首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The formation of small-scale density cavities with a nonstationary electric field, which are registered in the Earth’s auroral magnetosphere, has been analyzed. It has been indicated that cavities are probably initially caused by quasi-static field-aligned electric currents and currents of kinetic Alfvén waves exceeding threshold values. Urgent variants of the linear and nonlinear stages of density disturbance instabilities have been considered. The determined properties of the parameters of small-scale density cavities and nonstationary electric fields are in agreement with the known experimental data.  相似文献   

2.
This article considers the process of entry of cosmic substance into the Earth’s atmosphere and the further evolution of the formed extraterrestrial aerosol. It is shown that meteorite-derived aerosol generated in the atmosphere may affect the Earth’s climate in two ways: (a) particles of meteoric haze may serve as condensation nuclei in the troposphere and stratosphere; (b) charged meteor particles residing in the mesosphere may markedly change (by a few percent) the total atmospheric resistance and, thereby, affect the global current circuit. Changes in the global electric circuit, in turn, may influence cloud formation processes. The obtained results argue for the fact that the meteoric dust in the Earth’s atmosphere is potentially one of the important climate-forming agents. It is shown that the amount of interstellar dust in the Earth’s atmosphere is too small to have a considerable affect on atmospheric processes.  相似文献   

3.
The effects of morning magnetospheric substorms in the variations in near-Earth atmospheric electricity according to the observations of the electric field vertical component (E z ), at Hornsund polar observatory (Spitsbergen). The E z, data, obtained under the conditions of fair weather (i.e., in the absence of a strong wind, precipitation, and fog), are analyzed. An analysis of the observations indicated that the development of a magnetospheric substorm in the Earth’s morning sector is as a rule accompanied by positive deviations in E z, independently of the Hornsund location: in the polar cap or at its boundary. In all considered events, Hornsund was located near the center of the morning convection vortex. In the evening sector, when Hornsund fell in the region of evening convection vortex, the development of a geomagnetic substorm was accompanied by negative deviations in E z., It has been concluded that the variations in the atmospheric electric field E z), at polar latitudes, observed during the development of magnetospheric substorms, result from the penetration of electric fields of polar ionospheric convection (which are intensified during a substorm) to the Earth’s surface.  相似文献   

4.
The work is dedicated to investigation of Hot Flow Anomaly (HFA), formed at the front of Earth’s bows hock. Using Interball-Tail data we estimated orientation of the current sheet that was a cause of the anomaly. From the ion energy-time spectrogram we divided the anomaly into several regions. The motional electric fields near the HFA were estimated with 3D model of Earth’s bow shock. In accordance with previous investigations of HFA’s formation conditions these fields were directed towards the current sheet on both sides of it. We also provided the picture of HFA’s motion along the bow shock and calculated its speed. Analyzing ions’ bulk velocities within the HFA we found that the anomaly is expanding. This conclusion was supported by estimation of thermal and magnetic pressure balance. Ion energy-time spectrogram shows that anomaly is a complicated structure consisting of two parts—leading and trailing. Comparison of ion velocity distributions, magnetic field data and ion energy-time spectrogram provides better understanding of the phenomena and indicated the region that is the source of thermal and convective energy inside HFA.  相似文献   

5.
The possibility that conditions on the Sun and in the Earth’s magnetosphere can affect human health at the Earth’s surface has been debated for many decades. This work reviews the research undertaken in the field of heliobiology, focusing on the effect of variations of geomagnetic activity on human cardiovascular health. Data from previous research are analysed for their statistical significance, resulting in support for some studies and the undermining of others. Three conclusions are that geomagnetic effects are more pronounced at higher magnetic latitudes, that extremely high as well as extremely low values of geomagnetic activity seem to have adverse health effects and that a subset of the population (10–15%) is predisposed to adverse health due to geomagnetic variations. The reported health effects of anthropogenic sources of electric and magnetic fields are also briefly discussed, as research performed in this area could help to explain the results from studies into natural electric and magnetic field interactions with the human body.Possible mechanisms by which variations in solar and geophysical parameters could affect human health are discussed and the most likely candidates investigated further. Direct effects of natural ELF electric and magnetic fields appear implausible; a mechanism involving some form of resonant absorption is more likely. The idea that the Schumann resonance signals could be the global environmental signal absorbed by the human body, thereby linking geomagnetic activity and human health is investigated. Suppression of melatonin secreted by the pineal gland, possibly via desynchronised biological rhythms, appears to be a promising contender linking geomagnetic activity and human health. There are indications that calcium ions in cells could play a role in one or more mechanisms. It is found to be unlikely that a single mechanism can explain all of the reported phenomena.  相似文献   

6.
The large-scale harmonic magnetic-convective sources of the main geomagnetic field in the Earth’s core have been determined for the first time. The determination is based on a complete system of eigenfunctions of the magnetic diffusion equation in a homogeneously conducting sphere, which is surrounded by an insulator. The sources of the main geomagnetic field observed, which is responsible for the distribution of the electric currents generating this field in the core, are expressed in terms of large-scale eigenfunctions. In this case, the dipole sources are directly related to the observed geomagnetic dipole, whereas the quadrupole sources are related to the quadrupole, etc. The time variations in the obtained sources are responsible for individual spatiotemporal features in the generation or suppression of each Gaussian component of the observed geomagnetic field. When the commonly accepted observational international geomagnetic reference field (IGRF) models were used to partially reveal these time variations, it became possible to specify the estimate of the Earth’s core conductivity and determine the minimum period that can separate us from the commencement of further inversion or excursion.  相似文献   

7.
The data on geomagnetic reversals are compared with the changes in the organic world and with the lower-mantle plumes. The times of the formation of plumes and the times of their appearance on the Earth’s surface relate to the intervals characterized by the different frequencies of geomagnetic reversals, i.e., there is no interrelation between the formation of plumes and the frequency of the changes in the geomagnetic field polarity. At the same time, a certain synchronism is observed between the frequency of the geomagnetic reversals and the boundaries of the biostratigraphic ages, i.e., the changes in the organic world in the long-period range. A hypothesis is proposed, which explains the change in the sign of the geomagnetic field by the combined effect of the irregular rotation of the internal core relative to the mantle and the changes in the slope angle of the axis of the Earth’s rotation, which, in turn, results in synchronous events on the Earth’s surface: the rates of changes in the organic world.  相似文献   

8.
The global stress field appearing in the Earth’s lithosphere under the action of forces caused by the difference of gravitational potential is calculated. An original algorithm is proposed and the operational Earth Stresses program code is developed. The data on the topography, thickness, and density of the Earth’s crust and the upper mantle, as well as the gravitational anomalies and thermal conditions in the lithosphere were taken into account in the calculations. A comparison of the calculation results and the observed data makes it possible to conclude that the action of the forces of the difference of the gravitational potential alone is sufficient to explain the features of the first order of the stress field in the Earth’s lithosphere.  相似文献   

9.
A mathematical modeling method and the global numerical model of the Earth’s upper atmosphere were used to study nighttime enhanced electron density regions (EEDRs) in the ionospheric F2 layer and their possible manifestations at altitudes of the Earth’s plasmasphere. It has been established that EEDRs are formed owing to latitudinally nonuniform longitudinal (along the magnetic field) plasma flows from the plasmasphere into the nighttime ionosphere and the wind transport of ions along geomagnetic field lines. The specific features of the effect of ionospheric-plasmaspheric plasma transport processes, related to their three-dimensional character, on EEDRs have been revealed.  相似文献   

10.
Based on the WIND and GOES satellite data on the solar wind and IMF parameters and the data on the surface magnetic field, it has been indicated that the secondary MHD rarefaction wave can affect the geomagnetic field during a storm sudden commencement (SSC) event. The secondary rarefaction wave originates in the magnetosheath when the shock wave interacts with the Earth’s magnetosphere.  相似文献   

11.
Besides generating seismic waves, which eventually dissipate, an earthquake also generates a static displacement field everywhere within the Earth. This global displacement field rearranges the Earth’s mass thereby causing the Earth’s rotation and gravitational field to change. The size of this change depends upon the magnitude, focal mechanism, and location of the earthquake. The Sumatran earthquake of December 26, 2004 is the largest earthquake to have occurred since the 1960 Chilean earthquake. Using a spherical, layered Earth model, the coseismic effect of the Sumatran earthquake upon the Earth’s length-of-day, polar motion, and low-degree harmonic coefficients of the gravitational field are computed. Using a model of the earthquake source that is composed of five subevents having a total moment-magnitude M w of 9.3, it is found that this earthquake should have caused the length-of-day to decrease by 6.8 microseconds, the position of the Earth’s generalized figure axis to shift 2.32 milliarcseconds towards 127° E longitude, the Earth’s oblateness J 2 to decrease by 2.37 × 10−11 and the Earth’s pear-shapedness J 3 to decrease by 0.63 × 10−11. The predicted change in the length-of-day, position of the generalized figure axis, and J 3 are probably not detectable by current measurement systems. But the predicted change in oblateness is perhaps detectable if other effects, such as those of the atmosphere, oceans, and continental water storage, can be adequately removed from the observations.  相似文献   

12.
Exact distributions of the electric field and current density in the vicinity of the rotating magnetized planet are determined within the planetary electric generator model. The model planetary plasma envelope is assumed to be inhomogeneous and consists of an atmosphere, an ionospheric layer rotating with respect to the atmosphere, and a magnetosphere located beyond the ionosphere. The model parameters, under which the influence of a large-scale flow of the ionospheric plasma on the electric field and current in the lower atmosphere is significant are determined. It is shown that the ionospheric superrotation reduces the electric field arising in the Earth’s lower atmosphere due to the planetary generator effect.  相似文献   

13.
Electromagnetic induction in the Earth’s interior is an important contributor to the near-Earth magnetic and electric fields. The oceans play a special role in this induction due to their relatively high conductivity which leads to large lateral variability in surface conductance. Electric currents that generate secondary fields are induced in the oceans by two different processes: (a) by time varying external magnetic fields, and (b) by the motion of the conducting ocean water through the Earth’s main magnetic field. Significant progress in accurate and detailed predictions of the electric and magnetic fields induced by these sources has been achieved during the last few years, via realistic three-dimensional (3-D) conductivity models of the oceans, crust and mantle along with realistic source models. In this review a summary is given of the results of recent 3-D modeling studies in which estimates are obtained for the magnetic and electric signals at both the ground and satellite altitudes induced by a variety of natural current sources. 3-D induction effects due to magnetospheric currents (magnetic storms), ionospheric currents (Sq, polar and equatorial electrojets), ocean tides, global ocean circulation and tsunami are considered. These modeling studies demonstrate that the 3-D induction (ocean) effect and motionally-induced signals from the oceans contribute significantly (in the range from a few to tens nanotesla) to the near-Earth magnetic field. A 3-D numerical solution based on an integral equation approach is shown to predict these induction effects with the accuracy and spatial detail required to explain observations both on the ground and at satellite altitudes. On leave from Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation, Russian Academy of Sciences, 142190 Troitsk, Moscow region, Russia.  相似文献   

14.
The paper presents a high-resolution global gravity field modelling by the boundary element method (BEM). A direct BEM formulation for the Laplace equation is applied to get a numerical solution of the linearized fixed gravimetric boundary-value problem. The numerical scheme uses the collocation method with linear basis functions. It involves a discretization of the complicated Earth’s surface, which is considered as a fixed boundary. Here 3D positions of collocation points are simulated from the DNSC08 mean sea surface at oceans and from the SRTM30PLUS_V5.0 global topography model added to EGM96 on lands. High-performance computations together with an elimination of the far zones’ interactions allow a very refined integration over the all Earth’s surface with a resolution up to 0.1 deg. Inaccuracy of the approximate coarse solutions used for the elimination of the far zones’ interactions leads to a long-wavelength error surface included in the obtained numerical solution. This paper introduces an iterative procedure how to reduce such long-wavelength error surface. Surface gravity disturbances as oblique derivative boundary conditions are generated from the EGM2008 geopotential model. Numerical experiments demonstrate how the iterative procedure tends to the final numerical solutions that are converging to EGM2008. Finally the input surface gravity disturbances at oceans are replaced by real data obtained from the DNSC08 altimetryderived gravity data. The ITG-GRACE03S satellite geopotential model up to degree 180 is used to eliminate far zones’ interactions. The final high-resolution global gravity field model with the resolution 0.1 deg is compared with EGM2008.  相似文献   

15.
The specific features of the spatial structure and time dynamics of the main geomagnetic field during the 20th century, proceeding from the present-day concepts of geomagnetic jerks have been studied. The variations, caused by global dissipation of the geomagnetic field dipole part, have been separated from the regional variations, described by nondipole spatial harmonics of the spherical harmonic expansion series. It has been indicated that the geomagnetic field westward drift manifests itself in a limited region of the Earth’s surface, forming the known Brazil anomaly. However, the drift component in the variations in the geomagnetic field morphological structures is globally found out during the considered almost 100-year period along the narrow belt around the geomagnetic axis. However, this drift is northwestward in the Northern Hemisphere, and the structures drift southeastward in the Southern Hemisphere. The detected variations of the drift nature are reflected in the variations in the integral geomagnetic characteristic, when changes in the position of the Earth’s magnetic center are considered. The direct correlation between the global geomagnetic variations of the drift nature and the trend variations in the orientation of the vector of the Earth daily rotation velocity has been detected.  相似文献   

16.
The Earth’s crossings of the magnetic sector boundaries are accompanied by changes in the magnetosphere, ionosphere, and troposphere. We considered the baric field’s response to the crossing of the inter-planetary magnetic field (IMF) sector boundaries during a geomagnetically quiet period. The IMF sign is shown to affect atmospheric pressure in high-latitude regions. The efficiency and sign of the relationship vary during the year. The baric field response to the Earth’s crossing of the IMF sector boundaries is most distinct during equinoxes. It is shown that, during a geomagnetically quiet period, the circulation processes in the atmosphere drive the changes in the atmospheric pressure when the Earth passes from one IMF sector into another.  相似文献   

17.
Measurements of solar cosmic ray (SCR) protons in the magnetosphere can be used to verify models of the Earth’s magnetic field. The latitudinal profiles of precipitating SCRs with energies of 1–90 MeV were measured on the CORONAS-F low-orbiting satellite during a strong magnetic storm on October 29–30, 2003. A flux of precipitating protons can remain equal to the interplanetary flux only due to a strong pitch angle diffusion that originates when the radius of the field line curvature is close to that of the particle rotation Larmor radius. The observed boundaries of the strong diffusion region can be compared with the boundaries anticipated according to the models of the magnetic field of the Earth’s magnetosphere. The adiabaticity parameter values, calculated for several instants of the CORONAS-F satellite pass based on the TS05 and parabolic models, do not always correspond to measurements. How possible changes in the model configurations of the magnetic field can allow us to eliminate discrepancies with the experiment and to explain why solar protons with energies of several megaelectronvolts penetrate deep in the Earth’s inner magnetosphere is considered here.  相似文献   

18.
We confirm the close synoptic relationship of the sectoral structure of the Sun’s magnetic field of the with the near-Earth tropospheric pressure with a case study of three European points (Troitsk, Rome, Jungfrau) in the period of the anomalously hot summer of June–August 2010. We substantiate the position that such a relationship was fostered by the anomalously low solar activity as a result of superposition of the minima of the 22- and 180-year cycles. Sectoral analysis of the solar-tropospheric relationships has shown that the appearance of a blocking anticyclone in the Moscow suburbs, its expansion to Rome and Jungfrau, and subsequent retreat at first from these points, and then from the Moscow suburbs was closely related to solar activity phenomena producing, according to contemporary notions, cyclonic activity, shown by simulation of the Earth’s electric field.  相似文献   

19.
Precipitation of electrons with energies of 0.3–1.5 MeV has been analyzed based on the CORONAL-F satellite data at polar latitudes of the Northern Hemisphere on December 13, 2003. The instants of electron precipitation have been compared with the ground-based observations of geomagnetic disturbances and auroras near the satellite orbit projection. It has been indicated that precipitation of energetic electrons in the high-latitude nightside sector is accompanied by the simultaneous development of bay-like magnetic field disturbances on the Earth’s surface and the appearance of riometer absorption bursts and Pi3 geomagnetic pulsations, and auroras.  相似文献   

20.
The elasto-gravitational deformation response of the Earth’s solid parts to the perturbations of the pressure and gravity on the core-mantle boundary (CMB) and the solid inner core boundary (ICB), due to the dynamical behaviors of the fluid outer core (FOC), is discussed. The internal load Love numbers, which are formulized in a general form in this study, are employed to describe the Earth’s deformation. The preliminary reference Earth model (PREM) is used as an example to calculate the internal load Love numbers on the Earth’s surface, CMB and ICB, respectively. The characteristics of the Earth’s deformation variation with the depth and the perturbation periods on the boundaries of the FOC are also investigated. The numerical results indicate that the internal load Love numbers decrease quickly with the increasing degree of the spherical harmonics of the displacement and depend strongly on the perturbation frequencies, especially on the high frequencies. The results, obtained in this work, can be used to construct the boundary conditions for the core dynamics of the long-period oscillations of the Earth’s fluid outer core. Foundation item: State Natural Science Foundation of China (40174022 and 49925411) and the Projects from Chinese Academy of Sciences (KZCX2-106 and KZ952-J1-411).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号