首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Bavanat Cu–Zn–Ag Besshi-type volcanogenic massive sulfide (VMS) deposit occurs within the Surian volcano-sedimentary complex in the Sanandaj–Sirjan zone (SSZ) of southern Iran. The Surian complex is comprised of pelite, sandstone, calcareous shale, basalt, gabbro sills, and thin-bedded limestone. Mineralization occurs as stratiform sheet-like and tabular orebodies hosted mainly by greenschist metamorphosed feldspathic and quartz feldspathic sandstone, basalt, and pelites. The basalts of the Surian complex show predominantly tholeiitic to transitional affinities, with a few samples that are alkalic in composition. Primitive mantle-normalized trace and rare earth element (REE) patterns of the Surian basalts display depletions in light REE, negative anomalies of Nb, Ta, and Ti, and positive anomalies of P. Positive P anomalies are indicative of minor crustal contamination. Furthermore, Th enrichments in the mid-ocean ridge basalt-normalized patterns of the Surian basalts are characteristic of rifted arc basalts emplaced in continental margin subduction zones. The high MgO content (>6?wt.%) of most Surian basalts and low TiO2 content of two samples (0.53 and 0.62?wt.%) are characteristic of boninites. The aforementioned features of the basalts indicate arc tholeiites emplaced in intra-arc rift environments and continental margin subduction zones. U–Pb dating by laser ablation- inductively coupled plasma mass spectrometry of detrital zircons extracted from the host feldspathic and quartz feldspathic sandstone yields various ages that are predominantly Permian and Triassic; however, the youngest zircons give a mean Early Jurassic concordant U–Pb age of 191?±?12?Ma. This age, together with geological and petrochemical data, indicate that VMS mineralization formed in the Early Jurassic in pull-apart basins within the SSZ. These basins and the VMS mineralization may be temporally related to an intra-arc volcano–plutonic event associated with Neo-Tethyan oblique subduction.  相似文献   

2.
The Pingshui Cu–Zn deposit is located in the Jiangshan–Shaoxing fault zone, which marks the Neoproterozoic suture zone between the Yangtze block and Cathaysia block in South China. It contains 0.45 million tons of proven ore reserves with grades of 1.03 wt.% Cu and 1.83 wt.% Zn. This deposit is composed of stratiform, massive sulfide ore bodies, which contain more than 60 vol.% sulfide minerals. These ore bodies are hosted in altered mafic and felsic rocks (spilites and keratophyres) of the bimodal volcanic suite that makes up the Neoproterozoic Pingshui Formation. Metallic minerals include pyrite, chalcopyrite, sphalerite, tennantite, tetrahedrite and magnetite, with minor galena. Gangue minerals are quartz, sericite, chlorite, calcite, gypsum, barite and jasper. Three distinct mineralogical zones are recognized in these massive sulfide ore bodies: a distal zone composed of sphalerite + pyrite + barite (zone I); an intermediate zone characterized by a pyrite + sphalerite + chalcopyrite assemblages (zone II); and a proximal zone containing chalcopyrite + pyrite + magnetite (zone III). A thin, layer of exhalative jaspilite overlies the sulfide ore bodies except in the proximal zone. The volcanic rocks of the Pingshui Formation are all highly altered spilites and keratophyres, but their trace element geochemistry suggests that they were generated by partial melting of the depleted mantle in an island arc setting. Homogenization temperatures of the primary fluid inclusions in quartz from massive sulfide ores are between 217 and 328 °C, and their salinities range from 3.2 to 5.7 wt.% NaCl equivalent. Raman spectroscopy of the fluid inclusions showed that water is the dominant component, with no other volatile components. Fluid inclusion data suggest that the ore-forming fluids were derived from circulating seawater. The δ34S values of pyrite from the massive sulfide ores range from − 3.6‰ to + 3.4‰, indicating that the sulfur was primarily leached from the arc volcanic rocks of the Pingshui Formation. Both pyrite from the massive sulfide ores and plagioclase from the spilites have similar lead isotope compositions, implying that the lead was also derived from the Pingshui Formation. The low lead contents of the massive sulfide ores and the geochemistry of their host rocks are similar to many VMS Cu–Zn deposits in Canada (e.g., Noranda) and thus can be classified as belonging to the bimodal-mafic subtype. The presence of magnetite and the absence of jaspilite and barite at the − 505 m level in the Pingshui deposit suggest that this level is most likely the central zone of the original lateral massive sulfide ore bodies. If this interpretation is correct, the deep part of the Pingshui Cu–Zn deposit may have significant exploration potential.  相似文献   

3.
《International Geology Review》2012,54(10):1239-1262
The Chahgaz Zn–Pb–Cu volcanogenic massive sulphide (VMS) deposit occurs within a metamorphosed bimodal volcano–sedimentary sequence in the south Sanandaj–Sirjan Zone (SSZ) of southern Iran. This deposit is hosted by rhyodacitic volcaniclastics and is underlain and overlain by rhyodacitic flows, volcaniclastics, and pelites. Peperitic textures between rhyodacite flows and contact pelites indicate that emplacement of the rhyodacite occurred prior to the lithification of the pelites. The rhyodacitic flows are calc-alkaline, and show rare earth and trace elements features characteristic of arc magmatism. Zircons extracted from stratigraphic footwall and hanging-wall rhyodacitic flows of the Chahgaz deposit yield concordant U–Pb ages of 175.7 ± 1.7 and 172.9 ± 1.4 Ma, respectively, and a mean age of 174 ± 1.2 Ma. This time period is interpreted to represent the age of mineralization of the Chahgaz deposit. This Middle Jurassic age is suggested as a major time of VMS mineralization within pull-apart basins formed during Neo-Tethyan oblique subduction-related arc volcano-plutonism in the SSZ. Galena mineral separates from the layered massive sulphide have uniform lead isotope ratios of 206Pb/204Pb?=?18.604–18.617, 207Pb/204Pb?=?15.654–15.667, and 208Pb/204Pb?=?38.736–38.769; they show a model age of 200 Ma, consistent with the derivation of Pb from a Late Triassic, homogeneous upper crustal source.  相似文献   

4.
The metasedimentary and granitoid rocks of the Soresat Metamorphic Complex occur along the northern margin of the Sanandaj–Sirjan Zone in northwest Iran. Four different deformational events (D1–D4) are recorded in the Soresat Metamorphic Complex. The D1 and D2 progressive deformation events resulted from north-northeast–south-southwest regional horizontal shortening due to the subduction of Neo-Tethys oceanic lithosphere beneath the Sanandaj–Sirjan Zone. Post-suturing convergence between Arabia and Iran, which resulted in a right lateral-reverse displacement along the suture caused the north-northwest–south-southeast horizontal shortening of D3. D4 is recorded by normal faulting. Andalusite, cordierite and sillimanite (fibrolite) record the thermal peak (with a geothermal gradient >30°C/km). Field and microscopic studies of intruded granitoid rocks in the Soresat Metamorphic Complex divide them into three major groups: (i) syn-deformation (syn-D2) granitic gneiss; (ii) late- to post-deformation (late- to post-D2) granites and granodiorites; and (iii) post-deformation (post-D2) alkali granites.  相似文献   

5.
The Shanshulin Pb–Zn deposit occurs in Upper Carboniferous Huanglong Formation dolomitic limestone and dolostone, and is located in the western Yangtze Block, about 270 km west of Guiyang city in southwest China. Ore bodies occur along high angle thrust faults affiliated to the Weishui regional fault zone and within the northwestern part of the Guanyinshan anticline. Sulfide ores are composed of sphalerite, pyrite, and galena that are accompanied by calcite and subordinate dolomite. Twenty-two ore bodies have been found in the Shanshulin deposit area, with a combined 2.7 million tonnes of sulfide ores grading 0.54 to 8.94 wt.% Pb and 1.09 to 26.64 wt.% Zn. Calcite samples have δ13CPDB and δ18OSMOW values ranging from − 3.1 to + 2.5‰ and + 18.8 to + 26.5‰, respectively. These values are higher than mantle and sedimentary organic matter, but are similar to marine carbonate rocks in a δ13CPDB vs. δ18OSMOW diagram, suggesting that carbon in the hydrothermal fluid was most likely derived from the carbonate country rocks. The δ34SCDT values of sphalerite and galena samples range from + 18.9 to + 20.3‰ and + 15.6 to + 17.1‰, respectively. These values suggest that evaporites are the most probable source of sulfur. The δ34SCDT values of symbiotic sphalerite–galena mineral pairs indicate that deposition of sulfides took place under chemical equilibrium conditions. Calculated temperatures of S isotope thermodynamic equilibrium fractionation based on sphalerite–galena mineral pairs range from 135 to 292 °C, consistent with previous fluid inclusion studies. Temperatures above 100 °C preclude derivation of sulfur through bacterial sulfate reduction (BSR) and suggest that reduced sulfur in the hydrothermal fluid was most likely supplied through thermo-chemical sulfate reduction (TSR). Twelve sphalerite samples have δ66Zn values ranging from 0.00 to + 0.55‰ (mean + 0.25‰) relative to the JMC 3-0749L zinc isotope standard. Stages I to III sphalerite samples have δ66Zn values ranging from 0.00 to + 0.07‰, + 0.12 to + 0.23‰, and + 0.29 to + 0.55‰, respectively, showing the relatively heavier Zn isotopic compositions in later versus earlier sphalerite. The variations of Zn isotope values are likely due to kinetic Raleigh fractional crystallization. The 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios of the sulfide samples fall in the range of 18.362 to 18.573, 15.505 to 15.769 and 38.302 to 39.223, respectively. The Pb isotopic ratios of the studied deposit plot in the field that covers the upper crust, orogenic belt and mantle Pb evolution curves and overlaps with the age-corrected Proterozoic folded basement rocks, Devonian to Lower Permian sedimentary rocks and Middle Permian Emeishan flood basalts in a 207Pb/204Pb vs. 206Pb/204Pb diagram. This observation points to the derivation of Pb metal from mixed sources. Sphalerite samples have 87Sr/86Sr200 Ma ratios ranging from 0.7107 to 0.7115 similar to the age-corrected Devonian to Lower Permian sedimentary rocks (0.7073 to 0.7111), higher than the age-corrected Middle Permian basalts (0.7039 to 0.7078), and lower than the age-corrected Proterozoic folded basement (0.7243 to 0.7288). Therefore, the Sr isotope data support a mixed source. Studies on the geology and isotope geochemistry suggest that the Shanshulin deposit is a carbonate-hosted, thrust fault-controlled, strata-bound, epigenetic, high grade deposit formed by fluids and metals of mixed origin.  相似文献   

6.
The Sanandaj–Sirjan Zone contains the metamorphic core of the Zagros continental collision zone in western Iran. The zone has been subdivided into the following from southwest to northeast: an outer belt of imbricate thrust slices (radiolarite, Bisotun, ophiolite and marginal sub-zones, which consist of Mesozoic deep-marine sediments, shallow-marine carbonates, oceanic crust and volcanic arc, respectively) and an inner complexly deformed sub-zone (late Palaeozoic–Mesozoic passive margin succession). Rifting and sea-floor spreading of Tethys occurred in the Permian to Triassic but in the Sanandaj–Sirjan Zone extension-related successions are mainly of Late Triassic age. Subduction of Tethyan sea floor in the Late Jurassic to Cretaceous produced deformation, metamorphism and unconformities in the marginal and complexly deformed sub-zones. Deformation climaxed in the Late Cretaceous when a major southwest-vergent fold belt formed associated with greenschist facies metamorphism and post-dated by abundant Palaeogene granitic plutons. In the southwest of the zone a Late Cretaceous island arc—passive margin collision occurred with ophiolite emplacement onto the northern Arabian margin similar to that in Oman. Final closure of Tethys was not completed until the Miocene when Central Iran collided with the northeast Arabian margin.  相似文献   

7.
The granitic unit is a component of the Naqadeh plutonic complex, NW of Sanandaj–Sirjan Zone (NW Iran). This unit is composed of high-K calc-alkaline, slightly peraluminous (ASI?=?1.12–1.17) evolved monzogranites. These monzogranites have 41.85?±?0.81 Ma (zircon U–Pb sensitive, high-resolution ion microprobe (SHRIMP) age) with two inherited zircon ages of 98.5?±?1.7 and 586.6?±?13.1 Ma, respectively. The only enclave type consists of quartz-amphibolite enclaves indicating residual parental rocks. Chemical and isotopic (87Sr/86Sr40Ma?=?0.708638; εNd40Ma?=??4.26) characteristics of monzogranites suggest that they could be derived by partial melting of crustal mafic rocks followed by some assimilation of metasedimentary rocks. With regards to inherited zircon age and quartz-amphibolite composition of Naqadeh granite, the old mafic rocks of this complex (Naqadeh dioritic rocks with ~100 Ma) can be considered as parental rocks, and their partial melting under high water content, and assimilation of produced melt by metasedimentary rocks, would lead to the generation of a Naqadeh granitic unit.  相似文献   

8.
The Chah-Bazargan gabbroic intrusions are located in the south of Sanandaj–Sirjan zone. Precise U–Pb zircon SHRIMP ages of the intrusions show magmatic ages of 170.5 ± 1.9 Ma. These intrusions consist primarily of gabbros, interspersed with lenticular bodies of anorthosite, troctolite, clinopyroxenite, and wehrlite. The lenticular bodies show gradational or sharp boundaries with the gabbros. In the gradational boundaries, gabbros are mineralogically transformed into anorthosites, wehrlites, and/or clinopyroxenites. On the other hand, where the boundaries are sharp, the mineral assemblages change abruptly. There is no obvious deformation in the intrusions. Hence, the changes in mineral compositions are interpreted as the result of crystallization processes, such as fractionation in the magma chamber. Rock types with sharp boundaries show abrupt chemical changes, but the changes exhibit the same patterns of increasing and decreasing elements, especially of rare earth elements, as the gradational boundaries. Therefore, it is possible that all parts of the intrusions were formed from the same parental magma. Parts showing signs of nonequilibrium crystallization, such as cumulate features and sub-solidification, underwent fracturing and were interspersed throughout the magma chamber by late injection pulses or mechanical movements under mush conditions. The geological and age data show that the intrusions were formed from an Al-, Sr-, Fe-enriched and K-, Nb-depleted tholeiitic magma. The magma resulted from the partial melting of a metasomatized spinel demonstrated by negative Nb, P, Hf, and Ti, and positive Ba, Sr, and U anomalies typical of subduction-related magmas.  相似文献   

9.
The Darreh Sary metapelitic rocks are located in the northeast of Zagros orogenic belt and Sanandaj-Sirjan structural zone. The lithological composition of these rocks includes slate, phyllite, muscovitebiotite schist, garnet schist, staurolite-garnet schist and staurolite schist. The shale is the protolith of these metamorphic rocks, which was originated from the continental island arc tectonic setting and has been subjected to processes of Zagros orogeny. The deformation mechanisms in these rocks include bulging recrystallization (BLG), subgrain rotation recrystallization (SGR) and grain boundary migration recrystallization (GBM), which are considered as the key to estimate the deformation temperature of the rocks. The estimated ranges of deformation temperature and depth in these rocks show the temperatures of 275–375, 375–500, and >500°C and the depths of 10 to 17 km. The observed structures in these rocks such as faults, fractures and folds, often with the NW-SE direction coordinate with the structural trends of Zagros orogenic belt structures. The S-C mylonite fabrics is observed in these rocks with other microstructures such as mica fish, σ fabric and garnet deformation indicate the dextral shear deformation movements of study area. Based on the obtained results of this research, the stages of tectonic evolution of Darreh Sary area were developed.  相似文献   

10.
The recently discovered Longtougang skarn and hydrothermal vein Cu–Zn deposit is located in the North Wuyi area, southeastern China. The intrusions in the ore district comprise several small porphyritic biotite monzonite, porphyritic monzonite, and porphyritic granite plutons and dikes. The mineralization is zoned from a lower zone of Cu-rich veins and Cu–Zn skarns to an upper zone of banded Zn–Pb mineralization in massive epidote altered rocks. The deposit is associated with skarn, potassic, epidote, greisen, siliceous, and carbonate alteration. Molybdenite from the Cu-rich veins yielded a Re–Os isochron age of 153.6 ± 3.9 Ma, which is consistent with U–Pb zircon ages of 154.0 ± 1.3 Ma for porphyritic monzonite, 154.0 ± 0.8 Ma for porphyritic biotite monzonite, and 152.0 ± 0.8 Ma for porphyritic granite. Geological observations suggest that the Cu mineralization is genetically related to the porphyritic biotite monzonite and porphyritic monzonite. All the zircons from intrusive rocks in the ore district are characterized by εHf(t) values between − 13.41 and − 4.38 and Hf model ages (TDM2) between 2054 and 1482 Ma, reflecting magmas derived mainly from a Proterozoic crustal source. Molybdenite grains from the deposit have Re values of 14.6–27.7 ppm, indicative of a mixed mantle–crust source. The porphyry–skarn abundant Cu and hydrothermal vein type Pb–Zn–Ag deposits in the North Wuyi area are related to the Late Jurassic porphyritic granites and Early Cretaceous volcanism, respectively. The Late Jurassic mineralization-related granites were derived from the crustal anatexis with some mantle input, which was triggered by asthenospheric upwelling induced by slab tearing during oblique subduction of the paleo-Pacific plate beneath the South China block, and the Early Cretaceous mineralization-related granitoids mainly from crust material formed within a series of NNE-trending basins during margin-parallel movement of the plate.  相似文献   

11.
Two sequentially formed groups of dikes in the gabbro–porphyrite complex have been distinguished, the ages of which are early Eifelian (early dikes) and early Givetian (late dikes). We have estimated the temperature impact of ore contact metamorphism, which is related to dikes of the Lower Carboniferous Magnitogorsk intrusive complex. A hidden zonality of microimpurities in the ore-forming minerals has been established for the first time by the LA-ICP-MS method. The ore formation age has been determined as early Eifelian–early Givetian.  相似文献   

12.
Cherty marbles of Hasan-Robat area, northwest of Isfahan, in the Sanandaj–Sirjan Zone of Iran preserves evidences of multiple deformational events. The Sanandaj–Sirjan Zone is the inner crystalline zone of the Zagros Orogen, which has been highly deformed and exhumed during continental collision between the Arabian Plate and Central Iran. The Hasan-Robat area is an example of the exposed Precambrian–Paleozoic basement rocks that stretched along two NW–SE-trending faults and located in the inner part of the HasanRobat positive flower strcuture. The Hasan-Robat marbles record a complex shortening and shearing history. This lead to the development of disharmonic ptygmatic folds with vertical to sub-vertical axes and some interference patterns of folding that may have been created from deformations during the Pan-African Orogeny and later phases. Based on this research, tectonic evolution of the Hasan-Robat area is interpreted as the product of three major geotectonic events that have been started after Precambrian to Quaternary: (1) old deformation phases (2) contractional movements and (3) strike-slip movements. Different sets and distributions of joints, faults and folds are confirmed with effect of several deformational stages of the area and formation of the flower structure.  相似文献   

13.
International Journal of Earth Sciences - The presence of the Bashkirian–Moscovian (lower Pennsylvanian) sequence with mixed siliciclastics and fossil-rich carbonates has long been known from...  相似文献   

14.
Based on analyses of calcite twins, we constrain the tectonic history of the Paleozoic Sargaz complex within the SE part of the Sanandaj–Sirjan zone (hinterland domain of the Zagros orogen), SE Iran. The mean width of measured calcite twins was 1.97 μm, corresponding to the width of type II twins; variations in twin width with twin density indicate that calcite twinning in the study area occurred at temperatures of between 170 and 200°C. These results support the interpretation that the twins developed at a shallower depth and lower temperature than those of greenschist facies metamorphism recorded in this complex, and that twinning is therefore mainly a late, post-metamorphic deformation process. The c-axis fabrics of the studied samples are monoclinic, consisting of an intense point maximum located slightly anticlockwise of the normal to the shear plane; this asymmetry indicates non-coaxial deformation and a dextral component of shear in the thrust zones. The geometric relationship between stress axes and bedding reveals that the reconstructed stress tensors mainly post-date F1-folding. Compressional stress axes are oriented NE–SW. This compressional stress was probably related to the (oblique) subduction of the Neotethys beneath Central Iran by Middle Triassic–Jurassic times, during the Cimmerian orogeny.  相似文献   

15.
The study of oxygen and carbon isotopic ratios has gained importance to determine the origin of ore-bearing fluids, carbon origin, and also to determine the formation temperature of non-sulfide Pb and Zn minerals. In order to determine the origin of fluids and carbon existing in Zn carbonate minerals in Chah-Talkh deposit, initially the amounts of δ18OSMOW and δ13CPDB changes in various zinc minerals in important deposits in Iran and the world were studied, and then by comparing these values in Chah-Talkh deposit with those of other deposits, the origin of fluids responsible for ore forming, carbon, and formation temperature of Chah-Talkh deposit was determined. The range of δ18OSMOW changes in smithsonite mineral in non-sulfide lead and zinc deposits varies from 18.3 to 31.6 ‰, and δ18OSMOW in hydrozincite mineral varies from 7.8 to 27 ‰. Due to the impossibility of smithsonite sampling from Chah-Talkh deposit (due to it being fine-grained and dispersed), hydrozincite minerals which have high isotopic similarities with smithsonite are used for the isotopic analysis of carbon and oxygen. The range of δ18OSMOW changes in hydrozincite mineral of Chah-Talkh deposit varies from 7.8 to 15.15 ‰, which places in the domain of metamorphic water. The extensiveness of δ18OSMOW changes in Chah-Talkh indicates the role of at least two fluids in the formation of non-sulfide minerals. The obtained formation temperature of non-sulfide minerals (hydrozincite) in Chah-Talkh deposit is 70 to 100 °C, which indicates the role of metamorphic fluids in the formation of deposit. Complete weathering of sulfide minerals to a depth of 134 m confirms the role of rising metamorphic fluids in the formation of non-sulfide minerals. The δ13CPDB values of Chah-Talkh deposit are set in the range of atmospheric CO2 and carbonate rocks, in which the existence of atmospheric CO2 indicates the role of atmospheric fluids, and the existence of carbonate carbon rock indicates of the role of metamorphic fluids in the precipitation of non-sulfide Zn minerals.  相似文献   

16.
Quaternary basaltic volcanoes are distributed in the northern part of the Sanandaj–Sirjan Zone (N-SSZ). Those in the Ghorveh area of the N-SSZ are characterized by low SiO2, high alkalis, and LILE + LREE enrichment. They also have high Mg numbers (Mg# = 65–70) and high contents of Cr (>300 ppm), Ni (>177 ppm), and TiO2 (>1.5 wt.%), suggesting that they crystallized directly from primary magma. The basalts are classified as high-Nb basalts (HNB), with Nb concentrations greater than 20 ppm. Their 87Sr/86Sr values range from 0.7049 to 0.7053 and their ?0Nd values lie between –0.2 and 1.1. The small negative values of ?0Nd indicate involvement of continental material in the evolution of the source magma in the area. Based on these new chemical and isotopic data and their relationship to the Plio-Quaternary volcanic adakites in northern Ghorveh, we propose that the partial fusion of metasomatized mantle associated with adakitic magma was responsible for generation of the HNB rocks following late Miocene collision of the Arabian and Iranian plates. Rollback of Neotethyan oceanic spreading and mantle plume activity caused a thinning of the northern SSZ lithosphere; furthermore, the S wave tomography model beneath the N-SSZ supports this hypothesized lithospheric thinning. The HNB rocks have close spatial proximity and temporal association with adakites, which were formed by the subduction of young (<25 Ma) oceanic crust. Our discussion clarifies the role of the oceanic slab in the post-collision generation of the HNB basalts in this area. Our data confirm the relationship of the HNB rocks to the subduction zone instead of to the oceanic island basalt (OIB) type magma in extensional zones.  相似文献   

17.
Studies on the helium, lead and sulfur isotopic composition were performed of the Gejiu super-large Sn-polymetallic ore deposit. The results indicated that the ore-forming materials came from different sources and the deposit is a product of superimposed mineralization. The deposit is characterized by multi-source and multi-period mineralization, which experienced submarine hydrothermal deposition and Late Yanshanian magmatic hydrothermal mineralization. It is held that the Gejiu super-large Sn-polymetallic ore deposit is a multi-genesis deposit.  相似文献   

18.
Located adjacent to the Banded Gneissic Complex, Rampura–Agucha is the only sulfide ore deposit discovered to date within the Precambrian basement gneisses of Rajasthan. The massive Zn–(Pb) sulfide orebody occurs within graphite–biotite–sillimanite schist along with garnet–biotite–sillimanite gneiss, calc–silicate gneisses, amphibolites, and garnet-bearing leucosomes. Plagioclase–hornblende thermometry in amphibolites yielded a peak metamorphic temperature of 720–780°C, whereas temperatures obtained from Fe–Mg exchange between garnet and biotite (580–610°C) in the pelites correspond to postpeak resetting. Thermodynamic considerations of pertinent silicate equilibria, coupled with sphalerite geobarometry, furnished part of a clockwise PTt path with peak PT of ∼6.2 kbar and 780°C, attained during granulite grade metamorphism of the major Zn-rich stratiform sedimentary exhalative deposits orebody and its host rocks. Arsenopyrite composition in the metamorphosed ore yielded a temperature [and log f(S 2)] range of 352°C (−8.2) to 490°C (−4.64), thus indicating its retrograde nature. Contrary to earlier research on the retrogressed nature of graphite, Raman spectroscopic studies on graphite in the metamorphosed ore reveal variable degree of preservation of prograde graphite crystals (490 ± 43°C with a maximum at 593°C). The main orebody is mineralogically simple (sphalerite, pyrite, pyrrhotite, arsenopyrite, galena), deformed and metamorphosed while the Pb–Ag-rich sulfosalt-bearing veins and pods that are irregularly distributed within the hanging wall calc–silicate gneisses show no evidence of deformation and metamorphism. The sulfosalt minerals identified include freibergite, boulangerite, pyrargyrite, stephanite, diaphorite, Mn–jamesonite, Cu-free meneghinite, and semseyite; the last three are reported from Agucha for the first time. Stability relations of Cu-free meneghinite and semseyite in the Pb–Ag-rich ores constrain temperatures at >550°C and <300°C, respectively. Features such as (1) low galena–sphalerite interfacial angles, (2) presence of multiphase sulfide–sulfosalt inclusions, (3) microcracks filled with galena (±pyrargyrite) without any hydrothermal alteration, and (4) high contents of Zn, Ag (and Sb) in galena, indicate partial melting in the PbS–Fe0.96S–ZnS–(1% Ag2S ± CuFeS2) system, which was critical for metamorphic remobilization of the Rampura–Agucha deposit.  相似文献   

19.
Zn- and Cu-rich massive sulfide ores of volcanogenic origin [volcanogenic massive sulfide (VMS) deposits] occur as stratiform/stratabound lenses of variable size hosted by gneisses, amphibolites, and schists of the Areachap Group, in the Northern Cape Province of South Africa. The Areachap Group represents the highly deformed and metamorphosed remnants of a Mesoproterozoic volcanic arc that was accreted onto the western margin of the Kaapvaal Craton during the ∼1.0–1.2 Ga Namaquan Orogeny. Sulfur isotope data (δ34S) are presented for 57 sulfide separates and one barite sample from five massive sulfide occurrences in the Areachap Group. Although sulfides from each site have distinct sulfur isotope values, all δ34S values fall within a very limited range (3.0‰ to 8.5‰). Barite has a δ34S value of 18.5‰, very different from that of associated sulfides. At one of the studied sites (Kantienpan), a distinct increase in δ34S of sulfides is observed from the massive sulfide lens into the disseminated sulfides associated with a distinct footwall alteration zone. Sulfide–sulfide and sulfide–barite mineral pairs which recrystallized together during amphibolite- and lower granulite facies metamorphism are not in isotopic equilibrium. Sulfur isotope characteristics of sulfides and sulfates of the Zn–Cu ores in the Areachap Group are, however, very similar to base metal sulfide accumulations associated with modern volcanic arcs and unsedimented mid-ocean ridges. It is thus concluded that profound recrystallization and textural reconstitution associated with high-grade regional metamorphism of the massive sulfide ores of the Areachap Group did not result in extensive sulfur isotopic homogenization. This is similar to observations in other metamorphosed VMS deposit districts and confirms that massive sulfide ores remain effectively a closed system for sulfur isotopes for both sulfides and sulfates during metamorphism.  相似文献   

20.
《Ore Geology Reviews》2011,41(1):27-40
Diyadin mineralization is the first reported gold deposit located in a collisional tectonic environment in Eastern Anatolia. The mineralization is related to N–S and N10–20°W-trending fault systems and hosted within the Paleozoic metamorphic basement rocks of the Anatolide–Toride microcontinent. Calc-schist, dolomitic marble and Miocene and Quaternary volcanic rocks comprise the exposed units in the mineralized area. Geochemical signatures, alteration types and host rock characteristics of the Diyadin gold deposit resemble those of Carlin-type deposits. Mineralization is constrained by alteration of overlying volcanic rocks to younger than ~ 14 Ma (K–Ar).Carbon and oxygen stable isotope measurements of carbonate rocks were made on six drill holes (n = 81) with an additional four samples of fresh carbonate rocks from surface outcrops. Background carbonate rocks have δ13CV-PDB ~ 1.8‰ and δ18OV-SMOW ~ 27‰. Isotopically-altered host rock samples have decreased δ18O (down to ~+11.4‰) and variable δ13C (from − 3.6 to + 4.8‰). Postore carbonate veins and cave-fill material have distinctly different isotopic signatures, particularly carbon (from δ13C = + 8.4 to + 9.8‰). Whether this post-ore carbonate is simply very late in mineralization associated with the gold system, or is a completely different, younger system utilizing the same pathways, is unclear at present. Within the host rock sample set, there is no correlation between gold and δ13C, and a weak correlation between gold and δ18O, indicative of water–rock interaction and isotopic alteration. Both the isotopic data and structural mapping suggest that the main upflow zone for the deposit is near the northern portion of the drill fence. Additional data at multiple scales are required to clarify the relationship(s) between fluid flow and mineralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号