoff from land would further enhance the fixation of these metals in the fjord sediments, as would higher organic matter availability from increased productivity due to higher nutrient supply. The metals stored in the bottom sediments could be released into the biogeochemical cycle if redox conditions were to change from anoxic to suboxic or oxic. The fjord would then become a source rather than a sink for these metals.  相似文献   

5.
The development and application of geochemical techniques to identify redox conditions in modern and ancient aquatic environments has intensified over recent years. Iron (Fe) speciation has emerged as one of the most widely used procedures to distinguish different redox regimes in both the water column and sediments, and is the main technique used to identify oxic, ferruginous (anoxic, Fe(II) containing) and euxinic (anoxic, sulfidic) water column conditions. However, an international sediment reference material has never been developed. This has led to concern over the consistency of results published by the many laboratories that now utilise the technique. Here, we report an interlaboratory comparison of four Fe speciation reference materials for palaeoredox analysis, which span a range of compositions and reflect deposition under different redox conditions. We provide an update of extraction techniques used in Fe speciation and assess the effects of both test portion mass, and the use of different analytical procedures, on the quantification of different Fe fractions in sedimentary rocks. While atomic absorption spectroscopy and inductively coupled plasma‐optical emission spectrometry produced comparable Fe measurements for all extraction stages, the use of ferrozine consistently underestimated Fe in the extraction step targeting mixed ferrous–ferric minerals such as magnetite. We therefore suggest that the use of ferrozine is discontinued for this Fe pool. Finally, we report the combined data of four independent Fe speciation laboratories to characterise the Fe speciation composition of the reference materials. These reference materials are available to the community to provide an essential validation of in‐house Fe speciation measurements.  相似文献   

6.
Suboxic trace metal geochemistry in the Eastern Tropical North Pacific   总被引:3,自引:0,他引:3  
We analyzed Al, Ti, Fe, Mn, Cu, Ba, Cd, U, Mo, V, and Re in water column, settling particulate, and sediment (0 to 22 cm) samples from the intense oxygen minimum zone (OMZ) of the eastern tropical North Pacific near Mazatlán, Mexico. The goal was to determine how the geochemistry of these elements was influenced by suboxic water column conditions and whether the sediments have a unique “suboxic” geochemical signature.The water column was characterized by a Mn maximum, reaching ∼8 nmol kg−1 at 400 m. Concentrations of Cu, Ba, Cd, Mo, Re, U, and V were unaffected by the low O2 conditions and were comparable to those of the open ocean. Sinking particles were composed of lithogenic particles of detrital origin and nonlithogenic particles of biogenic origin. Al, Ti, and Fe were mostly (at least 79%) lithogenic. About 75% of the Mn was nonlithogenic. Significant amounts (at least 58%) of Cu, Ba, Cd, and Mo were nonlithogenic.Sediment geochemistry varied across the continental shelf and slope. Cadmium, U, and Re have prominent maxima centered at 310 m, with 12.3 ppm, 10.9 ppm, and 68.3 ppb, respectively, at the core top. High values of Mo (averaging 6.8 ppm) and V (averaging 90 ppm) are seen in OMZ surface sediment. Additional down-core enrichment occurs for all redox-sensitive elements in the top 10 cm. For U, Mo, V, and Re, surface sediments are a poor indicator of metal enrichment. Comparison of the nonlithogenic composition of sediments with sinking particles suggests that direct input of plankton material enriched in metals makes a significant contribution to the total composition, especially for Cd, U, and Mo.We evaluated Re/Mo and Cd/U ratios as tracers for redox environments. Rhenium and Mo concentrations and Re/Mo ratios do not lead to consistent conclusions. Concurrent enrichments of Re and Mo are an indicator of an anoxic depositional environment. In contrast, high Re/Mo ratios are an indicator of suboxic conditions. Cadmium is enriched in surface sediments, while U has considerable down-core enrichment. The concentrations of Cd and U and the Cd/U ratio do not follow patterns predicted from thermodynamics. Though the water column is suboxic, these four redox-sensitive elements indicate that the sediments are anoxic. The implication for paleostudies is that a trace metal sediment signature that indicates anoxic conditions is not necessarily attributable to an anoxic water column.  相似文献   

7.
黄铁矿是富有机质沉积的特征矿物。根据TOC/S、TOC/DOP、S/Fe关系以及S TOC Fe多重线性回归分析结果对三水盆地古近系〖HT5”,6”〗土〖KG-*3〗布〖HT5”SS〗心组红岗段黑色页岩中沉积黄铁矿的形成及其控制因素进行了分析。土布心组红岗段黑色页岩的黄铁矿有成岩黄铁矿和同生黄铁矿两种成因组分。红岗段下部(亚段A)有机碳含量普遍较低,底部水体以弱氧化条件为主,硫酸盐还原作用发生于沉积物/水界面以下,黄铁矿为成岩成因,其形成主要受有机质的限制。红岗段中上部(亚段B和C)的沉积条件变化频繁,其有机碳含量变化幅度大。富有机质(TOC>4%)岩层形成于缺氧的底部水体条件下。水体中可含H2S,碎屑铁矿物在埋藏之前即与之在水体中反应形成同生黄铁矿。这一过程不受有机质的限制,而是受活性铁与H2S接触时间的限制。同时,由于大量淡水输入导致硫酸盐浓度的降低,从而对硫化物形成有一定的限制作用。对于低有机质(TOC<4%)样品,黄铁矿由同生和成岩组分组成。其中以成岩黄铁矿为主,其形成过程主要受有机质限制,而同生黄铁矿受铁矿物与H2S接触时间的限制。  相似文献   

8.
《Applied Geochemistry》1999,14(5):655-667
Sediments sampled at a hydrocarbon-contaminated, glacial-outwash, sandy aquifer near Bemidji, Minnesota, were analyzed for sediment-associated Fe with several techniques. Extraction with 0.5 M HCl dissolved poorly crystalline Fe oxides and small amounts of Fe in crystalline Fe oxides, and extracted Fe from phyllosilicates. Use of Ti-citrate-EDTA-bicarbonate results in more complete removal of crystalline Fe oxides. The average HCl-extractable Fe(III) concentration in the sediments closest to the crude-oil contamination (16.2 μmol/g) has been reduced by up to 30% from background values (23.8 μmol/g) as a result of Fe(III) reduction in contaminated anoxic groundwater. Iron(II) concentrations are elevated in sediments within an anoxic plume in the aquifer. Iron(II) values under the oil body (19.2 μmol/g) are as much as 4 times those in the background sediments (4.6 μmol/g), indicating incorporation of reduced Fe in the contaminated sediments. A 70% increase in total extractable Fe at the anoxic/oxic transition zone indicates reoxidation and precipitation of Fe mobilized from sediment in the anoxic plume. Scanning electron microscopy detected authigenic ferroan calcite in the anoxic sediments and confirmed abundant Fe(III) oxyhydroxides at the anoxic/oxic boundary. The redox biogeochemistry of Fe in this system is coupled to contaminant degradation and is important in predicting processes of hydrocarbon degradation.  相似文献   

9.
The Parnok deposit is made up of stratiform lodes of iron (magnetite) and manganese (oxide-carbonate, carbonate, and carbonate-silicate) ores localized among terrigenous-carbonate sediments (black shales) on the western slope of the Polar Urals. The lithological study showed that ore-bearing sediments were accumulated in a calm hydrodynamic setting within a relatively closed seafloor area (trap depressions). Periodic development of anaerobic conditions in the near-bottom seawater was favorable for the accumulation of dispersed organic matter in the terrigenous-carbonate sediments. Carbon required to form calcium carbonates in the ore-bearing sediments was derived from carbon dioxide dissolved in seawater. In the organic-rich sediments, carbonates were formed with the participation of carbon dioxide released by the destruction of organic matter. However, δ13C values (from 0.5 to ?4.4‰ PDB) suggest a relatively low fraction of the isotopically light biogenic carbon in the host calcite. The most probable sources of Fe and Mn were hydrothermal seepages at the seafloor. The Eh-pH conditions during stagnation were favorable for the precipitation of Fe and accumulation of Mn in a dissolved state. Transition from the stagnation regime to the concentration of oxygen in near-bottom waters was accompanied by oxidation of the dissolved Mn and its precipitation. Thus, fluctuations in Eh-pH parameters of water led to the differentiation of Fe and Mn. Initially, these elements were likely precipitated as oxides and hydroxides. During the subsequent lithification, Fe and Mn were reduced to form magnetite and rhodochrosite. The texture and structure of rhodochrosite aggregates indicate that manganese carbonates already began to form at the diagenetic stage and were recrystallized during the subsequent lithogenetic stages. Isotope data (δ13C from ?8.9 to ?17.1‰ PDB) definitely indicate that the oxidized organic matter of sediment served as the main source of carbon dioxide required to form manganese carbonates. Carbonates from host rocks and manganese ores have principally different carbon isotopic compositions. Unlike carbonates of host rocks, manganese carbonates were formed with an active participation of biogeochemical processes. Further processes of metagenesis (T ≈ 250–300°C, P ≈ 2 kbar) resulted in the transformation of textures, structures, and mineral composition of all rocks of the deposit. In particular, increase in temperature and pressure provided the formation of numerous silicates in manganese ores.  相似文献   

10.
通过对南海北部的ODP 1148站岩芯600 mcd以上(约30 Ma以来)的沉积物中自生富集Mn、Cd和Mo等过渡金属元素的含量变化的研究,并结合相关的化学组成结果,探讨了岩芯内部氧化-还原条件的变化以及相关元素的活动特征,反演了相应沉积时期的环境演变.结果显示,岩芯387 mcd以上,自生Mn富集明显,代表氧化的环境;387~485 mcd之间,自生Cd含量明显富集,Mn含量显著降低,代表少氧的环境;485 mcd以下,Mn和Cd含量极低,自生Mo明显富集,代表缺氧的环境.随氧化-还原条件的变化,Mo存在明显的向下迁移并在缺氧界面的缺氧一方达到最大值的趋势,而Cd在少氧环境形成的固相态则可能在缺氧环境下不稳定,溶解态的Cd有向上迁移的趋势,并且在少氧/缺氧界面的少氧一方富集.这些过渡金属元素记录的氧化-还原条件的变化,反映出ODP 1148站所在海区的沉积环境变化:早期有较丰富的陆源输入,表层海水生产力较高,随着南海不断扩张以及全球海平面上升,该海区表层海水生产力逐渐降低.  相似文献   

11.
遇昊  陈代钊  韦恒叶  汪建国 《岩石学报》2012,28(3):1017-1027
晚二叠世是古生代环境、生物演化的关键时期,发育广泛的富有机质沉积,并成为南方重要的烃源岩层位。为了解该时期的富有机质堆积机理,我们选择了鄂西台内盆地晚二叠世大隆组富有机质硅质岩(TOC平均值为5.8%,峰值为18%)作为研究对象。硅质岩中常量元素Al/Fe均值为0.79,Mn/Ti均值为0.21,显示为大陆边缘环境下的生物成因,即非热水成因。∑REE值与Al2O3含量有着良好的正相关关系,表明当时陆源物质的输入对硅质岩的形成有很大影响。微量元素U/Th、V/(V+Ni)均说明硅质岩沉积环境为缺氧水体环境。通过对草莓状黄铁矿粒径的统计表明,大多数(64%~89%)的草莓状黄铁矿粒径小于5μm,反映缺氧甚至硫化的环境。而且,U、V、Mo的富集以及Ni、Cu元素的亏损说明水体的缺氧主要是由于海水分层,水体循环受阻造成的。TOC与氧化还原参数的变化步调基本一致,两者有着较好的正相关关系,而与生产力指标Ba/Al相关性很差,说明有机质富集主要是由水体的缺氧而不是初级生产力控制的。  相似文献   

12.
Oil shales were deposited in the Songliao Basin (NE China) during the Upper Cretaceous period, representing excellent hydrocarbon source rocks. High organic matter (OM) contents, a predominance of type-I kerogen, and a low maturity of OM in the oil shales are indicated by bulk geochemical parameters and biomarker data. A major contribution of aquatic organisms and minor inputs from terrigenous land plants to OM input are indicated by n-alkane distribution patterns, composition of steroids, and organic macerals. Strongly reducing bottom water conditions during the deposition of the oil shale sequences are indicated by low pristane/phytane ratios, high C14-aryl-isoprenoid contents, homohopane distribution patterns, and high V/Ni ratios. Enhanced salinity stratification with mesosaline and alkaline bottom waters during deposition of the oil shales are indicated by high gammacerane index values, low MTTC ratios, high β-carotene contents, low TOC/S ratios, and high Sr/Ba ratios. The stratified water column with anoxic conditions in the bottom water enhanced preservation of OM. Moderate input of detrital minerals during the deposition of the oil shale sequences is reflected by titanium concentrations. In this study, environmental conditions in the paleo-lake leading to OM accumulation in the sediments are related to sequence stratigraphy governed by climate and tectonics. The first Member of the Qingshankou Formation (K2qn1) in the Songliao Basin, containing the oil shale sequence, encompasses a third-order sequence that can be divided into three system tracts (transgressive system tract—TST, highstand system tract—HST, and regressive system tract—RST). Enrichment of OM changed from low values during TST-I to high-moderate values during TST-II/III and HST-I/II. Low OM enrichment occurs during RST-I and RST-II. Therefore, the highest enrichment of OM in the sediments is related to stages of mid-late TST and early HST.  相似文献   

13.
Ten detailed vertical water column profiles were taken between April and November, 1979, in Esthwaite Water (English Lake district), a lake with high biological productivity and a seasonally anoxic hypolimnion. Measurements of the major-element particle composition (organic C, P, S, Si, Al, Ti, K, Mg, Ca, Fe, Mn, and Ba) and hydrochemical constituents (temperature, pH, dissolved oxygen, total suspended load, dissolved Fe, Mn, P, and Ba) were carried out. These have revealed new information about the mechanisms and kinetics of biogeochemical cycles in a lake.Pronounced seasonal cycles exist in which large excess concentrations (those unsupported by detrital components) of particulate organic C, Fe, Mn, P, S, Mg, K, Ba, and Ca are being generated and lost in situ in the water column (15m deep). In the epilimnion these elements (excepting Fe and Mn) are incorporated into the organic components of growing phytoplankton during the spring and summer. Simultaneously, in the hypolimnion there is a build-up and then a decrease in the excess concentrations of particulate C, P, S, Mg, K, Ba and Ca; this cycle is due to the indirect involvement of these elements with the iron redox cycle. As the hypolimnion becomes anoxic, dissolved ferrous Fe is released from the sediments and large concentrations of excess particulate iron (III) oxides accumulate; these oxides act as adsorbing substrates for the above mentioned elements. As conditions become more reducing, these same elements are solubilized as the iron (III) oxide particles are reduced to dissolved ferrous iron.Adsorption equations are derived from the field data which relate the concentration of excess particulate Fe to those of POC, P, S, Ca, Mg, Ba, and K. At the last stages of anoxia (before the lake overturns) large populations of bacteria and the formation of iron sulfide particles control the concentrations of excess particulate C, S, P, Mg, K, and Ca.  相似文献   

14.
中下扬子地区二叠纪缺氧环境研究   总被引:20,自引:4,他引:16  
在中下扬子地区二叠纪尤其是孤峰期和大隆期,缺氧环境十分发育,形成了"黑色页岩-薄层硅岩-纹层状石灰岩"的缺氧沉积组合?本区二叠纪缺氧环境的形成与当时的气候?水温?水体能量?海底地形和上升洋流有着密切的关系?根据放射虫生态?相序?沉积特征及与现代缺氧环境的对比分析,探讨了本区二叠纪缺氧环境的古水深?缺氧沉积可成为有利的生油气源岩,而不同的缺氧沉积类型可形成不同类别的生油气源岩;研究表明,本区二叠系具有良好的生油气条件?  相似文献   

15.
The effects of water residence time and anoxic conditions on the mobilization and speciation of As in a calcite- and pyrite-bearing altered rock excavated during a road-tunnel project has been evaluated using batch and column laboratory experiments. Higher infiltration rates (i.e., shorter water residence times) enhanced the leaching of As due to the higher pH values of the effluents and more rapid transport of dissolved As through the columns. The concentration of As in the effluent also increased under anoxic conditions regardless of the water residence time. This enhanced leaching of As under anoxic conditions could be attributed to a significant pH increase and decreased Fe oxyhydroxide/oxide precipitation compared to similar experiments done under ambient conditions. Processes that controlled the evolution of pH and the temporal release mechanisms of As under anoxic conditions were identical to those previously observed under ambient conditions: the dissolution of soluble phases, pyrite oxidation, co-precipitation and/or adsorption/desorption reactions. Speciation of As in the column experiments could partly be attributed to the pH-dependent adsorption of As species onto Fe oxyhydroxide/oxide precipitates. Moreover, apparent equilibrium of the total As and As[III] concentrations was delayed under anoxic conditions in both batch and column experiments.  相似文献   

16.
《Applied Geochemistry》1993,8(6):569-586
Crude oil floating on the water table in a sand and gravel aquifer provides a constant source of hydrocarbons to the groundwater at a site near Bemidji, Minnesota. The degradation of hydrocarbons affects the concentrations of oxidized and reduced aqueous species in the anoxic part of the contaminant plume that developed downgradient from the oil body. The concentrations of Fe2+, Mn2+ and CH4, Eh measurements, and the δ13C ratios of the total inorganic C indicate that the plume became more reducing ver a 5-a period. However, the size of the contaminant plume remained stable during this time. Field data coupled with laboratory microcosm experiments indicate that benzene and the alkylbenzenes are degraded in an anoxic environment. In anaerobic microcosm experiments conducted under field conditions, almost complete degradation (98%) was observed for benzene in 125 d and for toluene in 45 d. Concentrations of aqueous Fe2+ and Mn2+ increased in these experiments, indicating that the primary reactions were hydrocarbon degradation coupled with Fe and Mn reduction.Mass transfer calculations on a 40-m flowpath in the anoxic zone, downgradient from the oil body, indicated that the primary reactions in the anoxic zone are oxidation of organic compounds, precipitation of siderite and a ferroan calcite, dissolution of iron oxide and outgassing of CH4 and CO2. The major difference in the two models presented is the ratio of CO2 and CH4 that outgasses. Both models indicate quantitatively that large amounts of Fe are dissolved and reprecipitated as ferrous iron in the anoxic zone of the contaminant plume.  相似文献   

17.
The abundance and structural diversity of bacteriohopanepolyols (BHPs) was examined in three marine pelagic environments that are characterized by strong vertical redox gradients and water column suboxia or anoxia. The abundance and, in most instances, structural diversity of BHPs was highest at depths where conditions were suboxic or anoxic. However, the majority of the BHP structures that were identified are environmentally cosmopolitan and their biological sources are presently not well constrained. An isomer of bacteriohopanetetrol (denoted BHT II) was observed at all three study sites in association with anoxic and suboxic conditions within the water column. Based on the absence of BHT II from terrigenous and oxic marine environments studied to date, and its strong association with suboxic and anoxic marine pelagic environments, we propose that BHT II is a promising candidate biomarker for water column suboxia and anoxia in the marine geologic record. The molecular fingerprint of BHPs in suspended and sinking particles and core-top sediments indicates that hopanoids produced within the water column are exported to marine sediments and that their biological source is most likely associated with settling particles and not the free-water phase. Based on our observations, BHPs likely represent an important input to the sedimentary hopanoid inventory, particularly in upwelling environments characterized by pelagic oxygen minimum zones (OMZ) and anoxic marine basins.  相似文献   

18.
Depth profiles of dissolved zinc were measured monthly over one year in Lake Greifen, a eutrophic lake. The concentrations are in the range 10–40 nM and show systematic variations over time and depth. Due to the increased binding to particles and subsequent settling, concentrations of zinc in the epilimnion decrease during summer stagnation. Clear correlations between Zn and major nutrients (P, Si) are, however, not observed in the water column. No accumulation of Zn occurs in the anoxic hypolimnion. The Zn sedimentation is related to the sedimentation of algae and of manganese oxide. A mass-balance calculation shows that 87% of the Zn input is retained in the sediments of Lake Greifen.  相似文献   

19.
Selected geochemical parameters and siliceous microfossil assemblages in Baltic Sea sediments are presented which reflect past variations in redox conditions, salinity and primary production. The sediments were deposited during the freshwater Ancylus Lake (9500-8000 14C BP) and brackish Litorina Sea (8000-3000 BP) stages of the Baltic. The diatom record shows that surface-water salinity increased further at c . 7000-6500 BP, although smaller amounts of brackish water entered the basin from c . 8000 BP onwards. Attempts to use exchangeable Mg as a palaeosalinity indictor were not applicable. Gross primary productivity increased along with salinity, which has been interpreted as an effect of nutrient enrichment in the photic zone. This led between c . 6500 and 4500 BP to a high accumulation of organic carbon, anoxic or nearly anoxic bottom conditions and formation of laminated deposits. Certain laminae consist of alternating layers of organic and minerogenic material and were probably formed annually, i.e. in the manner of varves. The laminated successions are distinguished by enrichments of V, Cu and especially Mo. The highest Mo content occurs in the core from the greatest water depth, an effect of anoxic conditions during deposition. The Fe/Mn ratio was shown to be ambiguous as an indicator of past redox conditions. Since biogenic silica shows large variablity in contemporaneously deposited sediments, this parameter cannot be used as a proxy for the past production of siliceous algae in the Baltic Sea.  相似文献   

20.
The sedimentary rocks of the Metlaoui Formation in the Gafsa basin (southern Tunisia), which may be grouped in three units: the basal (Thèlja), middle (Chouabine) and upper unit (Kef Eddour), provide a record of preserved sedimentary, authigenic and biological processes. This paper presents the findings of sedimentological investigations of the biosiliceous deposits of the middle unit. This unit contains either well-preserved (Opal-A) or diagenetically altered (Opal-CT, clinoptilolite, quartz and even clays) diatom frustules. Such diagenetic changes are commonly described in marine and lacustrine biosiliceous deposits. The fossil content of theses diatomaceous layers implies shallow-marine conditions.The opal-rich sediments, and the associated facies record the transgressive transitions associated with high organic productivity, probably enhanced by seasonal input of nutrients, and high sea level stands, and a close association with stratified water column conditions. The formation of bedded diatomaceous sediments is known to require either high organic productivity or anoxic conditions in bottom/intermediate water, and eventually both processes. The initial organic content of the biogenic deposits was impoverished in early stages of sedimentation and diagenesis. A large part of the organic matter could have been destroyed during early diagenetic processes and from further oxidation in outcrops.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号