首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Mitsuishi ultramafic rock body in Hokkaido, Japan, consists mainly of serpentinized peridotites that originated from a depleted mantle. This study aims to show new evidence of small-scale mélange fabric of serpentinite matrix in the rock body. Each serpentinite block in the serpentine matrix shows large and stable intensities of natural remanent magnetization (NRM). However, the directions of serpentinite blocks' NRM in the matrix are randomly scattered. A Curie temperature (Tc) of 580 °C corresponding to pure magnetite was also observed. Additionally, there is no evidence of heating over 580 °C after serpentinization. The blocks in the matrix must have obtained crystallization remanent magnetization (CRM) during serpentinization. The directions of the blocks' characteristic remanent magnetization (ChRM) are also scattered. It shows that serpentinite blocks were magnetized prior to uplifting. The results of the study indicate that the magnetic carrier of the serpentinite blocks in the matrix is mainly composed of magnetite, and it can keep original magnetization before uplifting. The results also imply that the scattering directions of NRM indicate the presence of small-scale mélange fabric of serpentinite matrix.  相似文献   

2.
马雪盈  刘庆  闫方超  何苗  张宏远 《岩石学报》2021,37(8):2562-2578
强亲铁元素与亲石元素具有不同的地球化学行为,因此能够从不同的角度为造山带中超镁铁岩的成因及演化提供重要信息。位于苏鲁造山带东北端的胶东海阳所超镁铁岩主要由橄榄岩和辉石岩组成,它们常以团块状赋存于花岗质片麻岩中。虽然前人对这些超镁铁岩已经开展大量岩石学研究,但关于其成因及构造属性仍存在较大争议。本文开展了海阳所超镁铁岩的全岩主微量元素、强亲铁元素及Re-Os同位素的分析工作,结果显示蛇纹石化橄榄岩具有较高的MgO和Fe2O3T含量,较低的Al2O3、TiO2和CaO含量,明显富集流体迁移元素(U、Pb),亏损高场强元素(Zr、Hf),强亲铁元素没有发生明显分异,但Ru显示正异常,表明海阳所蛇纹石化橄榄岩是经历了低-中等程度部分熔融及熔/流体交代作用影响的残余地幔橄榄岩。海阳所辉石岩的主量元素表现出明显的结晶分异特征,稀土元素较原始地幔富集,铂族元素(PGEs)含量较低且发生了明显的分异,表明辉石岩的地幔源区经历过高程度的部分熔融和硫化物的分离。海阳所蛇纹石化橄榄岩的Os同位素地球化学特征表现出大洋亲和性,与辉石岩不具有熔体-残留体的关系。由于该地区发育较深层次的韧性剪切带,蛇纹石化橄榄岩中的橄榄石与辉石表现出韧性变形的特征,同时有辉石岩侵入到橄榄岩的现象,表明该地区的蛇纹石化地幔橄榄岩与辉石岩既不同时,也不同源,因此,暗示了该套岩石组合可能形成于大洋核杂岩(OCC)与洋脊型蛇绿岩(MOR)堆晶岩交互发育环境。  相似文献   

3.
Room-temperature torsional-shear strengths of 1.27-cm-diameter × 0.25-cm-high disks of Nevada Test Site “Hardhat” granodiorite and a Mt. Burnette, Alaska, dunite were determined to about 90 kbar. Tests, for the most part, were run under linearly increasing pressure at constant rates of applied twist: about 3–30° at 5.73 · 10−4–10−2 degr./sec for granodiorite, and 18° at 5.73 · 10−3 and 10−2 degr./sec for dunite. Transitions are observed in the rate of shear-strength change for the granodiorite at about 15, 35 and 80 kbar. Minor and recoverable instabilities in strength occur over the pressure range 15–80 kbar. Beyond about 80 kbar, the shear strength increases sharply and is terminated with a strain-release of explosion-like violence. Strain rate showed some influence on strength and magnitude of energy-release at higher pressures. Residual microstructures showed that, below 15 kbar, intragranular extensional fracturing, intergranular sliding, and bulk consolidation mainly occur. Between 15 and 35 kbar, intragranular undulatory extinction, random and crystallographic ruptures, and initial intragranular slip are observed. The predominant mechanisms between 35 and 80 kbar are an increasing frequency of intragranular slip, and networks of short, irregular, intragranular ruptures. Bulk fracturing and faulting were not observed. Samples stressed to explosion-like failure showed extensive crystal fragmentation, and series of parallel bands. Alternate bands were birefringent and isotropic, respectively, and extended over a considerable part of the samples. Dunite showed a transition from diminishing to increasing shear strength at about 80 kbar, but no explosion-like release of strain energy to 95 kbar. Comparative data to 70 kbar also are given for a slightly serpentinized dunite, a granite, a gneiss, three extrusive porphyries, and a marble. X-ray diffraction powder patterns of all stressed samples revealed only a broadening of peaks and a reduction of intensities from higher levels of stress.  相似文献   

4.
The latest Cretaceous to early Palaeogene Orocopia Schist and related units are generally considered a low-angle subduction complex that underlies much of southern California and Arizona. A recently discovered exposure of Orocopia Schist at Cemetery Ridge west of Phoenix, Arizona, lies exceptionally far inland from the continental margin. Unexpectedly, this body of Orocopia Schist contains numerous blocks, as large as ~300 m, of variably serpentinized mantle peridotite. These are unique; elsewhere in the Orocopia and related schists, peridotite is rare and completely serpentinized. Peridotite and metaperidotite at Cemetery Ridge are of three principal types: (1) serpentinite and tremolite serpentinite, derived from dunite; (2) partially serpentinized harzburgite and olivine orthopyroxenite (collectively, harzburgite); and (3) granoblastic or schistose metasomatic rocks, derived from serpentinite, made largely of actinolite, calcic plagioclase, hercynite, and chlorite. In the serpentinite, paucity of relict olivine, relatively abundant magnetite (5%), and elevated Fe3+/Fe indicate advanced serpentinization. Harzburgite contains abundant orthopyroxene, only slightly serpentinized, and minor to moderate (1–15%) relict olivine. Mantle tectonite fabric is locally preserved. Several petrographic and geochemical characteristics of the peridotite at Cemetery Ridge are ambiguously similar to either abyssal or mantle-wedge (suprasubduction) peridotites and serpentinites. Least ambiguous are orthopyroxene compositions. Orthopyroxene is distinctively depleted in Al2O3, Cr2O3, and CaO, indicating mantle-wedge affinities. Initial interpretation of field and petrologic data suggests that the peridotite blocks in the Orocopia Schist subduction complex at Cemetery Ridge may be derived from the leading corner or edge of a mantle wedge, presumably in (pre-San Andreas fault) southwest California. However, derivation from a subducting plate is not precluded.  相似文献   

5.
To investigate the strength of frictional sliding and stability of mafic lower crust, we conducted experiments on oven-dried gabbro gouge of 1 mm thick sandwiched between country rock pieces (with gouge inclined 35° to the sample axis) at slip rates of 1.22 × 10− 3 mm/s and 1.22 × 10− 4 mm/s and elevated temperatures up to 615 °C. Special attention has been paid to whether transition from velocity weakening to velocity strengthening occurs due to the elevation of temperature.Two series of experiments were conducted with normal stresses of 200 MPa and 300 MPa, respectively. For both normal stresses, the friction strengths are comparable at least up to 510 °C, with no significant weakening effect of increasing temperature. Comparison of our results with Byerlee's rule on a strike slip fault with a specific temperature profile in the Zhangbei region of North China shows that the strength given by experiments are around that given by Byerlee's rule and a little greater in the high temperature range.At 200 MPa normal stress, the steady-state rate dependence a − b shows only positive values, probably still in the “run-in” process where velocity strengthening is a common feature. With a normal stress of 300 MPa, the values of steady-state rate dependence decreases systematically with increasing temperature, and stick-slip occurred at 615 °C. Considering the limited displacement, limited normal stress applied and the effect of normal stress for the temperatures above 420 °C, it is inferred here that velocity weakening may be the typical behaviour at higher normal stress for temperature above 420 °C and at least up to 615 °C, which covers most of the temperature range in the lower crust of geologically stable continental interior. For a dry mafic lower crust in cool continental interiors where frictional sliding prevails over plastic flow, unstable slip nucleation may occur to generate earthquakes.  相似文献   

6.
The 36Cl dating method is increasingly being used to determine the surface-exposure history of Quaternary landforms. Production rates for the 36Cl isotopic system, a critical component of the dating method, have now been refined using the well-constrained radiocarbon-based deglaciation history of Whidbey and Fidalgo Islands, Washington. The calculated total production rates due to calcium and potassium are 91±5 atoms 36Cl (g Ca)−1 yr−1 and are 228±18 atoms 36Cl (g K)−1 yr−1, respectively. The calculated ground-level secondary neutron production rate in air, Pf(0), inferred from thermal neutron absorption by 35Cl is 762±28 neutrons (g air)−1 yr−1 for samples with low water content (1–2 wt.%). Neutron absorption by serpentinized harzburgite samples of the same exposure age, having higher water content (8–12 wt.%), is 40% greater relative to that for dry samples. These data suggest that existing models do not adequately describe thermalization and capture of neutrons for hydrous rock samples. Calculated 36Cl ages of samples collected from the surfaces of a well-dated dacite flow (10,600–12,800 cal yr B.P.) and three disparate deglaciated localities are consistent with close limiting calibrated 14C ages, thereby supporting the validity of our 36Cl production rates integrated over the last 15,500 cal yr between latitudes of 46.5° and 51°N. Although our production rates are internally consistent and yield reasonable exposure ages for other localities, there nevertheless are significant differences between these production rates and those of other investigators.  相似文献   

7.
The significant discordance of the radiometric (Rb-Sr, Pb-U, K-Ar and fission track) ages from various orogenic cycles of the Dharwar, Satpura, Aravalli and Himalayan orogenic belts in India, coupled with their corresponding blocking temperatures for various radiometric clocks in whole rocks and minerals, has been used to evaluate the cooling and the uplift histories of the respective orogenic belts. The blocking temperatures used in the present study of various Rb-Sr (isotopic homogenization at 600°C, muscovite at 500°C and biotite at 300°C), Pb-U (monazite at 530°C), K-Ar (muscovite at 350°C and biotite at 300°C) and fission-track clock (zircon at 350°C, sphene at 300°C, garnet at 280°C, muscovite at 130°C, hornblende at 120°C and apatite at 100°C for the cooling rate l°C/Ma) have been found suitable to explain the differences in mineral ages by different radiometric techniques. The nature of the cooling curves drawn using the temperature versus age data for various orogenic cycles in India has also been discussed. The cooling and the uplift patterns determined for various orogenic cycles of India, suggest comparatively slow cooling (5.0–0.2°C/Ma) and uplift (180–2 m/Ma) for the Peninsular regions and rapid cooling (25.0–1.0° C/Ma) and fast uplift (800–30 m/Ma) during the Himalayan Orogenic Cycle (Upper Cretaceous—Tertiary) in the Extra-Peninsular region.  相似文献   

8.
Non-steady state deformation and annealing experiments on vein quartz are designed to simulate earthquake-driven episodic deformation in the middle crust. Three types of experiments were carried out using a modified Griggs-type solid medium deformation apparatus. All three start with high stress deformation at a temperature of 400 °C and a constant strain rate of 10− 4 s− 1 (type A), some are followed by annealing in the stability field of α-quartz for 14–15 h at zero nominal differential stress and temperatures of 800–1000 °C (type A + B), or by annealing for 15 h at 900 °C and at a residual stress (type A + C).The quartz samples reveal a very high strength > 2 GPa at a few percent of permanent strain. The microstructures after short-term high stress deformation (type A) record localized brittle and plastic deformation. Statisc annealing (type A + B) results in recrystallisation restricted to the highly damaged zones. The new grains aligned in strings and without crystallographic preferred orientation, indicate nucleation and growth. Annealing at non-hydrostatic conditions (type A + C) results in shear zones that also develop from deformation bands or cracks that formed during the preceding high stress deformation. In this case, however, the recrystallised zone is several grain diameters wide, the grains are elongate, and a marked crystallographic preferred orientation indicates flow by dislocation creep with dynamic recrystallisation. Quartz microstructures identical to those produced in type A + B experiments are observed in cores recovered from Long Valley Exploratory Well in the Quaternary Long Valley Caldera, California, with considerable seismic activity.The experiments demonstrate the behaviour of quartz at coseismic loading (type A) and subsequent static annealing (type A + B) or creep at decaying stress (type A + C) in the middle crust. The experimentally produced microfabrics allow to identify similar processes and conditions in exhumed rocks.  相似文献   

9.
Deformation mechanism maps for feldspar rocks   总被引:6,自引:0,他引:6  
Deformation mechanism maps for feldspar rocks were constructed based on recently published constitutive laws for dislocation and grain boundary diffusion creep of wet and dry plagioclase aggregates. The maps display constant temperature contours in stress-grain size space for strain rates ranging from 10−16 to 10−12 s−1.Two fields of dominance of grain boundary diffusion-controlled creep and dislocation creep are separated by a strongly grain size-sensitive transition zone. For wet rocks, diffusion-controlled creep dominates below a grain size of about 0.1–1 mm, depending on temperature, stress, strain rate and feldspar composition. Plagioclase aggregates containing up to 0.3 wt.% water as often found in natural feldspars are more than 2 orders of magnitude weaker than dry rocks. The strength of water-bearing feldspar rocks is moderately dependent on composition and water fugacity.For a grain size range of about 10–50 μm commonly observed in natural ultramylonites, the deformation maps predict that diffusion-controlled creep is dominant at greenschist to granulite facies conditions. Low viscosity estimates of 1018–1019 Pa·s from modeling postseismic stress relaxation and channel flow of the continental lower crust can only be reconciled with laboratory experiments assuming dislocation creep at high temperatures >900 °C or, at lower temperatures, diffusion creep of fine-grained rocks possibly localized in abundant high strain shear zones. For similar thermodynamic conditions and grain size, lower crustal rocks are predicted to be less than order of magnitude weaker than upper mantle rocks.  相似文献   

10.
Synseismic loading to very high stresses (>0.5 GPa) and subsequent creep during stress relaxation in the uppermost plastosphere at temperatures of ca. 300–350 °C, near the lower tip of an inferred once seismically active crustal scale fault, was proposed based on peculiar microstructures identified in rocks exposed over >100 km2 in the Sesia Zone, European Western Alps. Here we discuss the conspicuous and highly heterogeneous microstructural record of quartz in disseminated small-scale shear zones. Sub-basal deformation lamellae and arrays of elongate subgrains on the TEM-scale indicate an early stage of glide-controlled deformation at high stresses. Distributed brittle failure is indicated by healed microcracks. Very fine-grained recrystallised aggregates with a pronounced crystallographic preferred orientation reflect intense plastic flow by dislocation creep. Locally, a fine-grained foam microstructure indicates a final stage of static grain growth at low differential stress. For the previously inferred peak stresses of about 0.5 GPa and given temperatures, initial strain rates on the order of 10−10 s−1 are predicted by available flow laws for dislocation creep of quartz. We emphasise the importance of short-term non-steady state deformation in the uppermost plastosphere underlying seismically active upper crust. The related heterogeneous record of quartz is governed by the local stress history at constant temperature.  相似文献   

11.
It is now admitted that the high strength of the subcontinental uppermost mantle controls the first order strength of the lithosphere. An incipient narrow continental rift therefore requires an important weakening in the subcontinental mantle to promote lithosphere-scale strain localisation and subsequent continental break-up. Based on the classical rheological layering of the continental lithosphere, the origin of a lithospheric mantle shear/fault zone has been attributed to the existence of a brittle uppermost mantle. However, the lack of mantle earthquakes and the absence of field occurrences in the mantle fault zone led to the idea of a ductile-related weakening mechanism, instead of brittle-related, for the incipient mantle strain localisation. In order to provide evidence for this mechanism, we investigated the microstructures and lattice preferred orientations of mantle rocks in a kilometre-scale ductile strain gradient in the Ronda Peridotites (Betics cordillera, Spain). Two main features were shown: 1) grain size reduction by dynamic recrystallisation is found to be the only relevant weakening mechanism responsible for strain localisation and 2), with increasing strain, grain size reduction is coeval with both the scattering of orthopyroxene neoblasts and the decrease of the olivine fabric strength (LPO). These features allow us to propose that grain boundary sliding (GBS) partly accommodates dynamic recrystallisation and subsequent grain size reduction.A new GBS-related experimental deformation mechanism, called dry-GBS creep, has been shown to accommodate grain size reduction during dynamic recrystallisation and to induce significant weakening at low temperatures (T < 800 °C). The present microstructural study demonstrates the occurrence of the grain size sensitive dry-GBS creep in natural continental peridotites and allows us to propose a new rheological model for the subcontinental mantle. During dynamic recrystallisation, the accommodation of grain size reduction by three competing deformation mechanisms, i.e., dislocation, diffusion and dry-GBS creeps, involves a grain size reduction controlled by the sole dislocation creep at high temperatures (> 800 °C), whereas dislocation creep and dry-GBS creep, are the accommodating mechanisms at low temperatures (< 800 °C). Consequently, weakening is very limited if the grain size reduction occurs at temperatures higher than 800 °C, whereas a large weakening is expected in lower temperatures. This large weakening related to GBS creep would occur at depths lower than 60 km and therefore provides an explanation for ductile strain localisation in the uppermost continental mantle, thus providing an alternative to the brittle mantle.  相似文献   

12.
Two hundred observations of frictional behavior of seven low-porosity silicate rocks were made at temperatures to 700°C and pressures from 2.5 to 6 kbar. For all rocks except one, peridotite, stick-slip occurred at low temperature and gave way to stable sliding at some high temperature, different for each rock. These differences could be related to the presence or absence of minerals such as amphibole, mica, or serpentine. Up to some temperature, depending on rock type, the friction stress was relatively unaffected by temperature. The shear stress decreased at higher temperature, and in some cases such decrease was related to the coincidence of fracture and friction strength. While somewhat dependent on rock type, the friction stress for the seven rocks studied was about the same, within 10–15%. Up to 265°C, water had little effect on the frictional behavior of faulted granite at 3 kbar effective pressure. The frictional stresses measured in the laboratory were significantly higher than estimated for natural faults. This difference could be accounted for by high pore pressure or weak alteration materials in the natural fault zone.  相似文献   

13.
ABSTRACT

Sedimentary serpentinite and related siliciclastic-matrix mélanges in the latest Jurassic to Lower Cretaceous lower Great Valley Group (GVG) forearc basin strata of the California Coast Ranges reach thicknesses of over 1 km and include high-pressure (HP) metamorphic blocks. These units crop out over an area at least 300 km long by 50 km wide. The serpentinite also contains locally abundant blocks of antigorite mylonite. Antigorite mylonite and HP metamorphic blocks were exhumed from depth prior to deposition in the unmetamorphosed GVG, but the antigorite mylonite may be mistaken for metamorphosed serpentinite matrix in localities with limited exposure. These olistostrome horizons can be distinguished from intact slabs of serpentinized peridotite associated with the Coast Range Ophiolite (CRO) or serpentinite mélanges of the Franciscan subduction complex (FC) on the basis of internal sedimentary textures (absent in CRO), mixing/interbedding with unmetamorphosed siliciclastic matrix and blocks (differs from CRO and FC), and preserved basal sedimentary contacts over volcanic rocks of the CRO or shale, sandstone, and conglomerate of the GVG (differs from CRO and FC). Even in the relatively well-characterized Palaeo trench–forearc region of the California Coast Ranges the GVG deposits are difficult to distinguish from similar units in the FC and CRO. In typical orogenic belts that exhibit greater post-subduction disruption, distinguishing forearc basin olistostrome deposits, subduction complex, and opholite mantle sections is much more difficult. Forearc basin olistostromal deposits have probably been misidentified as one of the other trench–forearc lithologic associations. Such errors may lead to erroneous interpretations of the nature of large-scale material and fluid pathways in trench–forearc systems, as well as misinterpretations of tectonic processes associated with HP metamorphism and exhumation of the resultant rocks.  相似文献   

14.
FT-IR spectra of sillimanite samples from high grade regionally metamorphosed rocks belonging to the granulite terrain (amphibolite to pyroxene granulite facies) deciphers prominent OH features. Heating experiments indicate growth of prominent band at 3161cm−1. Heating above 1000°C all OH features disappear in intensity into broad features with slight shift of bands towards lower energies. Complete dehydration requires temperatures above 1000°C. Coexistence of boron and OH features are also observed in all sillimanite samples. The high temperature behaviour of sillimanite from the granulite terrain discerns that the hydrous species in sillimanite were incorporated much below 700°C, however, secondary hydration due to pegmatite activity, retrograde metamorphism and migmatisation is not ruled out. Thus a near anhydrous condition were probably not achieved during the granulite facies metamorphism in Eastern ghat granulite terrain.  相似文献   

15.
The Ballantrae ophiolite in southern Scotland includes a NEE–SWW-trending serpentinite mélange that contains blocks of mafic blueschist and high-pressure, granulite facies, metapyroxenite (Sm–Nd metamorphic age: 576 ± 32 and 505 ± 11 Ma). Tectonic blocks of mafic schist are less than 3 × 3 m in size, and have greenschist, blueschist or epidote amphibolite facies assemblages corresponding to the high-pressure intermediate-type metamorphic facies series.Adjacent rocks of the serpentinite mélange are hydrothermally-altered MORB-like ophiolitic basalt (prehnite–pumpellyite facies), dolerite (actinolite–oligoclase sub-facies) and gabbro (amphibolite facies), all with assemblages that are diagnostic of the low-pressure metamorphic facies series.The difference in metamorphic facies series and parageneses of minerals between the high-pressure mafic blocks and the adjacent, low-pressure ophiolitic meta-basic rocks suggests that the former were exhumed from > 25 km depth within a cold subducted slab, and were juxtaposed with the latter, the bottom of a MORB-like ophiolite in the hanging wall of a trench. An ENE–WSW-trending, 501 ± 12 Ma volcanic arc belt extends for 3 km south of the serpentinite mélange. We suggest that ridge subduction associated with a slab window created arc-related gabbro (483 ± 4 Ma) at Byne Hill and within-plate gabbro (487 ± 8 Ma) at Millenderdale. Final continental collision created the duplex structure of the Ballantrae complex that includes the HP blocks and serpentinite mélange. These relations define diapiric exhumation in the Caledonian orogen of SW Scotland.  相似文献   

16.
The western Pacific region has been refrigerated by the subducting cold oceanic plates since 450 Ma. However, the region is also characterized by the presence of many oceanic microplates less than 1300 km across, as well as active magmatism; the Philippine Sea plate is representative. We have compiled and examined petrochemical characters of drilled basalts of DSDP from the Philippine Sea plate, and conclude that the source mantle for oceanic basalts is rich in water ca. 0.2 wt.%, and is 50–60 °C lower than that for MORB. The extensive melting is due to the high water content in the source mantle.It is well known that some marginal basins apparently have greater depths than the major oceans. We calculated the age–depth correlation based on a model of transient half-space cooling at given parameters of temperatures of mantle and surface, 1280 and 0 °C, and the thermal diffusivity, 1 mm2 s− 1. The calculation shows the correlation of age-residual depth from a mid-oceanic ridge is 367 for the Philippine Sea, consistent with the bathymetric data. Moreover, the mid-oceanic ridge may be relatively deep because this region is underlain by the cooler mantle.Addition of water to the mantle peridotite lowers the solidus temperature and viscosity. Melting experiments of hydrous peridotite show that addition of 0.2 wt.% H2O content lowers the solidus temperature by 150 °C. As a result, the mantle under the region may practically correspond to a ca. 90 °C hotter mantle than normal MORB-source mantle in terms of magmatism and rheology. Numerical simulation for a hotter mantle suggests that many small plates should be formed because of extensive heat release by active magmatism, consistent with many microplates in this region. The presence of many oceanic microplates may be analogous to Archean plate tectonics, characterized by a hotter mantle.  相似文献   

17.
The Cobre–Babilonia vein system formed during a single major hydrothermal stage and is part of the Taxco district in Guerrero, southern Mexico. Homogenization and ice melting temperatures range from 160 to 290 °C and from − 11.6 to − 0.5 °C, respectively. We determined an approximate thermal gradient of 17 to 20 °C per 100 m using fluid inclusions. A thermal peak marked by the 290 °C isotherm is interpreted as a major feeder channel to the veins. The highest content of Zn + Pb in ore coincides with the 220 and 240 °C isotherms. Salinities of mineralizing fluids range from 0.8 to 15.6 wt.% NaCl equiv, and are distributed in two populations that can be related with barren or ore-bearing vein sections, with 0.8 to 6 wt.% NaCl equiv and 7 to 15.6 wt.% NaCl equiv, respectively. δ13C and δ18O water values from calcite from the Cobre–Babilonia vein system and the Esperanza Vieja and Guadalupe mantos range − 5.4‰ to − 10.4‰ and 9.9‰ to 13.4‰, respectively. δ34S values range from 0‰ to 3.2‰ and − 0.7‰ to − 4.3‰ in sphalerite, − 4‰ to 0.9‰ in pyrite, and − 1.4‰ to − 5.5‰ in galena. Both fluid inclusion and stable isotope data are compatible with magmatic and meteoric sources for mineralizing fluids. Also, sulfur isotope compositions suggest both magmatic and sedimentary sources for sulfur.  相似文献   

18.
Glide systems of hematite single crystals in deformation experiments   总被引:1,自引:0,他引:1  
The critical resolved shear stresses (CRSSs) of hematite crystals were determined in compression tests for r-twinning, c-twinning and {a}<m>-slip in the temperature range 25 °C to 400 °C, at 400 MPa confining pressure, and a strain rate of 10− 5 s− 1 by Hennig-Michaeli, Ch., Siemes, H., 1982. Experimental deformation of hematile crstals betwen 25 °C and 400 °C at 400 MPa confining pressure. In: Schreyer, W. (Ed.) High Pressure Research in Geoscience, Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, p. 133–150. In the present contribution newly performed experiments on hematite single crystals at temperatures up to 800 °C at strain rates of 10− 5 s− 1 and 300 MPa confining pressure extends the knowledge about the CRSS of twin and slip modes. Optical observations, neutron diffraction goniometry, SEM forescatter electron images and electron backscatter diffraction are applied in order to identify the glide modes. Both twinning systems and {a}<m>-slip were confirmed by these methods. Besides the known glide systems the existence of the (c)<a>-slip system could be stated. Mechanical data establish that the CRSS of r-twinning decreases from 140 MPa at 25 °C to  5 MPa at 800 °C and for {a}<m>-slip from > 560 MPa at 25 °C to  40 MPa at 700 °C. At room temperature the CRSS for c-twinning is around 90 MPa and at 600 °C  60 MPa. The data indicate that the CRSSs above 200 °C seem to be between the values for r-twinning and {a}<m>-slip. For (c)<a>-slip only the CRSS at 600 °C could be evaluated to  60 MPa. Exact values are difficult to determine because other glide systems are always simultaneously activated.  相似文献   

19.
About 30 samples representing major lithologies of Sulu ultrahigh-pressure (UHP) metamorphic rocks were collected from surface exposures and exploration wells, and compressional (Vp) and shear wave (Vs) velocities and their directional dependence (anisotropy) were determined over a range of constant confining pressures up to 600 MPa and temperatures ranging from 20 to 600 °C. Samples range in composition from acidic to ultramafic. P- and S-wave velocities measured at 600 MPa vary from 5.08 to 8.64 km/s and 2.34 to 4.93 km/s, respectively. Densities are in the range from 2.60 to 3.68 g/cm3. To make a direct tie between seismic measurements (refraction and reflection) and subsurface lithologies, the experimental velocity data (corresponding to shallow depths) were used to calculate velocity profiles for the different lithologies and profiles of reflection coefficients at possible lithologic interfaces across the projected 5000-m Chinese Continental Scientific Drilling Program (CCSD) crustal segment. Comparison of calculated in situ velocities with respective intrinsic velocities suggests that the in situ velocities at shallow depths are lowered by an increased abundance of open microcracks. The strongly reflective zone beneath the Donghai drill site can be explained by the impedance contrasts between the different lithologies. Contacts between eclogite/peridotite and felsic rocks (gt-gneiss, granitic gneiss), in particular, may give rise to strong seismic reflections. In addition, shear-induced (lattice preferred orientation (LPO)-related) seismic anisotropy can increase reflectivity. For the explanation of the high velocity bodies (>6.4 km/s) around 1000 m and below 3200-m depth, large proportions of eclogite/peridotite (about 40 and 30 vol.%, respectively) are needed.  相似文献   

20.
ABSTRACT

The La Tinta mélange is a small but singular ultramafic mélange sheet that crops out in eastern Cuba. It is composed of dolerite-derived amphibolite blocks embedded in a serpentinite matrix. The amphibolite blocks have mid-ocean ridge basalt (MORB)-like composition showing little if any imprint of subduction zone component, similar to most forearc and MOR basalts worldwide. Relict Cr-spinel and olivine mineral chemistry of the serpentinized ultramafic matrix suggest a forearc position for these rocks. These characteristics, together with a hornblende 40Ar/39Ar age of 123.2 ± 2.2 Ma from one of the amphibolite blocks, suggest that the protoliths of the amphibolite blocks correspond to forearc basalt (FAB)-related rocks that formed during the earlier stage of subduction initiation of the Early Cretaceous Caribbean arc. We propose that the La Tinta amphibolites correspond to fragments of sills and dikes of hypoabyssal rocks formed in the earlier stages of a subduction initiation scenario in the Pacific realm (ca. 136 Ma). The forearc dolerite-derived amphibolites formed by partial melting of upwelling fertile asthenosphere at the beginning of subduction of the Proto-Caribbean (Atlantic) slab, with no interaction with slab-derived fluids/melts. This magmatic episode probably correlates with Early Cretaceous basic rocks described in Hispaniola (Gaspar Hernandez serpentinized peridotite-tectonite). The dikes and sills cooled and metamorphosed due to hydration at low pressure (ca. 3.8 kbar) and medium to high temperature (up to 720ºC) and reached ca. 500ºC at ca. 123 Ma. At this cooling stage, serpentinite formed after hydration of the ultramafic upper mantle. This process might have been favoured by faulting during extension of the forearc, indicating an early stage of dike and sill fragmentation and serpentinite mélanges formation; however, full development of the mélange likely took place during tectonic emplacement (obduction) onto the thrust belt of eastern Cuba during the latest Cretaceous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号