首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Catastrophic drainage of ice-dammed lakes in the Altai Mountains has been inferred from geomorphological evidence in the Katun Valley (Russia), and is presumed to have occurred during the Pleistocene. The sedimentary features have been difficult to date directly, due to the absence of organic carbon, and the improbability that luminescence signals in sand grains would be reset during transport. However, the development of rock-surface luminescence dating provides a new opportunity to date the features: clasts have a different transport history to sand grains, and their luminescence depth profiles can be inspected for evidence of bleaching before burial. Here we investigate two sites in the Altai Mountains, and use rock-surface luminescence burial dating to constrain the age of the megaflood deposits. In the Katun Valley, we sampled granite cobbles from a frozen sediment clast emplaced as a dropstone within a massive megaflood gravel terrace. Burial ages for the clasts range from 16.7 to 21.4 ka, with a mean age of 19.8 ± 1.5 ka. This represents the depositional age of the fluvial sediments that preceded the lake outburst flood, (and hence places a maximum age on the catastrophic flood). Clasts sampled from mega-ripples in the Kurai Basin are shown to have a mid-to-late Holocene burial age, which is not consistent with the possible origin of these features during a catastrophic drainage of a glacier-dammed lake. Instead, the burial age of the Kurai Basin sediments may reflect local-scale periglacial or seismic processes along the Kurai Fault Zone.  相似文献   

2.
This study presents new dating results from the Verkhoyansk Mountains in northeastern Siberia. Pleistocene sediments of aeolian and glacial origin have been studied and dated by infrared optically stimulated luminescence (IRSL). The chronostratigraphy of this vast area is mainly based on radiocarbon dating up to now. Aeolian sediments are widespread in the foreland of the Verkhoyansk Mountains. IRSL-dating results indicate two major periods of increased accumulation between 33 and 24 ka and between 13 and 9 ka. A new stratigraphy of Pleistocene glaciations in this area has been developed. Up to five end moraines have been identified in two catchments areas. IRSL was applied to date the sandy and silty sediments covering the glacial deposits in order to get minimum ages. Furthermore, glacial and glacio-fluvial deposits were also sampled from a few locations. According to the IRSL dating results, the uppermost end moraine was deposited prior to 50 ka. The three outermost moraines might have been formed during Early Weicheslian to Saalian times. It is very likely that no major glaciers reached the foreland of the Verkhoyansk Mountains during the Last Glacial Maximum (LGM, MIS 2).  相似文献   

3.
Some of the largest catastrophic outbursts of periglacial lakes known in the geological history of the Earth have been identified in the Altai Mountains. Traces of these events are recorded in the form of large terraces, predominantly composed of gravel material with numerous horizons of large boulders and blocks. Determining the age of these large-scale events is difficult due to the lack of suitable material (e.g. organics, well-bleached sand) and the specific genesis of these sediments. The results of cosmogenic radionuclide dating suggest a post-LGM age both for the source of the flood water and for different elements of the catafluvial terraces in the Chuya and Katun river valleys. Nevertheless, the age(s) of catastrophic breakthrough remains controversial. On the basis of a few IRSL ages, and geological and other evidence, some view the event as occurring around MIS 5. In this study, we investigate loess-like loams overlying the catafluvial sediments on the surface of the highest level terrace, ∼200 m above present river level. A total of 24 samples for luminescence dating were obtained, for which the OSL, IR50, and pIRIR50,290 signals were measured to control the degree of signal zeroing and the dating reliability. The age of the loess in all three pits was from 0.5 ka at the top to 23 ka at the base of the loess strata. From a sand layer in the top of the catafluvial deposits, two ages of ∼85–90 ka were obtained from feldspar pIRIR50,290. These results provide a minimum pre-LGM age for the geomorphological surface of a major catafluvial terrace in the Altai Mountains.  相似文献   

4.
Loess and fluvial sand are important materials for dating river terraces and alluvial fans. This study focuses on the methodological aspects of dating loess and fluvial deposits from the northern flank of the Tian Shan range, China, using sand-sized quartz and potassium (K) feldspar. Luminescence characteristics of quartz and K-feldspar were studied for searching suitable dating procedures. Our results indicate that 1) most quartz aliquots were contaminated by feldspar, and were dated using a post-infrared optically stimulated luminescence (post-IR OSL) procedure. A Fast ratio acceptance threshold of 15 can be applied to select these aliquots with post-IR OSL signals dominated by quartz OSL; 2) the multi-elevated-temperature post-IR IR stimulated luminescence (MET-pIRIR) procedures are applicable for K-feldspar. A test dose of ∼30% of the natural dose is appropriate for dating of older (>10 ka) samples. An Age (T, t) plateau test can be used to evaluate the dating results; 3) for the loess samples, both quartz and K-feldspar were well bleached and are suitable for dating. Dating using K-feldspar is preferred for its higher efficiency; 4) for the fluvial sand samples, only the quartz grains were fully bleached. Single-aliquot dating of quartz gives reliable ages.  相似文献   

5.
Fluvial sediments of the middle Atbara River Valley, eastern Sudan, contain abundant vertebrate fossils and stone tools. Previous work described two sedimentary units, the Butana Bridge Synthem (BBS) and the Khashm El Girba Synthem (KGS), with three divisions each (BBS1-3 and KGS1-3, from bottom to top, respectively). 230Th/U dating on bivalve shells suggested an age of ∼126 and ∼92 ka for the basal KGS2 and basal KGS3, respectively, and mammalian biochronology in combination with magnetostratigraphy suggested an age of late Early to early Middle Pleistocene for the underlying BBS. To establish a detailed chronology of this fluvial sedimentary sequence, we collected 17 luminescence samples from both sides of the Atbara River close to the Butana Bridge. Quartz OSL dating was applied to samples from the upper part of the profile (upper KGS2 and KGS3), but the signal reached saturation within the upper ∼10 m of the sequence. To select a suitable feldspar signal to date older samples beyond the limit of the quartz OSL, a comparison of the quartz OSL, feldspar post-IR IRSL at 225 and 290 °C, and pulsed IRSL signal at 50 °C was conducted for a sample from KGS3. The result showed that only the fading corrected pulsed IRSL yielded an age consistent with the quartz OSL, and the post-IR IRSL signals (both at 225 and 290 °C) overestimated the quartz age significantly. We therefore selected the pulsed IRSL signal to date the older deposits. The luminescence ages indicate that the entire BBS - KGS sequence was deposited between 224 ± 23 ka and <17 ± 1 ka, corresponding to marine isotope stages (MIS) 7–2, significantly revising previous conclusions.  相似文献   

6.
Qinghai Lake, on the northeastern Qinghai-Tibetan Plateau, is the largest extant closed-basin lake in China, and has been the subject of numerous palaeoclimatological and palaeoenvironmental studies. In this study, 32 samples of aeolian sand, loess and palaeosol at six sites, and 1 sample of shoreline deposits underlying aeolian deposits were dated using optically stimulated luminescence (OSL). Where available, OSL ages are in agreement with previously published 14C ages. Our dating results, in combination with previous published ages on aeolian deposits showed that: (1) The oldest aeolian deposits around Qinghai Lake are in excess of 165 ka. (2) Aeolian deposition then began at ∼14 ka in the Qinghai Lake area. Periods of palaeosol formation occurred at ∼16.9 ka, ∼12.2–11 ka, ∼10–9 ka, ∼5.2–4 ka, and ∼3.9–0.7 ka. (3) The accumulation intervals of palaeosols are generally consistent with drilling-core-based environmental change proxies, indicating that palaeosols were formed during wet periods with higher vegetation cover. (4) A depositional hiatus period of ∼40–50 ka exists between the surface mantle aeolian deposits and underlying gravel deposits. (5) Lake levels during the Holocene did not exceed 3205.2 m elevation (11.8 m above recent lake level of April, 2010).  相似文献   

7.
Himalaya is an active fold and thrust belt formed due to continent-continent collision between the Eurasian and Indian plates. It comprises a 3000 km long chain of mountains that span ∼1000 km across, with major boundary thrusts viz., Main Central Thrust (MCT), Main Boundary Thrust (MBT) and the Main Frontal Thrust (MFT). MFT is marked as mountain front and is the most active thrust; however, evidence of tectonic activity along MCT and MBT also exists.Tectonic activity along MFT created uplifted terraces which now serve as geomorphic archives of past tectonic events. The present study focussed on a glacial-fed river Sankosh that originates in northern Bhutan, and crosses MCT, MBT and MFT before joining the Brahmaputra River in Assam. Due to tectonic uplift, the river shows a deflection at MFT, incising and thus forming four levels of strath terraces. Luminescence chronology, geomorphic studies and analysis of satellite images suggest four levels of terraces T4 (highest level, 195 m asl), T3, T2 and T1 (lowest level, 120 m asl).The quartz was found insensitive for luminescence dating, and thus fading corrected Infra-Red Stimulated Luminescence (IRSL) ages on feldspar minerals were measured that provided ages of 143-77 ka (T4), 65-36 ka (T2) and 35-14 ka (T1), respectively. The T3 terrace was present only on the right bank of the river and could not be accessed. These ages accord with other studies at the Chalsa and Malbazar, North Bengal (west of the study area) and this regional disposition of similar ages suggest that these formed during glacial-interglacial periods. The strath terraces indicate a time-averaged tectonic uplift with a 0.5 mm/year rate over the past 150 ka.  相似文献   

8.
Fluvial terraces along the middle reaches of many Japanese rivers were formed during the last glacial period as a result of changes in sediment discharge related to cooler temperatures and/or reduced water discharge because of lower precipitation. The influence of climate change on these fluvial terraces is not yet fully understood because most previous studies lacked detailed reconstructions of the chronology of terrace development. This study provides a detailed luminescence chronology of fluvial terrace deposits along the Ani River, northeastern Honshu, Japan, and compares that chronology to paleoclimatic records. Eight samples for luminescence dating were obtained from an outcrop of terrace deposits (∼10 m thick) in the Ani River valley. The fading-corrected infrared stimulated luminescence (IRSL) ages are consistent with the fading-corrected post-IR IRSL ages for some samples, which suggests that fading corrections were effective despite the higher fading rates of the IRSL signal. However, for the other samples, the post-IR IRSL ages are significantly older than the fading-corrected IRSL ages due to incomplete bleaching. The pulsed IRSL signals are close to field saturation for older samples, which might have resulted in a greater variation of the ages. Fading-corrected IRSL ages demonstrate periods of rapid aggradation during 105–90 ka and 75–60 ka. Comparison of terrace development with paleoclimatic records indicates that the two periods of fluvial deposition correspond to decreases in precipitation caused by weakened East Asian summer monsoon precipitation and possibly decreases in temperature. The results of this study show that the Ani River responded rapidly to climate change on a time scale of a few tens of thousands of years during the last glacial period.  相似文献   

9.
In the present study, we applied the IRSL50°C dating method to both K- and Na-feldspar coarse grains from interglacial coastal deposits in north-eastern Tunisia. We used the yellow IRSL50°C signal of Na-feldspars and the blue IRSL50°C signal of K-feldspars. The key-sites for this study are at El Hajeb (Sahel area) and Dar Oufa (Cap Bon Peninsula). These deposits belong to the “Douira Unit” which has previously been assigned to marine isotope stage (MIS) 7 on the basis of amino acid ratios and chronostratigraphic evidence.In order to assess the reliability of the IRSL50°C ages of the “Douira Unit”, we extended the IRSL dating technique to K- and Na-feldspars from two MIS 5 samples, with independent age control, collected within shallow-marine sands in the Sahel area and on the Jerba island (southern Tunisia).Two protocols of age correction for the observed fading in K- and Na-feldspars have been applied: (1) the Huntley and Lamothe (2001) fading correction and (2) the dose rate correction developed by Lamothe et al. (2003). The fading corrected IRSL ages of the “Douira Unit” and both MIS 5 control samples, measured on K- and Na-feldspars, are in good agreement with their expected ages.  相似文献   

10.
Size and Fourier-shape characteristics of quartz sand grains were determined by computerized image analysis in order to distinguish between aeolian and fluvial soil parent materials in the Dallol Bosso in Niger. Factor analysis of grain-size distributions gave four sand end-members that can be related to fluvial transport dynamics operating when the sediments were initially deposited. The medium to fine (and more angular shaped) sand fractions are being reworked by wind. Aeolian deposits were well sorted whereas fluvial deposits were poorly sorted in both size and shape. Although gross-shape characteristics (lower harmonics of Fourier series expansion) indicated a common source rock for all sands, the aeolian sands were well rounded whereas the fluvial sands tended to be more angular (upper harmonics of Fourier series).  相似文献   

11.
The loess-palaeosol deposits of the Central Shandong Mountains (CSM) to the east of the Chinese Loess Plateau (CLP) potentially provide valuable archives for the reconstruction of East Asian monsoon patterns. However, compared to the abundant attention given to the loess layer, fewer studies have explored the palaeosols documenting the processes and characteristics of interglacial climate changes. The high-resolution chronologies and provenances of the palaeosol in the CSM area are still unclear. In this work, the luminescence ages and paleoclimate proxies in the Shaozhuang (SZ) and Focun (FC) sections were studied, by combining detrital zircons U–Pb ages from the loess-palaesosol in Jingbian, Licheng, Focun, Pianguan and Dongming Yellow River sediments. Quartz single-aliquot regenerative dose protocol (SAR) and K-feldspar post-infrared IRSL (pIRIR290) dating results were obtained in the SZ (8.0 ± 1.1 ka −50.8 ± 2.7 ka) and FC (3.8 ± 0.3 ka—144.0 ± 7.8 ka) sections to develop the most detailed CSM region chronologies to date. The analyzed grain sizes and detrital zircon U–Pb ages suggest that the provenance of the CSM loess was dominated by local Yellow River sediments. The palaeosols observed in the field in these two sections were composed of both aggradation soils deposited in the interglacial period and non-aggradation soil formed by the weathering and leaching of the underlying loess. We found evidences for the presence of non-aggradation soils as indicated the relatively high 5–16 μm particle percentages, relatively low chemical index of alteration (CIA) values and the percentages of >63 μm particles compared to those of the overlying palaeosol layers. Nevertheless, the loess-palaeosol deposits in the CSM are still the product of the East Asian monsoon and global climatic variations, as the deposits have recorded the glacial-interglacial cycles.  相似文献   

12.
Constraining the ages of fluvial terraces is essential to understanding fluvial responses to climate and sea-level changes and estimating uplift/incision. Luminescence dating of sand or silt grains from fluvial terrace deposits in Japan is difficult because sand layers are often absent from gravelly deposits, quartz grains are typically dominated by medium/slow components and/or contaminated by feldspars, and short transport distances and short residence times in riverbeds result in poor bleaching of luminescence signals. Luminescence dating of cobbles may overcome these difficulties, but few studies have applied this technique to fluvial terrace deposits. Here, we examine the utility of luminescence dating applied to three granodiorite cobbles from a late Pleistocene fluvial terrace deposit of the Ara River, Japan. We investigated variations of the infrared stimulated luminescence (IRSL) and post-IR IRSL signals with depth in each cobble. The IRSL and post-IR IRSL signals generally increase with depth, indicating that the cobbles were not completely bleached before deposition. Nonetheless, the IRSL ages of the cobble surfaces (19–17 ka) are consistent with the age of a tephra layer (16–15 ka) at the base of loess deposits overlying the terrace. In contrast, IRSL ages of sand-sized feldspar grains overestimate the depositional age because of incomplete bleaching, whereas silt-sized quartz grains greatly underestimate the depositional age, likely because of the thermal instability of the medium component. Our results demonstrate that luminescence dating of cobbles could provide a better understanding of fluvial systems in which luminescence dating of sand grains is difficult.  相似文献   

13.
The chronology of dust deposition and climate during the last interglacial is poorly known on the Chinese Loess Plateau. Here, 51 samples were taken from the ∼5 m S1 palaeosol (MIS5) at the desert marginal Jingbian site to develop what is currently the most detailed S1 chronology on the Plateau using instrumental dating techniques. We use the post-IR IRSL signal from sand-sized grains of K-rich feldspar. Signal resetting in the agricultural layer shows that it is possible to almost completely zero this signal in nature. First IR stimulation plateau measurements show that there is no clear dependence of De on first IR stimulation temperature between 50 and 260 °C suggesting negligible signal fading. Resultant ages are consistent with a last interglacial age (∼130 to ∼75 ka) and are also consistent within errors with continuous linear sedimentation rates. The average mass accumulation rate for S1 is ∼150 g m−2 a−1, considerably higher than at many other sites but within the overall range of Loess Plateau estimates. The remarkably stable sediment accumulation at the site contrasts with a more complex record of environmental and monsoonal change recorded in grain-size and magnetic susceptibility.  相似文献   

14.
Aeolian loess deposits contain abundant information about the evolution of the paleoenvironment.For example,paleoclimate changes recorded in Chinese loess area obtained significant achievement in the past few decades.Compared to Chinese loess,research on Indian loess is lacking.Currently,most studies focus on the Kashmir area located in the southern Himalayas,and studies on other areas are rare.However,field observations demonstrate that the sediments around the New Delhi-Agra-Jaipur Plain are similar to Chinese loess-paleosol sequences.For example,the boundary between two strata is transitional and without horizontal bedding.Moreover,obvious pedogenic horizons developed among sediment sequences,probably indicating unrecognised aeolian deposits in the Indo-Gangetic Plain(IGP).To confirm this,pilot samples were obtained from the IGP and detailed indoor measurements conducted.The results indicate that the distribution patterns of particle size and rare earth elements(REE) of the pilot samples are similar to Chinese loess.Furthermore,the scanning electronic microscopy(SEM) images of pilot samples show obvious conchoidal fractures,dash-shaped concavities,and abundant small pits that usually form through mechanical impact.These are typical characteristics of aeolian particles.In addition,environmental and rock magnetic measurements indicate that the dominant magnetic minerals in the pilot samples are magnetite and maghemite,and that they likely contain small amounts of hematite.Furthermore,conventional magnetic parameters are comparable with Chinese loess.Based on this,aeolian loess deposits are widely distributed in the IGP,which may have promoted the development of Indian farming and contributed towards the prosperity of ancient Indian civilisation.This study also provides a new and valuable record for the research on paleoclimate changes in the study area in the future.  相似文献   

15.
Infrared stimulated luminescence (IRSL) and post-IR IRSL are applied to small aliquots and single grains to determine the equivalent dose (De) of eleven alluvial and fluvial sediment samples collected in the Pativilca valley, Central Peru at ca. 10°S latitude. Small aliquot De distributions are rather symmetric and display over-dispersion values between 15 and 46%. Small aliquot g-values range between 4 and 8% per decade for the IRSL and 1 and 2% per decade for the post-IR IRSL signal. The single grain De distributions are highly over-dispersed with some of them skewed to higher doses, implying partial bleaching; this is especially true for the post-IR IRSL. Measurements of a modern analog reveal that residuals due to partial bleaching are present in both the IRSL as well as the post-IR IRSL signal. The g-values of individual grains exhibit a wide range with high individual uncertainties and might contribute significantly to the spread of the single grain De values, at least for the IRSL data. Electron Microprobe Analysis performed on single grains reveal that a varying K-content can be excluded as the origin of over-dispersion. Final ages for the different approaches are calculated using the Central Age Model and the Minimum Age Model (MAM). The samples are grouped into well-beached, potentially well-bleached and partially bleached according to the evaluation of the single grain distributions and the agreement of age estimates between methods. The application of the MAM to the single grain data resulted in consistent age estimates for both the fading corrected IRSL and the post-IR IRSL ages, and suggests that both approaches are suitable for dating these samples.  相似文献   

16.
The Cueva del Silo is part of the lower karst level of the Cueva Mayor-Cueva del Silo karst system (Sierra de Atapuerca, Burgos, Spain), whose evolution has preserved an impressive archeo-paleoanthropological sequence since the Early Pleistocene. Cueva del Silo is remarkable for the presence of fluvial deposits that record the entry of the Arlanzón River water in the cave system, providing a key sequence to investigate the fluvio-karstic relationships that give rise to this endokarst system. In order to provide a chronological framework to these fluvial deposits, six sediment samples were dated by Electron Spin Resonance and 16 samples by paleomagnetism, collected from two outcrops: Galería de las Arenas and Sala del Caos. Our results provide maximum mean age of around 1600 ka and a minimum age of 916 ± 136 ka for the deposits in Sala del Caos. The younger date from Sala del Caos might represent the last fluvial input from Arlanzón River in the lower karst level. In contrast, ESR ages estimates of 1268 ± 133 ka and 1262 ± 108 ka were obtained for Galería de las Arenas sequence, which could indicate re-sedimentation processes from the intermediate karst level where similar ages were published. The annual dose might be wrongly assessed due to the re-sedimentation processes inside the karst, hence, ESR ages for these facies should be treated with extreme caution.  相似文献   

17.
Cobbles can be used as an alternative to the conventionally employed sand-sized mineral luminescence dating. In piedmont environments, cobbles are much more abundant than sand-sized material. The IRSL50 signal has been widely used in previous studies due to its greater sensitivity to exposure events. However, it is well known that the low temperature IRSL signal is more prone to fade than elevated temperature post-IR IRSL signal. In this study, to test the reliability and applicability of cobble sub-surface elevated temperature IRSL luminescence dating, six light-color granite cobbles and two sand-sized samples from silty sand lens were collected from a high terrace of Manas River on the northern piedmont of Chinese Tian Shan. A modified multi-elevated-temperature post-infrared infrared stimulated luminescence (MET-post-IR IRSL) protocol was applied. The age-temperature (A-T) plateau of MET-post-IR IRSL measurement was combined with the conventional age-depth (A-D) plateau in luminescence-depth profile to evaluate the resetting and fading of MET-post-IR IRSL signals. Uncertainties of grain-sizes of K-feldspar within solidified slices were also explored by μ-XRF mapping of potassium content. The A-T plateau was identified between MET-post-IR IRSL170 and MET-post-IR IRSL225 signals of one cobble, which suggested completeness of bleaching before burial and negligible anomalous fading during burial. This cobble yielded MET-post-IR IRSL225 ages of 15.8 ± 2.6 ka and 19.0 ± 3.2 ka for top and bottom side, respectively. These MET-post-IR IRSL225 ages were consistent with independent coarse-grained quartz MAM OSL ages (15.7 ± 3.6 ka and 14.8 ± 2.6 ka) of two sand-sized samples. The MET-post-IR IRSL225 age of 16.0 ± 1.2 ka for the bottom side of another cobble was also consistent with the independent age, even without the A-T plateau. It was inferred to be caused by anomalous fading of MET-post-IR IRSL signals other than that stimulated at 225 °C by refering to the A-D plateau observed. Our results show that MET-post-IR IRSL measurement can be employed to determine the burial ages of cobbles. The A-T plateau, complemented with the A-D plateau, could be used to assess the reliability of burial ages of cobble luminescence dating from the view of bleaching and fading.  相似文献   

18.
A thick Middle and Late Pleistocene loess-palaeosol sequence is exposed at the Stari Slankamen section in the Vojvodina region situated in the south-eastern part of the Pannonian basin, Serbia. The profile exposes an about 45 m thick series of loess intercalated by at least eight pedocomplexes. Ten samples were dated by luminescence methods using a modified single aliquot regenerative dose (SAR) protocol for polymineral fine grains and for quartz extracts from the upper part of the Stari Slankamen loess sequence. The infrared stimulated luminescence (IRSL) and post-IR optically stimulated luminescence (OSL) signals from all polymineral samples showed anomalous fading, suggesting that the post-IR OSL signal is still dominated by feldspar OSL. The ages ranging from 4.6 to 193 ka were obtained after fading correction. These ages indicate that the loess unit V-L1L1, the weakly developed soil complex V-L1S1 and the loess unit V-L1L2 were deposited during marine isotope stage (MIS) 2, 3, and 4, respectively, and also indicate that the loess unit V-L2 is of the penultimate glacial age.  相似文献   

19.
The applicability of two different approaches in the luminescence dating of old (>70 ka) Chinese loess is investigated. Both SAR-OSL ages obtained on 63–90 μm quartz grains and SAR-IRSL ages obtained on 4–11 μm polymineral grains, for samples collected from two sites in the Chinese Loess Plateau (Luochuan and Dongchuan) are presented. The characteristics of the luminescence signals stimulated by blue and infrared light are investigated in terms of dose response and dose recovery, and as a function of age. Additionally, anomalous fading measurements from the 410 nm IRSL emission in polymineral fine-grains are reported. An average value of g2days amounting to 3% per decade was measured and seems to be independent of site location and age. For the samples from Luochuan, independent age control (pedostratigraphy and palaeomagnetism) is available. At both sites, the SAR-OSL ages are always lower than the SAR-IRSL ages after they have been corrected for anomalous fading. It seems that the quartz-based SAR-OSL ages are accurate for the younger ages, but that they underestimate the true age of deposition for loess that was deposited about 60–70 ka ago. The fading-corrected SAR-IRSL ages are in better agreement with the pedostratigraphic age control (75 and 130 ka) and allow dating beyond the quartz OSL range. Based on our results, we suggest that conventional SAR-OSL and SAR-IRSL protocols at these sites should be restricted to samples of ages not exceeding 40–50  and 100–120 ka, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号