首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 840 毫秒
1.
A simple method for evaluating the seismic stability of embankments and slopes has been developed by modifying the generalized procedure of slices proposed by Janbu. A pseudostatic analysis is carried out. The seismic force is represented through its horizontal and vertical components, acting on the centre of gravity of the soil mass. Defining a nominal state of plastic equilibrium, the safety factor of the slope for a given value of the seismic force is obtained through an iterative procedure that converges very rapidly. Moreover, by assuming a seismic force of intensity varying from zero value (static condition) up to a limit value, depending on the seismicity of the area, one can obtain the “influence lines” of the horizontal and vertical acceleration. Finally, a directional parametric analysis has been carried out considering a seismic force of a given intensity, acting in a direction varying from 0° to 360° with respect to the vertical axis through the gravity centre of the slope. By means of this procedure it is possible to locate a “critical zone” for the slope, i.e., that one within which any seismic force can cause the failure of the slope. Moreover, it appears that it is incorrect to consider only the horizontal acceleration in the stability analyses of slopes under earthquake loading conditions, as the most dangerous direction is usually different from the horizontal one.  相似文献   

2.
Numerous ge ological and geophysical investigations within the past decades have shown that the Rhinegraben is the most pronounced segment of an extended continental rift system in Europe. The structure of the upper and lower crust is significantly different from the structure of the adjacent “normal” continental crust.

Two crustal cross-sections across the central and southern part of the Rhinegraben have been constructed based on a new evaluation of seismic refraction and reflection measurements. The most striking features of the structure derived are the existence of a well-developed velocity reversal in the upper crust and of a characteristic cushion-like layer with a compressional velocity of 7.6–7.7 km/sec in the lower crust above a normal mantle with 8.2 km/sec. Immediately below the sialic low-velocity zone in the middle part of the crust, an intermediate layer with lamellar structure and of presumably basic composition could be mapped.

It is interesting to note that the asymmetry of the sedimentary fill in the central Rhinegraben seems to extend down deeper into the upper crust as indicated by the focal depths of earthquakes. The top of the rift “cushion” shows a marked relief which has no obvious relation to the crustal structure above it or the visible rift at the surface.  相似文献   


3.
Modeling of seismic hazard for Turkey using the recent neotectonic data   总被引:1,自引:0,他引:1  
Kamil Kayabali   《Engineering Geology》2002,63(3-4):221-232
Recent developments in the neotectonic framework of Turkey introduced new tectonic elements necessitating the reconstruction of Turkey's seismic hazard map. In this regard, 14 seismic source zones were delineated. Maximum earthquake magnitudes for each seismic zones were determined using the fault rupture length approximation. Regression coefficients of the earthquake magnitude–frequency relationships for the seismic zones were compiled mostly from earlier works. Along with these data, a strong ground motion attenuation relationship developed by Joyner and Boore [Joyner, W.B., Boore, D.M., 1988. Measurement, characterization, and prediction of strong ground motion. Earthquake Engineering and Soil Dynamics, 2. Recent Advances Ground Motion Evaluation, pp. 43–102.] was utilized to model the seismic hazard for Turkey using the probabilistic approach. For the modeling, the “earthquake location uncertainty” concept was employed. A grid of 5106 points with 0.2° intervals was constituted for the area encompassed by the 25–46°E longitudes and 35–43°N latitudes. For the return periods of 100 and 475 years, the peak horizontal ground acceleration (pga) in bedrock was computed for each grid point. Isoacceleration maps for the return periods of 100 and 475 years were constructed by contouring the pga values at each node.  相似文献   

4.
GPS results from 25 stations in Macedonia measured in 1996 and 2000 show that Macedonia moves SSE relative to Eurasia essentially as a single crustal piece along with parts of westernmost Bulgaria. Geological studies show active N–S normal faults and two NNW-striking right-lateral faults in western Macedonia, and NW-trending left-lateral faults SE Macedonia, with a region in central Macedonia essentially devoid of active faults. Distribution of seismic activity supports the geological studies. However, the GPS results cannot discriminate the active faulting, except perhaps in the northern part of Macedonia in the Skopje and adjacent areas, where active ~NS extension occurs. Slip-rates on the strike-slip faults must be low, in the range of 0–2 mm/year. There is a progressive increase in GPS velocities southward in northern Greece toward the North Anatolian fault zone, across which the velocities increase and change direction dramatically.  相似文献   

5.
W.J. Mao  C. Ebblin  M. Zadro 《Tectonophysics》1989,170(3-4):231-242
Tidal strains of the earth were extracted from three horizontal strainmeter records (1979–1986) in the Friuli seismic area by the “filter method”. The areal strain factor, ignoring the tidal loading effects, shows that its time variation is significant: their amplitudes in 1986 are about 50% of those in 1979.

The modifications of mechanical properties, estimated in terms of the local shear and bulk modulus variations, were obtained considering the envelope of the tidal strain signals. The seismic wave velocity determined by the simultaneous inversion of the arrival time data of the local seismometric network displayed comparable changes.

A major change both in the seismic velocities and the elastic parameters started in March 1982, which was about 11 months before an earthquake of magnitude 4.1, the largest event from 1979 to 1986, which occurred within the seismic network on Feb. 10, 1983.  相似文献   


6.
A.G. Rodnikov 《Tectonophysics》1973,20(1-4):105-114
Results of seismic investigations in the transition zone from the Asian Continent to the Pacific Ocean are reported in detail. At the bottom of the sedimentary sequence presumably Cretaceous rocks are found in depressions of the sea floor. The “granitic” layer in the transition zone consists of igneous-sedimentary rocks in different stages of granitization. The “basaltic” layer is developed irregularly in thickness and seismic velocities; its origin is obscure. Apparently the earth's crust in the transition zone is still under formation.  相似文献   

7.
Recently completed investigations of the crustal structure on ancient shields of the East European platform carried out with the method of “deep seismic sounding” (D.S.S.) have drastically changed the previous notions about the deep structure of shields in general. In the upper crust, in the so-called “granitic” layer, complex anticlinal and synclinal structures as well as numerous faults, thrusts, etc., have been identified. A flattening of steeply dipping seismic interfaces with depth is observed. The crustal thickness in different tectonic zones ranges from 30 to 60 km. It is shown that the M-structure correlates with the sub-surface tectonics in the Ukrainian Shield.  相似文献   

8.
Extrusion temperatures for basaltic lavas in the Permo-Carboniferous Oslo Rift, estimated from whole rock major element compositions, are estimated to be 1270 to 1340°C. This means that magmatism during the Oslo rifting event was not associated with a large temperature anomaly in the underlying upper mantle. Partial melting is believed to be caused by a combination of crustal extension, a weak temperature anomaly in the underlying asthenosphere, and/or high fluid-contents in the mantle source region (“wet-spot”). Petrological and gcochemical data imply that large masses of cumulate rocks were deposited in the deep crust during the Oslo rifting event. The densities and seismic velocities (Vp) of these cumulate rocks are estimated to be 2.8–3.5 g/cm3 and 7.5–8.0 km/s. A rough estimate suggests that cumulus minerals alone account for a net transfer of at least 2 × 1017 kg of magmatic material from the mantle into the deep crust. In addition comes material representing

1. (a) cumulate minerals corresponding to eroded magmatic surface and subsurface rocks

2. (b) intercumulus material, and

3. (c) magmas crystallized to completion in the deep crust.

Estimates based exclusively on geophysical data tend to underestimate the true transfer of mass into the lower crust as gabbroic cumulate rocks, and melts crystallizing to completion in the lower crust have densities and seismic velocities similar to those of lower crustal wallrocks.  相似文献   


9.
P.L. Willmore 《Tectonophysics》1973,20(1-4):341-357
Progress in the application of seismic refraction methods to the determination of crustal structure for the British Isles and surrounding sea areas, is reviewed for the period which follows the publications of 1965. The work has been strongly oriented towards the application of “Time Term” interpretation to land-based observations of explosions in the English Channel, to the south of Ireland, in the Irish Sea, in the North Sea, and off the west coast of Scotland.

All of the surveys have included determinations of velocities for Pn and Pg, with some indication of an increase in Pn-velocity with range. In part of the area, indications of lower-crust velocities ranging from 6.9 to 7.3 km/sec have been found.  相似文献   


10.
I. Kawasaki  Y. Asai  Y. Tamura 《Tectonophysics》2001,330(3-4):267-283
Along the Japan trench where some Mw8 class interplate earthquakes occurred in the past century such as the 1896 Sanriku tsunami earthquake (M6.8, Mt8.6, 12×1020 N m) and the 1968 Tokachi-oki earthquake (Mw8.2, 28×1020 N m), the Pacific plate is subducting under northeast Japan at a rate of around 8 cm/year. The seismic coupling coefficient in this region has been estimated to be 20–40%. In the past decade, three ultra-slow earthquakes have occurred in the Sanriku-oki region (39°N–42°N): the 1989 Sanriku-oki (Mw7.4), the 1992 Sanriku-oki (Mw6.9), and the 1994 Sanriku-oki (Mw7.7) earthquakes. Integrating their interplate moments released both seismically and aseismically, we have the following conclusions. (1) The sum of the seismic moments of the three ultra-slow earthquakes was (4.8–6.6)×1020 N m, which was 20–35% of the accumulated moment (18.6–23.0)×1020 N m, in the region (39°N–40.6°N, 142°E–144°E) for the 21–26 years since the 1968 Mw8.2 Tokachi-oki earthquake. This is consistent with the previous estimates of the seismic coupling coefficient of 20–40%. On the other hand, the sum of the interplate moments including aseismic faulting is (11–16)×1020 N m, leading to a “seismo-geodetic coupling coefficient” of 50–85%, which is an extension of the seismic coupling coefficient to include slow events. (2) The time constants showed a large range from 1 min (102 s) for the 1968 Tokachi-oki earthquake to 10–20 min (103 s) for the 1896 Sanriku tsunami earthquake, to one day (105 s) for the 1992 Sanriku-oki ultra-slow earthquake, to on the order of one year (107 s) for the 1994 Sanriku-oki ultra-slow earthquakes. (3) Based on the space–time distribution, three “gaps of moment release,” (40.6°N–42°N, 142°E–144°E) 39°N–40°N, 142°E–143°E) and (39°N–40°N, 142°E–144°E), are identified, instead of the gaps of seismicity.  相似文献   

11.
Data from the nation-wide GPS continuous tracking network that has been operated by the Geographical Survey Institute of Japan since April 1996 were used to study crustal deformation in the Japanese Islands. We first extracted site coordinate from daily SINEX files for the period from April 1, 1996 to February 24, 2001. Since raw time series of station coordinates include coseismic and postseismic displacements as well as seasonal variation, we model each time series as a combination of linear and trigonometric functions and jumps for episodic events. Estimated velocities were converted into a kinematic reference frame [Heki, K., 1996. Horizontal and vertical crustal movements from three-dimensional very long baseline interferometry kinematic reference frame: implication for reversal timescale revision. J. Geophys. Res., 101: 3187–3198.] to discuss the crustal deformation relative to the stable interior of the Eurasian plate. A Least-Squares Prediction technique has been used to segregate the signal and noise in horizontal as well as vertical velocities. Estimated horizontal signals (horizontal displacement rates) were then differentiated in space to calculate principal components of strain. Dilatations, maximum shear strains, and principal axes of strain clearly portray tectonic environments of the Japanese Islands. On the other hand, the interseismic vertical deformation field of the Japanese islands is derived for the same GPS data interval. The GPS vertical velocities are combined with 31 year tide gage records to estimate absolute vertical velocity. The results of vertical deformation show that (1) the existence of clear uplift of about 6 mm/yr in Shikoku and Kii Peninsula, whereas pattern of subsidence is observed in the coast of Kyushu district. This might reflect strong coupling between the Philippine Sea plate and overriding plate at the Nankai Trough and weak coupling off Kyushu, (2) no clear vertical deformation pattern exists along the Pacific coast of northeastern Japan. This might be due to the long distance between the plate boundary (Japan trench) and overriding plate where GPS sites are located, (3) significant uplift is observed in the southwestern part of Hokkaido and in northeastern Tohoku along the Japan Sea coast. This is possibly due to the viscoelastic rebound of the 1983 Japan Sea (Mw 7.7) and the 1993 Hokkaido–Nansei–Oki (Mw 7.8) earthquakes and/or associated with distributed compression of incipient subduction there. We then estimate the elastic deformation of the Japanese Islands caused by interseismic loading of the Pacific and Philippine Sea subduction plates. The elastic models account for most of the observed horizontal velocity field if the subduction movement of the Philippine Sea Plate is 100% locked and if that of the Pacific Plate is 70% locked. However, the best fit for vertical velocity ranges from 80% to 100% coupling factor in southwestern Japan and only 50% in northeastern Japan. Since horizontal data does not permit the separation of rigid plate motion and interplate coupling because horizontal velocities include both contributions, we used the vertical velocities to discriminate between them. So, we can say there is strong interplate coupling (80%–100%) over the Nankaido subduction zone, whereas it is about 50% only over the Kurile–Japan trench.  相似文献   

12.
The large-scale POLONAISE'97 seismic experiment investigated the velocity structure of the lithosphere in the Trans-European Suture Zone (TESZ) region between the Precambrian East European Craton (EEC) and Palaeozoic Platform (PP). In the area of the Polish Basin, the P-wave velocity is very low (Vp <6.1 km/s) down to depths of 15–20 km, and the consolidated basement (Vp5.7–5.8 km/s) is 5–12 km deep. The thickness of the crust is 30 km beneath the Palaeozoic Platform, 40–45 km beneath the TESZ, and 40–50 km beneath the EEC. The compressional wave velocity of the sub-Moho mantle is >8.25 km/s in the Palaeozoic Platform and 8.1 km/s in the Precambrian Platform. Good quality record sections were obtained to the longest offsets of about 600 km from the shot points, with clear first arrivals and later phases of waves reflected/refracted in the lower lithosphere. Two-dimensional interpretation of the reversed system of travel times constrains a series of reflectors in the depth range of 50–90 km. A seismic reflector appears as a general feature at around 10 km depth below Moho in the area, independent of the actual depth to the Moho and sub-Moho seismic velocity. “Ringing reflections” are explained by relatively small-scale heterogeneities beneath the depth interval from 90 to 110 km. Qualitative interpretation of the observed wave field shows a differentiation of the reflectivity in the lower lithosphere. The seismic reflectivity of the uppermost mantle is stronger beneath the Palaeozoic Platform and TESZ than the East European Platform. The deepest interpreted seismic reflector with zone of high reflectivity may mark a change in upper mantle structure from an upper zone characterised by seismic scatterers of small vertical dimension to a lower zone with vertically larger seismic scatterers, possible caused by inclusions of partial melt.  相似文献   

13.
Following the impounding of the Shivaji Sager Lake in 1962, tremors became prevalent in the Koyna region, considered previously to be aseismic. During ensuing years the tremor frequency appears to have been dependent on the rate of increase of water level, maximum water level reached, and the period for which high levels were retained. This culminated in a burst of seismic activity from September 1967 to January 1968 following the record water levels in the reservoir and included the earthquake of September 13, 1967 with magnitude 5.5 and the damaging December 10, 1967 earthquake of magnitude 6.0. During the next five years water levels were kept low and no significant earthquakes occurred subsequent to the October 29, 1968 earthquake of magnitude 5.

The reservoir was filled to maximum capacity during September 1973 and this was followed by a conspicuous increase in seismic activity which included an earthquake of magnitude 5.1 on October 17, 1973. However, seismic activity during 1973 was much less severe than that of 1967. This relative decrease in seismicity may indicate that (a) the “threshhold level” for relatively large magnitude earthquakes had increased; (b) a major portion of the accumulated strains had been released; and/or (c) the importance of the longer period of high loading in 1967. Similar observations have been made at other seismically active reservoir sites.  相似文献   


14.
Investigating the period 1983–1994 for western Greece, a possible correlation between the selectivity characteristics of the SES (seismic electric signals of the VAN method) and earthquake parameters has been reported by Uyeda et al. [Uyeda, S., Al-Damegh, K.S., Dologlou, E., Nagao, T., 1999. Some relationship between VAN seismic electric signals (SES) and earthquake parameters, Tectonophysics, 304, 41–55.]. They found that the earthquake source mechanism changed from largely strike-slip type to thrust type at the end of 1987, and this coincided with a shift in the SES sensitive site from Pirgos (PIR) to Ioannina (IOA) VAN station. Here, we report the results for the period January 1, 2002–July 25, 2004, during which the SES sensitive site of PIR became again active, after a 10-year period of “quiescence”. This activation was followed by strike slip earthquakes (on August 14, 2003 and March 17, 2004 with magnitude 6.4 and 6.5, respectively) in the Hellenic arc, which provides additional evidence on the correlation reported by Uyeda et al. The SES activities recorded at PIR have been discriminated from “artificial” noise by employing the natural time-domain analysis introduced recently.  相似文献   

15.
Mineral inclusions recovered from 100 diamonds from the A154 South kimberlite (Diavik Diamond Mines, Central Slave Craton, Canada) indicate largely peridotitic diamond sources (83%), with a minor (12%) eclogitic component. Inclusions of ferropericlase (4%) and diamond in diamond (1%) represent “undetermined” parageneses.

Compared to inclusions in diamonds from the Kaapvaal Craton, overall higher CaO contents (2.6 to 6.0 wt.%) of harzburgitic garnets and lower Mg-numbers (90.6 to 93.6) of olivines indicate diamond formation in a chemically less depleted environment. Peridotitic diamonds at A154 South formed in an exceptionally Zn-rich environment, with olivine inclusions containing more than twice the value (of  52 ppm) established for normal mantle olivine. Harzburgitic garnet inclusions generally have sinusoidal rare earth element (REEN) patterns, enriched in LREE and depleted in HREE. A single analyzed lherzolitic garnet is re-enriched in middle to heavy REE resulting in a “normal” REEN pattern. Two of the harzburgitic garnets have “transitional” REEN patterns, broadly similar to that of the lherzolitic garnet. Eclogitic garnet inclusions have normal REEN patterns similar to eclogitic garnets worldwide but at lower REE concentrations.

Carbon isotopic values (δ13C) range from − 10.5‰ to + 0.7‰, with 94% of diamonds falling between − 6.3‰ and − 4.0‰. Nitrogen concentrations range from below detection (< 10 ppm) to 3800 ppm and aggregation states cover the entire spectrum from poorly aggregated (Type IaA) to fully aggregated (Type IaB). Diamonds without evidence of previous plastic deformation (which may have accelerated nitrogen aggregation) typically have < 25% of their nitrogen in the fully aggregated B-centres. Assuming diamond formation beneath the Central Slave to have occurred in the Archean [Westerlund, K.J., Shirey, S.B., Richardson, S.H., Gurney, J.J., Harris, J.W., 2003b. Re–Os systematics of diamond inclusion sulfides from the Panda kimberlite, Slave craton. VIIIth International Kimberlite Conference, Victoria, Canada, Extended Abstracts, 5p.], such low aggregation states indicate mantle residence at fairly low temperatures (< 1100 °C). Geothermometry based on non-touching inclusion pairs, however, indicates diamond formation at temperatures around 1200 °C. To reconcile inclusion and nitrogen based temperature estimates, cooling by about 100–200 °C shortly after diamond formation is required.  相似文献   


16.
On the basis of seismic refraction investigations and gravimetric data we have modelled the crustal structure of the southern Central Andes (21–23°S). A pronounced variation in crustal parameters is seen in N-S- and W-E-crossing seismic profiles over the entire Andean orogene, characterized by a crustal thickness of up to 70 km under the magmatic arc and backarc, strongly reduced seismic velocities and a Bouguer minimum of −450 mGal. Anomalously low velocities of 5.9–6.0 km/s in the deeper crust of the Western Cordillera and Altiplano regions lead to an over-compensation of the Bouguer minima resulting in values of crustal densities higher than estimates based purely on seismic velocity measurements. In an attempt to reconcile these differences, the behavior of crystalline rocks based on published laboratory data was studied under varying pressure and temperature conditions up to the range of partial melting. If the temperature is increased above the melting point, a rapid decrease in seismic velocity is accompanied by a slow decrease in density. For the Central Andes, a good fit of the observed and calculated Bouguer anomalies is obtained if the densities of the rocks from the low-velocity zone (LVZ) beneath the Western Cordillera and the Altiplano are varied. Model calculations lead to a velocity-density relation for partial molten rocks that allows the melt proportions of rocks to be estimated. Model calculations indicate that 15–20 vol.% of basaltic to andesitic melt at depth is necessary to explain the LVZ and Bouguer anomaly beneath the arc and parts of the backarc. High heat flow values (100 mW/m2) support the idea that large areas of the deeper Andean crust are strongly weakened by the presence of partially molten rocks, resulting in reduced seismic velocities, with the Western Cordillera, the active volcanic arc of the Andean mountain range, acting as a ductile buffer between the two more rigid crustal blocks of the forearc and backarc regions.  相似文献   

17.
The Gradenbach mass movement (GMM) is an example of DGSD (deep-seated gravitational slope deformation) in crystalline rocks of the Eastern Alps (12.85°E, 47.00°N). The main body of the GMM covers an area of 1.7 km2 and its volume is about 120?×?106 m3. A reconstruction of the deformation history yields a mean displacement of?~?22 m from 1962 to 2011. In 1965/66, 1975, 2001, and 2009 high sliding velocities, exceeding several meters per year, interrupt the quasi-stationary periods of slow movement (≤0.3 m/year). Since 1999 the displacement of the main body of the GMM has been observed by GPS. Time series of extensometer readings, precipitation, snow cover water equivalent, water discharge, and hydrostatic water level observed in boreholes were re-processed and are presented in this paper. Continuous recording of seismic activity by a seismic monitoring network at the GMM began in the summer of 2006. Deformation has been monitored since 2007 by an embedded strain rosette based on fiber optics technology and a local conventional geodetic deformation network. The velocity of the GMM could be modeled to a large extent by a quantitative relation to hydro-meteorological data. During the phase of high sliding velocity in spring 2009, the seismic activity in the area increased significantly. Several types of seismic events were identified with some of them preceding the acceleration of the main body by about 6 weeks. The potential inherent in the Gradenbach Observatory data to supply early warning and hazard estimation is discussed.  相似文献   

18.
In this study, high resolution surface measurements of diverse slope movements are compared to environmental factors such as ground surface temperature (GST) and snow cover, in order to reveal and compare velocity fluctuations caused by changing environmental conditions. The data cover 2 years (2011–2013) of Global Positioning System (GPS) and GST measurements at 18 locations on various slope movement types within an alpine study site in permafrost (Mattertal, Switzerland). Velocities have been estimated based on accurate daily GPS solutions. The mean annual velocities (MAV) observed at all GPS stations varied between 0.006 and 6.3 ma?1. MAV were higher in the period 2013 compared to 2012 at all stations. The acceleration in 2013 was accompanied by a longer duration of the snow cover and zero curtain and slightly lower GST. The amplitude (0–600 %) and the timing of the intra-annual variability were generally similar in both periods. At most stations, an annual cycle in the movement signal was observed, with a phase lag of 1–4 months to GST. Maximum velocity typically occurred in late summer and autumn, and minimum velocity in late winter and beginning of spring. The onset of acceleration always started in spring during the snowmelt period. At two stations located on steep rock glacier tongues, overprinted on the annual cycle, short-term peaks of velocity increase, occurred during the snowmelt period, indicating a strong influence of meltwater.  相似文献   

19.
The compilation of statistical data for 269 seismic crustal sections (total length: 81,000 km) which are available in the U.S.S.R. has shown that the preliminary conclusions drawn on relations between the elevation of the surface relief and Bouguer anomalies on one hand and crustal thickness (depth to the M-discontinuity) on the other hand are not fulfilled for the continental part of the U.S.S.R. The level of isostatic compensation has been found to be much deeper than the base of the earth's crust due to density inhomogeneities of the crust and upper mantle down to a depth of 150 km.

The results of seismic investigations have revealed a great diversity of relations between shallow geological and deep crustal structures:

Changes in the relief of the M-discontinuity have been found within the ancient platforms which are conformable with the Precambrian structures and which can exceed 20 km. In the North Caspian syneclise, extended areas devoid of the “granitic” layer have been discovered for the first time in continents. The crust was found to be thicker in the syneclises and anteclises of the Turanian EpiHercynian plate. In the West Siberian platforms these relations are reversed to a great extent.

Substantial differences in crustal structure and thickness were found in the crust of the Palaeo zoides and Mesozoides. Regions of substantial neotectonic activity in the Tien-Shan Palaeozoides do not greatly differ in crustal thickness if compared to the Kazakhstan Palaeozoides which were little active in Cenozoic time. The same is true for the South Siberian Palaeozoides.

The Alpides of the southern areas in the U.S.S.R. display a sharply differing surface relief and a strongly varying crustal structure. Mountains with roots (Greater Caucasus, Crimea) and without roots (Kopet-Dagh, Lesser Caucasus) were found there.

The Cenozoides of the Far East are characterized by a rugged topography of the M-discontinuity, a thinner crust and a less-pronounced “granitic” layer. A relatively small thickness of the crust was discovered in the Baikal rift zone.

The effective thickness of the magnetized domains of the crust as well as other calculations show that the temperature at the depth of the M-discontinuity (i.e., at depths of 40–50 km) is not higher than 300–400° C for most parts of the U.S.S.R.  相似文献   


20.
M. C. Tate  D. B. Clarke 《Lithos》1997,39(3-4):179-194
Late Devonian (385−370 Ma) granitoid intrusions in the Meguma Zone of southwestern Nova Scotia represent two geographically separate magmatic suites that show subtly different lithological, geochemical and isotopic characteristics. “Central intrusions” crop out with satellite mafic-intermediate intrusions, range in composition from granodiorite to leucogranite, contain two micas, have exclusively peraluminous compositions (molar A/CNK 1.1-1.3), variably high values for FeOT (0.4–6.0 wt.%), Ba (5–980 ppm), Y (6–50 ppm), Pb (2–50 ppm), Ga (11–53 ppm), 87Sr/86Sri (0.7081-0.7130), δ18O (9.8–13.0) and δ34S (4.5–11.9), in conjunction with low values for εNd (−1 to −6.5). In contrast, “peripheral plutons” crop out with synplutonic mafic-intermediate intrusions, range in composition from tonalite to leucogranite, may contain minor hornblende, have dominantly peraluminous compositions (molar A/CNK 0.9-1.3), variably high concentrations of TiO2 (0.1-1.1 wt.%), Al2O3 (12.0–19.7 wt.%), CaO (0.2–4.9 wt.%), Sr (7–720 ppm), Cr (3–111 ppm) and V (1–136 ppm), higher εNd values (−2.0 to 3.2), and lower values for 87Sr/86Sri (0.7040-0.7079), δ188O (7.6–10.5) and δ34S (0–4.6). Such regional diversity is explained by inferring that upper crustal contamination dominated the central granitoid compositions and mixing with mantle-derived mafic-intermediate magmas dominated peripheral granitoid compositions. However, additional contributions from heterogeneous lower crust cannot be excluded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号