首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
登陆热带气旋长久维持与迅速消亡的大尺度环流特征   总被引:61,自引:9,他引:61  
李英  陈联寿  王继志 《气象学报》2004,62(2):167-179
采用动态合成分析方法 ,对登陆后长久维持热带气旋 (LTC)和迅速消亡热带气旋 (STC)的大尺度环流特征进行合成分析和动力诊断。研究表明 :(1)LTC登陆后 ,在一个长波槽前有向偏北移动靠近中纬度斜压锋区的趋势 ,而STC登陆后 ,无长波槽靠近 ,并远离中纬度斜压锋区 ;(2 )LTC登陆后 ,仍与一支低空急流水汽输送通道连结 ,而STC登陆后很快与这支水汽通道分离 ;(3)LTC登陆后逐渐变性 ,获取斜压能量 ,其环境风垂直切变增强 ,Δζ2 0 0 -850负值增大 ,而STC登陆后没有这样的特征 ;(4 )LTC登陆后 ,其高层与中纬度急流靠近 ,增强了其向东北方向的高空流出气流 ,而STC不存在这样一支流出气流 ;(5 )LTC登陆后 ,摩擦使其能量耗损 ,但从中高层环境中获得了能量 ,而STC登陆后 ,有同样的能耗却无明显的环境能量补给。因此 ,当一个热带气旋登陆后 ,从其移动趋势、与水汽通道的连结、与斜压锋区的关系和高空流出气流等特征 ,可以初步判断其是长久维持还是迅速衰减。  相似文献   

2.
中国近海热带气旋强度突变的热力特征   总被引:2,自引:0,他引:2  
应用2000 2006年的NCEP/NCAR再分析资料,通过合成分析和对比分析,利用全型垂直涡度倾向方程,研究中国近海热带气旋强度突变的热力特征.结果表明:(1)突然增强热带气旋在其中心附近对流层高低层均存在视热源Q1的极大值中心,低层Q1在突然增强过程中越来越强;而突然减弱热带气旋在中心附近对流层中层存在Q1的极大值中心,而且在突然减弱过程中Q1越来越弱.视水汽汇Q2的极值中心在热带气旋强度变化过程中位于对流层中层,在突然增强过程中有所增大,而在突然减弱过程中有所减小.(2)Q1的峰值高度在热带气旋突然增强和突然减弱过程中分别位于对流层高层和中层.Q2的峰值高度在热带气旋突然增强过程中不断抬升,而在突然减弱过程中不断降低,这说明积云对流的垂直输送在热带气旋突然增强过程中起到一定作用.(3)热带气旋中心附近对流层中上层非绝热加热随着高度增加、对流层低层垂直非均匀加热的增大有利于热带气旋的突然增强,反之导致热带气旋突然减弱.  相似文献   

3.
采用动态合成分析方法,对1970-2006年登陆后北上类TC(tropicalcyclone)和西行类TC各7个样本做动态合成分析和诊断,结果表明:(1)北上类TC在背景场长波槽前北移靠近中纬度斜压锋区,通过吸附运动使TC低压并入西风槽,而西行类TC背景场没有长波槽,离中纬度斜压锋区较远;(2)北上类TC登陆时存在西南低空急流水汽输送带,当其强度减弱后,TC东南侧存在东南暖湿气流作为补充,而西行类TC减弱后逐渐与之分离,且不存在东南暖湿气流作为补充;(3)北上类TC高层辐散区与高空急流边界靠近,因此增强了其向东北方向的辐散,低层由于高层动量下传,加强了低空西风,从而使TC低压环流维持,而西行类TC离高空急流边界较远;(4)北上类TC从中纬度斜压锋区获取斜压能量,其环流垂直切变增强,相对涡度差负值增大,在高空TC中心散度由大变小后又由小变大的过程中,TC发生了变性,而西行类TC没有环境能量补给,逐渐填塞消亡。因此,当一个TC登陆后,其预报移动方向、水汽输送状况、与斜压锋区的关系以及高空辐散气流等特征,可以作为初步判定登陆TC将减弱消亡还是将变性加强的可能原因。  相似文献   

4.
In this paper, we mainly summarize and review the progresses in recent climatological studies (by CMSR, IAP/CAS and some associated domestic and international institutions) on the interannual and interdecadal variabilities of monsoon troughs and their impacts on tropical cyclones and typhoons (TCs) geneses over the western North Pacific Ocean. The climatological characteristics of monsoon troughs and four types of circulation patterns favorable to TCs genesis over the western North Pacific Ocean in summer and autumn are given in this paper. It is also shown in this paper that the monsoon trough over the western North Pacific Ocean has obvious interannual and interdecadal variabilities. Especially, it is revealed in this paper that the interannual and interdecadal variabilities of the monsoon trough over the western North Pacific Ocean influence the TCs genesis not only through the impact on distributions of the vorticity in the lower troposphere and the divergence in the upper troposphere, the water vapor in the mid- and lower troposphere and the vertical shear of wind fields between the upper and lower troposphere over the western North Pacific Ocean, but also through the dynamical effects of the transition between convectively coupled tropical waves and providing disturbance energy. Besides, some climatological problems associated with TCs activity over the western North Pacific Ocean that need to be studied further are also pointed out in this paper.  相似文献   

5.
Previous numerical studies have focused on the combined effect of momentum and scalar eddy diffusivity on the intensity and structure of tropical cyclones. The separate impact of eddy diffusivity estimated by planetary boundary layer(PBL) parameterization on the tropical cyclones has not yet been systematically examined. We have examined the impacts of eddy diffusion of moisture on idealized tropical cyclones using the Advanced Research Weather Research and Forecasting model with the Yonsei University PBL scheme. Our results show nonlinear effects of moisture eddy diffusivity on the simulation of idealized tropical cyclones. Increasing the eddy diffusion of moisture increases the moisture content of the PBL, with three different effects on tropical cyclones:(1) an decrease in the depth of the PBL;(2) an increase in convection in the inner rain band and eyewall; and(3) drying of the lowest region of the PBL and then increasing the surface latent heat flux. These three processes have different effects on the intensity and structure of the tropical cyclone through various physical mechanisms. The increased surface latent heat flux is mainly responsible for the decrease in pressure. Results show that moisture eddy diffusivity has clear effects on the pressure in tropical cyclones, but contributes little to the intensity of wind. This largely influences the wind–pressure relationship, which is crucial in tropical cyclones simulation. These results improve our understanding of moisture eddy diffusivity in the PBL and its influence on tropical cyclones, and provides guidance for interpreting the variation of moisture in the PBL for tropical cyclone simulations.  相似文献   

6.
In this study, three tropical cyclones (TCs) that passed through the Taiwan Strait were analyzed; our results show that precipitation is not directly related to the intensity of TCs. From the perspective of water budget, moisture flux convergence was dominant and contributed ~70% of the moisture for TC precipitation over the ocean and almost all over the land, especially inside the TC circulation. Their spatial distributions were also similar. Evaporation contributed ~30% of the moisture for precipitation over the ocean but changed little with the time. Moisture flux convergence can be divided into two parts: wind convergence and moisture advection. Moisture flux convergence was mostly due to wind convergence, which was dominant in the southwestern quadrants of the TCs. Moisture advection was located in the northern area, and becomes relatively important when the TCs approached the land. The moisture flux convergence and its two parts varied during TC movement, with strengthening and contraction of moisture convergence present near landfall. The vertical structure of the three TC cases all indicated that the moisture convergence was mainly confined to the lower atmosphere under 800 hPa and a weak divergence region was present in the middle troposphere around 550 hPa.  相似文献   

7.
In this paper,the observational data from Marine and Meteorological Observation Platform(MMOP)at Bohe,Maoming and buoys located in Shanwei and Maoming are used to study the characteristics of air-sea temperature and specific humidity difference and the relationship between wind and wave with the tropical cyclones over the South China Sea(SCS).The heat and momentum fluxes from eddy covariance measurement(EC)are compared with these fluxes calculated by the COARE 3.0 algorithm for Typhoon Koppu.The results show that at the developing and weakening stages of Koppu,both these differences between the sea surface and the near-surface atmosphere from the MMOP are negative,and data from the buoys also indicate that the differences are negative between the sea surface and near-surface atmosphere on the right rear portion of tropical cyclones(TCs)Molave and Chanthu.However,the differences are positive on the left front portion of Molave and Chanthu.These positive differences suggest that the heat flux is transferred from the ocean to the atmosphere,thus intensifying and maintaining the two TCs.The negative differences indicate that the ocean removes heat fluxes from the atmosphere,thus weakening the TCs.The wind-wave curves of TCs Molave and Chanthu show that significant wave height increases linearly with 2-min wind speed at 10-m height when the wind speed is less than 25 m/s,but when the wind speed is greater than 25 m/s,the significant wave height increases slightly with the wind speed.By comparing the observed sensible heat,latent heat,and friction velocity from EC with these variables from COARE 3.0 algorithm,a great bias between the observed and calculated sensible heat and latent heat fluxes is revealed,and the observed friction velocity is found to be almost the same as the calculated friction velocity.  相似文献   

8.
2017年夏季(6—8月)大气环流特征为:北半球极涡仍呈单极型位于北极上空,但强度较春季明显减弱。6月,我国近海北部有弱冷空气活动。7—8月,中高纬度槽脊活动进一步减弱,副热带高压西伸北抬,热带气旋活动频繁。我国近海海域主要有15次8级以上大风过程,其中热带气旋大风过程有8次,入海温带气旋过程有5次,强对流导致雷暴大风过程2次。有11次范围较大的2 m以上的大浪过程。仅出现1次范围较大的海雾过程。西北太平洋和南海共生成15个台风,其他各大洋共有热带气旋18个,分别为:大西洋7个、东太平洋11个。海表温度整体呈上升趋势。  相似文献   

9.
春夏季节黄河气旋经渤海发展时影响因子对比研究   总被引:3,自引:2,他引:1  
苗春生  宋萍  王坚红  牛丹 《气象》2015,41(9):1068-1078
利用2008—2012年台站资料、NCEP(National Centers for Environ mental Prediction) FNL(Final Operational Global Analysis)1°×1°再分析资料,将近5年经过渤海持续发展的黄河气旋分为夏季型和春季型,采用动态合成法对两类气旋的结构和黄渤海海域的热力、动力、水汽等影响因子进行对比分析。结果表明:经过渤海时,夏季型气旋主要伴随大范围的强降水,而春季型气旋主要形成强风区。春夏季黄河气旋均为冷暖交汇的斜压性结构,但夏季型有偏暖中心,斜压性弱于春季型。春季高空急流位于气旋南部,其左侧正涡度区维持气旋的深厚,且气旋后部高空动量下传与锋面二级环流及平坦海面配合有利于气旋低层大风迅速增强。夏季高空急流位于气旋北部,高空强辐散区和低层辐合区配置加强了气旋中的上升运动,有利于气旋强降水和凝结潜热释放。气旋发展阶段,扰动位能向动能的转化,支持气旋动能的维持与加强。湿位涡计算显示,夏季气旋中有深厚的干空气下沉,干湿梯度强,尺度大,有利于气旋的强降水,春季气旋中干湿梯度小,分布零散,对应降水强度和范围均小。黄渤海为气旋主要水汽输送通道,夏季海温相对春季高,水汽充沛,春季水汽辐合量仅为夏季三分之一。海洋下垫面作用对春季气旋影响大,在夏季作用不明显。夏季海面潜热加热影响为主,春季感热加热影响明显。  相似文献   

10.
基于IBTrACS提供的热带气旋最佳路径数据集,在统计分析历史热带气旋的发生年频次、发生位置、路径移动及强度变化等的基础上,建立了西北太平洋热带气旋轨迹合成模型。模型包括生成模型、移动模型、消亡模型及强度模型4个部分,并从地理轨迹密度、年登陆率、登陆风速分布三个方面,对模拟的气旋路径与历史气旋路径进行比较,以验证模型的准确性和可靠性。结果表明,构建的西北太平洋热带气旋全路径统计模拟模型稳健可靠,可进一步应用于研究区热带气旋的定量精细化的风险评估,能提高气旋风险灾害评估的可信度。  相似文献   

11.
In this study, we investigate the influence of tropical cyclones (TCs) on large-scale circulation and ocean heat transport in the South China Sea (SCS) by using an ocean general circulation model at a 1/8° resolution during 2000–2008. The model uses a data assimilation system to assimilate observations in order to improve the representation of SCS circulation. The results reveal an unexpected deep SCS circulation anomaly induced by TCs, which suggests that effects of TC can penetrate deeper into the ocean. This deep effect may result from the near inertial oscillations excited by TCs. The inertial oscillations can propagate downward to the oceanic interior. The analyses confirm that TCs have two effects on ocean heat transport of the SCS. Firstly, the wind stress curl induced by TCs affects the structure of SCS circulation, and then changes heat transport. Secondly, TCs pump surface heat downward to the thermocline, increasing the heat injection from the atmosphere to the ocean. Two effects together amplify the outflow of the surface heat southward away the SCS through the Mindoro and Karimata Straits. The TC-induced heat transports through the Mindoro, Balabac and Karimata Straits account for 20 % of the total heat transport through three straits. An implication of this study is that ocean models need to simulate the TC effect on heat transport in order to correctly evaluate the role of the SCS through flow in regulating upper ocean circulation and climate in the Indonesian maritime continent and its adjacent regions.  相似文献   

12.
利用热带气旋最佳路径资料和气象台站观测资料,以及风雨因子危险性模型,分别计算我国沿海主要省份热带气旋风因子危险性、雨因子危险性及总危险性,并对其年代际变化特征进行分析。结果表明:沿海主要省份热带气旋致灾因子危险性随着年代逐渐增大,风因子危险性呈逐年代减弱,而降水因子危险性则逐年代增加;与1970年代相比,热带气旋在2000年代更易带来强降水,但极端风速出现的概率减小,热带气旋活动频数偏少,热带气旋的平均强度略偏强且持续时间偏长;与1970年代相比,2000年代的热带气旋气旋性环流更强烈,其附近低层西南风异常伴随有异常的来自西南向的水汽输送,并产生西南-东北走向的异常水汽辐合带,在异常强烈的垂直运动作用下,更多的水汽将带入高层,有利于降水产生。   相似文献   

13.
This study analyzes landfall locations of tropical cyclones(TCs)over the western North Pacific during 1979–2018.Results demonstrate that the landfall locations of TCs over this region have shifted northward during the last four decades,primarily due to the shift of landfalling TC tracks,with the decreasing/increasing proportion of westward/northward TC tracks.In particular,the northward shift of the landfalling TCs was not related to their formation locations,which have not markedly changed,whereas"no-landed"TCs have significantly shifted northward.TC movement was significantly and positively correlated to the zonal component of the steering flow,while the correlation between TC movement and the meridional component of the steering flow was relatively unobvious.The westward steering flow in the tropical central Pacific that occurred around the formation and early development of the westward TCs was significantly weakened,which was unfavorable for their westward movement,thereby,causing the higher proportions of northward moving tracks.This weakened westward flow was related to the northward shift of the subtropical high ridge,which was caused by significant weakening of the southern part of the subtropical high.The vertical wind shear,sea surface temperature,and convective available potential energy also showed that the northern region of the western North Pacific became more favorable for TC development,whereas the upper divergence,low-layer relative vorticity,and accumulated water vapor content were not obviously related to the northward shift of TCs.  相似文献   

14.
When tropical cyclones (hereafter referred as TCs) are over the ocean, surface friction plays a dual role in the development of TCs. From the viewpoint of water vapor supply, frictional convergence and Ekman pumping provide a source of moisture for organized cumulus convection and is propitious to the spin-up of TCs. On the other hand, surface friction leads to a dissipation of kinetic energy that impedes the intensification of TCs. Which role is dominant in the developing stage of TCs is a controversial issue. In the present work, the influence of surface friction on the growth of TCs is re-examined in detail by conducting two sets of numerical experiments initialized with different cyclonic disturbances. Results indicate that, because of the inherent complexities of TCs, the impact of surface friction on the evolution of TCs can not be simply boiled down to being positive or negative. In the case that a TC starts from a low-level vortex with a warm core, surface friction and the resultant vertical motion makes an important contribution to the convection in the early developing stage of the TC by accelerating the build-up of convective available potential energy (CAPE) and ensuring moisture supply and the lifting of air parcels. This effect is so prominent that it dominates the friction-induced dissipation and makes surface friction a facilitative factor in the spin-up of the TC. However, for a TC formed from a mesoscale convective vortex (MCV) spawned in a long-lasting mesoscale convective system (MCS), the initial fields, and especially the low-level humidity and cold core, enable the prerequisites of convection (i.e., conditional instability, moisture, and lifting), to be easily achieved even without the help of boundary-layer pumping induced by surface friction. Accordingly, the reliance of the development of TCs on surface friction is not as heavy as that derived from a low-level vortex. The positive effect of surface friction on the development of TCs realized through facilitating favorable conditions for convection is nearly cancelled out by the friction-induced dissipation. However, as SST is enhanced in the latter case, the situation may be changed, and different development speeds may emerge between model TCs with and without surface friction considered. In short, owing to the fact that TC development is a complicated process affected by many factors such as initial perturbations, SST, etc., the importance of surface friction to the intensification of TCs may vary enormously from case to case.  相似文献   

15.
西北太平洋大气准双周振荡对热带气旋活动的影响   总被引:3,自引:0,他引:3  
王磊  陈光华  黄荣辉 《大气科学》2009,33(3):416-424
利用JRA逐日风场资料、 NOAA/NCEP的逐日OLR场资料以及美国联合台风预报中心的热带气旋 (TC) 数据, 通过对西北太平洋 (WNP) 上空10~20天大气准双周振荡 (QBWO) 不同位相的划分, 深入分析了QBWO对WNP区域生成TC的调制作用。研究结果表明: 在西北太平洋准双周尺度上, 对流与纬向风表现出沿热带地区向西偏北传播的特性。不同位相合成的季风槽位置和强度也发生相应的改变, 由此可见, QBWO是WNP上空季风槽季内变化的重要影响因子。当处于位相1、 4时, WNP生成TC的概率较低, 且登陆我国TC的数量也较少; 当处于位相2、 3时, WNP发生TC的概率较高, 特别是处于位相3时, 不仅TC发生概率最高, 而且登陆我国的TC数量也最多。沿热带地区西传的天气尺度波动 (周期10天以下) 在WNP通过季风槽的纬向风辐合作用, 易于转变为波数较大、 波长较短的热带低压 (TD) 型扰动, 这种扰动在季风槽区通过能量的转换有利于发展成为TC。  相似文献   

16.
沿海风工程设计风速中泊松-耿贝尔法的应用   总被引:2,自引:0,他引:2       下载免费PDF全文
每年西北太平洋热带气旋(TC)发生的次数、移动路径和强度都是随机的,我国东南沿海各地每年受TC影响的次数便构成了某种离散型分布,而TC影响下的最大风速则可以构成某种连续型分布。该文采用上海台风研究所提供的1961—2006年TC中心风速和TC影响期间各台站大风资料,利用泊松-耿贝尔联合极值风速计算方法,计算了沿海各气象站TC影响大风的多年一遇风工程设计最大风速。结果表明:当观测资料样本序列较短,特别是像TC这样随机性很强的天气事件,泊松-耿贝尔联合极值算法更具优势;我国沿海地区有53.9%的台站50年一遇最大风速在25 m/s以下,最大风速大于42.5 m/s以上的台站分布于浙江的大陈岛、嵊山、石浦,福建的北茭和台山,广东的遮浪、上川岛和海南的西沙岛,在这些地区进行风电开发风险较大,应引起足够重视。  相似文献   

17.
高空急流对黄渤海登陆热带气旋三维运动结构的影响   总被引:1,自引:1,他引:1  
袁子鹏  王元  陈艳秋  孙欣 《气象》2006,32(5):3-9
为了研究高空急流对热带气旋水平和垂直运动结构的影响,选择1980年代以来的10个黄渤海登陆热带气旋作为研究对象,按其穿行黄渤海时的路径趋势分为北行和东北行两类,并应用ECMWF的客观再分析资料进行合成分析,发现:热带气旋沿高空非纬向急流的右侧运动,并呈现出明显向高空急流中心入口区的右侧移动的趋势。当气旋接近急流时,与高空急流产生相互作用,使气旋低层水平运动场产生附加的风速中心,并出现对流偏心增长现象。进一步分析表明,高空急流中心入口区右侧的辐散中心对应的垂直上升运动,引起热带气旋内中低层的辐合增强,进而改变了水平风场的分布。  相似文献   

18.
王磊  陈光华  黄荣辉 《大气科学》2009,33(5):916-922
利用日本的JRA-25 (Japanese 25-year Reanalysis) 逐日再分析风场资料以及美国联合台风预报中心的热带气旋(TC)数据, 以厦门为分界点, 分别对影响登陆我国厦门以北和厦门以南TC的西北太平洋副热带高压和季风槽作了相关的环流分析。通过定义副热带高压的西伸脊点和南北脊线指数, 以及季风槽的倾斜和强度指数, 定量研究它们与登陆我国不同区域TC的关系。研究结果表明, 所定义的指数对西北太平洋地区TC的生成位置、能量及登陆我国的路径有很好的指示作用。西北太平洋副高位置东西以及南北位置的偏移对登陆我国厦门以北TC的路径有很大影响; 西北太平洋季风槽线斜率对登陆我国厦门以南TC的路径有一定影响, 且倾斜程度与西北太平洋地区TC平均生成地的南北向偏移有密切的关系, 并且, 西北太平洋季风槽线的平均涡度对于西北太平洋地区TC生成时的能量也有很大影响。  相似文献   

19.
Environmental conditions determining the timing of the lifetime maximum intensities of tropical cyclones (TCs) are investigated for the TCs over the western North Pacific during the period 2008-2017. The results show that the land controls the timings of the lifetime maximum intensities in 42% of the TCs over this basin, indicating that accurate track forecasts are beneficial for TC intensity forecasts. With respect to other TCs that are not affected by the land (i.e., Ocean-TCs), the timings of their lifetime maximum intensities are determined by multiple oceanic factors. In particular, interactions between TCs and cold-core eddies occur in a large proportion (nearly 60%) of Ocean-TCs at or shortly after the times of their lifetime maximum intensities, especially in strong TCs (categories 4 and 5), suggesting that a consideration of the above interactions is necessary for improving TC intensity forecasting skills. In addition, unfavorable oceanic heat content conditions become common as the latitude increases over 25°N, influencing half of the Ocean-TCs. Strong vertical wind shear contributes detrimentally to the atmospheric environment in 17% of the TCs over this basin, especially in moderate and weak TCs. In contrast, neither the maximum potential intensity nor the humidity in the middle level of the atmosphere plays dominant roles when TCs turn from their peak intensities to weakening.  相似文献   

20.
Global climate models predict that the increasing Amazonian-deforestation rates cause rising tempera- tures (increases of 1.8℃ to 8℃ under different conditions) and Amazonian drying over the 21st century. Observations in the 20th century also show that over the warmer continent and the nearby western South At- lantic Ocean, the lower-layer equatorial westerly wind (LLEWW) strengthens with the initiation of tropical cyclones (TCs). The warmer-continent-related LLEWW can result from the Coriolis-force-induced deflection of the cross-equatorial flow (similar to the well-known heat-island effect on sea breeze) driven by the enhanced land-sea contrast between the warmer urbanized continents and relatively cold oceans. This study focuses on the processes relating the warmer-continent-related LLEWW to the TC initiation and demonstrates that the LLEWW embedded in trade easterlies can directly initiate TCs by creating cyclonic wind shears and forming the intertropical convergence zone. In addition to this direct effect, the LLEWW combined with the rotating Earth can boost additional updraft vapor over the high sea-surface temperature region (factor 1), facilitating a surface-to-midtroposphere moist layer (factor 2) and convective instability (factor 3) followed by diabatic processes. According to previous studies, the diabatic heating in a finite equatorial region also activates TCs (factor 4) on each side of the Equator with weak vertical shear (factor 5). Factors 1-5 are favorable conditions for the initiation of severe TCs. Statistical analyses show that the earliest signal of sustained LLEWW not only leads the earliest signal of sustained tropical depression by >3 days but also explains a higher percentage of total variance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号