首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The evolutionary behaviour of rotating low-mass stars in the mass range 0.2 and 0.9M has been investigated during the pre-Main-Sequence phase. The angular momentum is conserved locally in radiative regions and totally in convective regions, according to a predetermined angular velocity distribution depending on the structure of the star. As the stars contract toward the zero-age Main Sequence, they spin up under the assumption that the angular momentum is conserved during the evolution of the stars. When the stars have differential rotations, their inner regions rotate faster than the outer regions. The effective temperatures and luminosities of rotating low-mass stars are obtained lower than those of non-rotating stars. They have lower central temperature and density values compared to those of non-rotating stars.  相似文献   

2.
In this paper we present a method for computing the equilibrium structures and various physical parameters of a primary component of the binary system assuming that the primary is more massive than the secondary and is rotating differentially according to the law of the w2 = b0 + b1 × s2 + b2 × s4, w being the angular velocity of rotation of a fluid element distant s from the axis of rotation and b0, b1, b2 suitably chosen numerical constants. This method utilizes the averaging approach of Kippenhahn and Thomas (1997) and the concept of Roche equipotentials in a manner earlier used by Mohan et al. (1997) to incorporate the effects of rotation and tidal distortions on the equilibrium structures of certain rotationally and tidally distorted stellar models. The use of the method has been illustrated by applying it to obtain the structures and some observable parameters of certain differentially rotating and tidally distorted binary systems whose primary component is assumed to be a white dwarf star.  相似文献   

3.
The period variations of TV Cassiopeiae between 1901 and 1977 are discussed in the light of the period change model proposed by Biermann and Hall. During each period decrease 4.0×10–6 M of mass is transferred from the secondary star to the primary. The average observable mass transfer rate is found to be 4.3×10–7 M yr–1. This average rate corresponds to the thermal time-scale of the mass-losing star.  相似文献   

4.
We consider the evolution of a rotating star with a mass of 16M and an angular momentum of 3.25 × 1052 g cm2 s?1, along with the hydrodynamic transport of angular momentum and chemical elements in its interiors. When the partial mixing of matter of the turbulent radiative envelope and the convective core is taken into account, the efficiency of the angular momentum transport by meridional circulation in the stellar interiors and the duration of the hydrogen burning phase increase. Depending on the Schmidt number in the turbulent radiative stellar envelope, the ratio of the equatorial rotational velocity to the circular one increases with time in the process of stellar evolution and can become typical of early-type Be stars during an additional evolution time of the star on the main sequence. Partial mixing of matter is a necessary condition under which the hydrodynamic transport processes can increase the angular momentum of the outer stellar layer to an extent that the equatorial rotational velocity begins to increase during the second half of the evolutionary phase of the star on the main sequence, as shown by observations of the brightest stars in open star clusters with ages of 10–25 Myr. When the turbulent Schmidt number is 0.4, the equatorial rotational velocity of the star increases during the second half of the hydrogen burning phase in the convective core from 330 to 450 km s?1.  相似文献   

5.
The acoustic energy-generation rate from the convective zone was calculated for various models. Results show that chromosphere and corona can be expected around stars with temperature lower than 8000K at the main sequence, and lower than 6500K at logg=2.When a star is rotating rapidly, mass loss from its corona is large, and can be an effective mechanism of braking the stellar rotation. If this mechanism is effective, we can explain the slow rotation of stars later than F2 to be the result of the loss of the angular momentum through a stellar wind that is effective in their main sequence phase. Stars with massM>1.5M lose mass through a stellar wind during their contraction phase. The mass-loss rate is larger than the solar value because of the larger energy input into the chromosphere-corona system and because of the smaller gravitational potential at the surface. T Tauri stars may be the observational counterparts for such stars. As the duration of contraction phase is very short (less than 107 years), the braking mechanism works only in the presence of a strong magnetic field (Ap) or in the presence of a companion (Am).Presented at the Trieste Colloquium on Mass Loss from Stars, September 12–16, 1968.  相似文献   

6.
Based on two high-dispersion spectra of the close binary BW Boo, we have detected lines of the secondary component whose contribution to the combined spectrum does not exceed 2%. We have determined the rotation velocities of the components and spectroscopic orbital elements. Numerous lines of neutral and ionized iron have been used to determine the effective temperature and surface gravity for the primary component. The photometric light curves for this binary have been solved for the first time. Its primary component is an A2Vm star with a mass of 2 ± 0.1M and a radius of 1.9 ± 0.4R . Its rotation velocity is 2 km s−1, which is a factor of 18 lower than the pseudo-synchronous velocity for this component. The G6 secondary component, a T Tau star, has a rotation velocity of 17 km s−1, amass of 1.1M , and a radius of 1 R . The age of the binary has been estimated to be 107 yr.  相似文献   

7.
We have investigated the evolutionary behaviour of intermediate mass (2, 3, 4, 5, and 7M ) Population I stars, assuming two different rates of rotation at the threshold of stability.In the first part of the study, stars are assumed to start with a critical rotation (fast rotation model) and to progress to the point of rotational instability. The stars evolve by losing mass and become rotationally unstable before they reach the zero-age Main Sequence. It is argued that multiple star systems might be formed through the evolution of rapidly rotating stars. An expression for the rotational mass loss rate is derived as a function of the physical parameters of stars.In the second part of the study, stars are assumed to rotate at a rate below the critical value (slow rotation model). The evolution of slowly rotating stars is followed as far as zero-age Main Sequence on the theoretical Hertzsprung-Russell diagram and compared with that of normal stars. The evolutionary paths are found to be more or less similar to those of normal stars; but their positions on the Main Sequence are characterized by effective temperatures and luminosities lower than those of normal stars. The zero-age Main-Sequence times of these stars are longer than those of normal stars. The rotational rates obtained for the zero-age Main Sequence are in good agreement with observed values.  相似文献   

8.
The influence of internal rotation on the evolution of a 0.85M star is investigated by the construction of model sequences. Rotation is treated by a simple one-dimensional approximation. The calculations assume solid-body rotation on the zero-age Main Sequence, followed by conservation of angular momentum in shells. The 4 cases considered have the initial angular velocities 0,2×10–4, 6×10–4, and 8×10–4/sec. All cases but the last are followed to helium ignition. Compared with the non-rotating case, the rotating models are older at Main-Sequence turnoff, develop fast-spinning central regions on the red-giant branch, and ignite helium at higher surface luminosities and at larger helium-core masses. The increases in the last two quantities are roughly proportional to the square of the initial angular velocity.The 6×10–4 case is followed through the helium core flash to the zero-age horizontal branch. Under the assumption of spherical symmetry, the non-central ignition of helium leads to a sequence of flashes of decreasing amplitude occurring progressively closer to the center. The flashes are weaker than those encountered in previous studies and do not produce mixing.  相似文献   

9.
We have determined an improved orbit for the bright, evolved, double lined binary γ Canis Minoris. The system has an orbital period of 389.31 days and an eccentricity of 0.2586. We have revised the secondary to primary mass ratio to 0.987. The spectral types of the primary and secondary are K4 III and K1: III, respectively, and the components have a V magnitude difference of 2.2. Orbital fits to the Hipparcos astrometry are not definitive, but they suggest an orbital inclination of ∼ 66°, which produces masses of 1.88 and 1.85 M for the components. A comparison with evolutionary tracks results in an age of 1.3 Gyr. STELLA very low amplitude radial velocity residuals of the secondary indicate a period of 278 days. We interpret this as the rotation period of the secondary, detectable because of star spots rotating in and out of view. This period is nearly identical to the pseudosynchronous rotation period of the star. The primary is rotating more slowly than its pseudosynchronous rate. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
In this paper a method is proposed for computing the equilibrium structures and various other observable physical parameters of the primary components of stars in binary systems assuming that the primary is more massive than the secondary and is rotating differentially about its axis. Kippenhahn and Thomas averaging approach (1970) is used in a manner earlier used by Mohan, Saxena and Agarwal (1990) to incorporate the rotational and tidal effects in the equations of stellar structure. Explicit expressions for the distortional terms appearing in the stellar structure equations have been obtained by assuming a general law of differential rotation of the typeω2 = b 0+b 1 s 2+b 2 s 4, where ω is the angular velocity of rotation of a fluid element in the star at a distance s from the axis of rotation, and b 0, b 1, b 2 are suitably chosen numerical constants. The expressions incorporate the effects of differential rotation and tidal distortions up to second order terms. The use of the proposed method has been illustrated by applying it to obtain the structures and observable parameters of certain differentially rotating primary components of the binary stars assuming the primary components to have polytropic structures. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
An analytic solution has been found in the Roche approximation for the axially symmetric structure of a hydrostatically equilibrium atmosphere of a neutron star produced by collapse. A hydrodynamic (quasione-dimensional) model for the collapse of a rotating iron core in a massive star gives rise to a heterogeneous rotating protoneutron star with an extended atmosphere composed of matter from the outer part of the iron core with differential rotation (Imshennik and Nadyozhin, 1992). The equation of state of a completely degenerate iron gas with an arbitrary degree of relativity is taken for the atmospheric matter. We construct a family of toroidal model atmospheres with total masses M≈ 0.1?2M and total angular momenta J≈(1?5.5)×49 erg s, which are acceptable for the outer part of the collapsed iron core, in accordance with the hydrodynamic model, as a function of constant parameters ω0 and r 0 of the specified differential rotation law Ω=ω0exp[?(rsinθ)2/r 0 2 ] in spherical coordinates. The assumed rotation law is also qualitatively consistent with the hydrodynamic model for the collapse of an iron core.  相似文献   

12.
Here the effect of rotation up to third order in the angular velocity of a star on the p, f and g modes is investigated. To do this, the third-order perturbation formalism presented by Soufi et al. (Astron. Astrophys. 334:911, 1998) and revised by Karami (Chin. J. Astron. Astrophys. 8:285, 2008), was used. I quantify by numerical calculations the effect of rotation on the oscillation frequencies of a uniformly rotating β-Cephei star with 12 M . For an equatorial velocity of 90 km s−1, it is found that the second- and third-order corrections for (l,m)=(5,−4), for instance, are of order of 0.07% of the frequency for radial order n=−3 and reaches up to 0.6% for n=−20.  相似文献   

13.
The evolution of three close binary systems of total mass 20.4M in and after the phase of mode Br mass-transfer in caseA of mass exchange is investigated. In every case a secondary component evolves to interfere with the progress of primary's evolution and the system overflows the outer critical surface before the primary completes its nuclear-burning evolution. This strongly indicates the importance of simultaneous calculation of both components. A summary of evolution of the systems considered in this series of papers up to the stage ofL 2-overflow is given. The observational aspects of the numerical models are also discussed.  相似文献   

14.
We intend to point out that existing evolutionary scenario for the genesis of the binary radio pulsars like PSR 0655+64 (P1 d) and 1913+16 (P8 hr) having short orbital periods and relatively massive companion (>0.5M *) is inconsistent in that it does not allow for a prolonged phase of angular momentum transfer. We propose here a modified evolutionary scenario where there is such a prolonged phase of angular momentum transfer from a low mass helium star to the neutron star mediated by an accretion disk along the so-called caseB evolutionary track.  相似文献   

15.
We re‐discuss the evolutionary state of upper main sequence magnetic stars using a sample of Ap and Bp stars with accurate Hipparcos parallaxes and definitely determined longitudinal magnetic fields. We confirm our previous results obtained from the study of Ap and Bp stars with accurate measurements of the mean magnetic field modulus and mean quadratic magnetic fields that magnetic stars of mass M < 3 M are concentrated towards the centre of the main‐sequence band. In contrast, stars with masses M > 3 M seem to be concentrated closer to the ZAMS. The study of a few known members of nearby open clusters with accurate Hipparcos parallaxes confirms these conclusions. Stronger magnetic fields tend to be found in hotter, younger and more massive stars, as well as in stars with shorter rotation periods. The longest rotation periods are found only in stars which spent already more than 40% of their main sequence life, in the mass domain between 1.8 and 3 M and with log g values ranging from 3.80 to 4.13. No evidence is found for any loss of angular momentum during the main‐sequence life. The magnetic flux remains constant over the stellar life time on the main sequence. An excess of stars with large obliquities β is detected in both higher and lower mass stars. It is quite possible that the angle β becomes close to 0. in slower rotating stars of mass M > 3 M too, analog to the behaviour of angles β in slowly rotating stars of M < 3 M. The obliquity angle distribution as inferred from the distribution of r ‐values appears random at the time magnetic stars become observable on the H‐R diagram. After quite a short time spent on the main sequence, the obliquity angle β tends to reach values close to either 90. or 0. for M < 3 M. The evolution of the obliquity angle β seems to be somewhat different for low and high mass stars. While we find a strong hint for an increase of β with the elapsed time on the main sequence for stars with M > 3 M, no similar trend is found for stars with M < 3 M. However, the predominance of high values of β at advanced ages in these stars is notable. As the physics governing the processes taking place in magnetised atmospheres remains poorly understood, magnetic field properties have to be considered in the framework of dynamo or fossil field theories. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
Evolutionary stellar models of FG Vir have been developed theoretically and are compared with earlier observational results. Using the models, we performed calculations to obtain radial and non-radial adiabatic oscillation frequencies. The results show that, if the observational splitting was considered and the observational mode identifications were followed, 1.85M star models with the rotational velocities in the range from 32 to 66 kms−1 seem to be representative models of FG Vir.  相似文献   

17.
《New Astronomy》2007,12(4):265-270
Surface lithium abundance and rotation velocity can serve as powerful and mutually complementary diagnostics of interior structure of stars. So far, the processes responsible for the lithium depletion during pre-main sequence evolution are still poorly understood. We investigate whether a correlation exists between equivalent widths of Li (EW(Li)) and rotation period (Prot) for weak-line T Tauri stars (WTTSs). We find that rapidly rotating stars have lower EW(Li) and the fast burning of Li begins at the phase when star’s Prot evolves towards 3 days among 0.9M to 1.4M WTTSs in Taurus–Auriga. Our results support the conclusion by Piau and Turch-Chiéze about a model for lithium depletion with age of the star and by Bouvier et al. in relation to rotation evolution. The turn over of the curve for the correlation between EW(Li) and Prot is at the phase of zero-age main sequence (ZAMS). The EW(Li) decreases with decreasing Prot before the star reaches the ZAMS, while it decreases with increasing Prot (decreasing rotation velocity) for young low-mass main sequence stars. This result could be explained as an age effect of Li depletion and the rapid rotation does not inhibit Li destruction among low-mass PMS stars.  相似文献   

18.
The aim of this paper is to extend the Fourier approach to the transit eclipses, terminating in annular phase, with an application to YZ Cassiopeiae. The results turn out to be more complicated than those obtained by Kopal for total eclipses. However, the solution can still be obtained by successive approximations without resorting to any tables of special functions.Section 1 contains an outline of the problem. In Section 2, the evaluation of the theoretical momentsA 2m for transit eclipses is given. An application of the Fourier method to the light curves of YZ Cas is presented in Section 3. Finally, in Section 4, a general discussion of the results is given.  相似文献   

19.
In the present paper we have considered the problem of determining the equilibrium structure of differentially rotating stars in which the angular velocity of rotation varies both along the axis of rotation and in directions perpendicular to it. For this purpose, a generalized law of differential rotation of the type 2 =b 0+b 1 s 2+b 2 s 4+b 3 z 2+b 4 z 4+b 5 z 2 s 2 (here is a nondimensional measure of the angular velocity of a fluid element distants from the axis of rotation andz from the plane through the centre of the star perpendicular to the axis of rotation, andb's are suitably chosen parameters) has been used. Whereas Kippenhahn and Thomas averaging approach has been used to incorporate the rotational effects in the stellar structure equations, Kopal's results on Roche equipotentials have been used to obtain the explicit form of the stellar structure equations, which incorporate the rotational effects up to second order of smallness in the distortion parameters. The method has been used to compute the equilibrium structure of certain differentially rotating polytropes. Certain differentially rotating polytropes. Certain differentially rotating models of the Sun have also been computed by using this approach.  相似文献   

20.
The evolution of a rotating star with a mass of 16M at the hydrogen burning phase is considered together with the hydrodynamic processes of angular momentum transport in its interior. Shear turbulence is shown to limit the amplitude of the latitudinal variations in mean molecular weight on a surface of constant pressure in a layer with variable chemical composition. The resulting nonuniformity in the mean molecular weight distribution and the turbulent energy transport along the surface of constant pressure reduce the absolute value of the meridional circulation velocity. Nevertheless, meridional circulation remains the main mechanism of angular momentum transport in the radial direction in a layer with variable chemical composition. The intensity of the processes of angular momentum transport by meridional circulation and shear turbulence is determined by the angular momentum of the star. At a fairly high angular momentum, more specifically, at J = 3.69 × 1052 g cm2 s?1, the star during the second half of the hydrogen-burning phase in its convective core has characteristics typical of classical early Be stars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号