共查询到20条相似文献,搜索用时 13 毫秒
1.
Hα observations, using the Multichannel Subtractive Double Pass (MSDP) spectrograph operating on the Meudon Solar Tower, have been made of an active region filament which undergoes a ‘disparition brusque’. The period of observation was from 10 ∶ 45 to 13 ∶ 30 UT on 22 June, 1981. Velocity and intensity fluctuations in Hα were measured. The proper motions of ejecta were followed allowing their trajectories and vector velocities to be determined. To model the dynamics of ejecta several models using thermal or magnetic driving forces are compared. The most promising model explains the motion as the consequence of magnetic stresses acting on an isolated magnetized plasmoïd in a diverging flux tube. 相似文献
2.
《天文和天体物理学研究(英文版)》2016,(1)
Solar active region(AR) 11283 is a very magnetically complex region and it has produced many eruptions. However, there exists a non-eruptive filament in the plage region just next to an eruptive one in the AR, which gives us an opportunity to perform a comparison analysis of these two filaments. The coronal magnetic field extrapolated using our CESE–MHD–NLFFF code reveals that two magnetic flux ropes(MFRs) exist in the same extrapolation box supporting these two filaments, respectively. Analysis of the magnetic field shows that the eruptive MFR contains a bald-patch separatrix surface(BPSS) cospatial very well with a pre-eruptive EUV sigmoid, which is consistent with the BPSS model for coronal sigmoids. The magnetic dips of the non-eruptive MFRs match Hα observation of the non-eruptive filament strikingly well, which strongly supports the MFR-dip model for filaments. Compared with the non-eruptive MFR/filament(with a length of about 200 Mm), the eruptive MFR/filament is much smaller(with a length of about 20 Mm), but it contains most of the magnetic free energy in the extrapolation box and holds a much higher free energy density than the non-eruptive one. Both the MFRs are weakly twisted and cannot trigger kink instability. The AR eruptive MFR is unstable because its axis reaches above a critical height for torus instability, at which the overlying closed arcades can no longer confine the MFR stably. On the contrary, the quiescent MFR is very firmly held by its overlying field, as its axis apex is far below the torus-instability threshold height. Overall, this comparison investigation supports that an MFR can exist prior to eruption and the ideal MHD instability can trigger an MFR eruption. 相似文献
3.
Lin Yuan-zhangV. Gaizauskas 《Chinese Astronomy and Astrophysics》1994,18(4):455-461
Based mainly on filtergrams ofH line center and various offbands and supplemented with measurements of the CIV 1548 line, we analyzed the evolution of a filament during a period of 15 minutes prior to the eruption of the flare of 1980 June 25 in the active region AR 2522. The filament underwent three spasmodic twistings of increasing size which finally led to its disruption and the flare eruption. We simulated the twisting motion of the filament by a force-free magnetic rope, estimated the variation of the force-free factor and the increase in the axial electric current, discussed the stability of the filament and attempted to give a theoretical explanation of the collapse of the filament and the eruption of the flare. 相似文献
4.
We investigate temporal and spatial correlations in solar flares of hard X-rays (HXR) and decimetric continuum emissions,
ejecta, and CMEs. The focus is on three M-class flares, supported by observations from other flares. The main conclusions
of our observations are that (1) major hard X-ray flares are often associated with ejecta seen in soft X-rays or EUV. (2)
Those ejecta seem to start before HXR or related decimetric radio continua (DCIM emission). (3) DCIM occurring nearly simultaneously
with the first HXR peak are located very close to the HXR source. Later in the flare, DCIM generally becomes stronger, drifts
to lower frequency and occurs far from the HXR source. Thus the positions at high frequency are generally closer to the HXR
source. DCIM emission consists of pulses that drift in frequency. The very high and sometimes positive drift rate suggests
spatially extended sources or type III like beams in an inhomogeneous source. Movies of selected flares used in this study
can be found on the CD-ROM accompanying this volume.
Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1026194227110 相似文献
5.
On September 14–18, 2000, a medium-small solar active region was observed at Ganyu Station of Purple Mountain Observatory. Its spots were not large, but it had a peculiar active filament. On Sep.16, a flare of importance IIIb with rather intense geophysical effects was produced. Our computation of the magnetic structure of the active region reveals that the rope-shaped filament was concerned with a low magnetic arc close to magnetic neutral line. An intense shear of magnetic field occurred near magnetic rope. The QSL analysis shows that a 3-D magnetic reconnection might appear in the vicinity of filament, and this can be used to interpret the formation of a large flare. 相似文献
6.
We report observations made from several interplanetary spacecraft, of the large low-energy particle event of 23–27 April, 1979 associated with solar filament activity. We discuss the intensity, spectral and directional evolution of the event as observed in the energy range 35–1600 keV on ISEE-3, located ~ 0.99 AU from the Sun upstream of the Earth. We demonstrate that the shock disturbance propagating through the interplanetary medium and observed at ISEE-3 on 24/25 April strongly controls the particle event. From a comparison of the ISEE-3 observations with those on other spacecraft, in particular on Helios-2, located at 0.41 AU heliocentric distance near the Sun-Earth line, we identify the solar filament erupting on late 22 April near central meridian as the trigger for the propagating shock disturbance. This disturbance which comprises a forward shock and a reverse shock at the orbit of ISEE-3 is found to be the main source of the energetic proton population observed. 相似文献
7.
Three low-energy particle events (35–1600 keV) associated with interplanetary shocks, detected at 1 AU by ISEE-3, have been identified as originating in solar disappearing filaments instead of large flares. This increases to fourteen the number of events of this kind presently known. The observational characteristics of these non-flare generated events are similar to the ones of the other eleven events already known (i.e., absence of type II or IV bursts, weak X-ray emission, H brightening in the surroundings of the filament disappearance, frequent presence of a double-ribbon event, slow propagation of the generated interplanetary shock, lack of shock deceleration). 相似文献
8.
《天文和天体物理学研究(英文版)》2020,(10)
Solar filaments are an intriguing phenomenon, like cool clouds suspended in the hot corona.Similar structures exist in the intergalactic medium as well. Despite being a long-studied topic, solar filaments have continually attracted intensive attention because of their link to coronal heating, coronal seismology, solar flares and coronal mass ejections(CMEs). In this review paper, by combing through the solar filament-related work done in the past decade, we discuss several controversial topics, such as the fine structures, dynamics, magnetic configurations and helicity of filaments. With high-resolution and highsensitivity observations, combined with numerical simulations, it is expected that resolving these disputes will definitely lead to a huge leap in understanding the physics related to solar filaments, and even shed light on galactic filaments. 相似文献
9.
Jiulin Du 《Astrophysics and Space Science》1993,209(2):221-227
Using Euler's equation of motion, the equation for disturbed fluid motion against a hydrostatic equilibrium has been derived, and the nonequilibrium dynamical equation of a P-PI nuclear reaction system driven by He3 has been analysed using developed nonequilibrium theory. We find that the system in the solar core is unstable in the layer extending from about 0.2R
to 0.4R
if the core is disturbed by fluid motion; this instability may be related to thermal diffusion. 相似文献
10.
The mineralogical composition of grains produced in supernova ejecta is explored via chemical equilibrium condensation computations. These calculations are carried out for chemical compositions characteristic of each of several supernova zones, taking into account the pressure decrease due to adiabatic expansion and condensation. The distributions of the major elements among the various gaseous species and solid phases are graphically displayed. These computations reveal that many of the major condensates from supernova ejecta are also stable against evaporation in a gas of solar composition at high temperatures. This is especially true for minerals containing the elements O, Mg, Al, Si, Ca, Fe and Ti. Grains which form in supernova ejecta are less likely to become homogenized with solar nebular gas than SN gas and are thus potential sources of exotic isotopic compositions in the early solar system. The calculated elemental distributions of supernova condensates are applied to problems concerning isotopic anomalies and large mass-dependent isotopic fractionations discovered in the meteorite Allende. The order in which the major elements become totally condensed is found to be nearly independent of the supernova zone considered, being the same as that for a solar gas. The consequence of this may be that some of the observed depletions of heavy elements in the interstellar gas are due to supernova-produced dust.Paper presented at the Conference on Protostars and Planets, held at the Planetary Science Institute, University of Arizona, Tucson, Arizona, between January 3 and 7, 1978. 相似文献
11.
A nuclear reaction network of 903 different, strong and electromagnetic reactions, linking 107 chemical constituents is used to study the elements synthesized in the neutron rich material, ejected in supernova explosions. A large number of three body reactions virtually eliminates the usual bottle neck at theA=5 mass gap.For initially high temperatures and densities,T=1010K and =7×108 gm/cm3, with expansion time scales of 10–3–10–2 sec, three differentn top ratios,n/p=4,n/p=3/2, andn/p1, are considered for the ejected matter. In all three cases, the material synthesized is preponderantly heavy. For then/p=4 model, the conditions at the charged particle freeze-out are ideal for the r-process. The onset of this rapid neutron capture phase is explicitly shown with a sequence of time lapse abundance plots. 相似文献
12.
We present a theory of filament eruption before the impulsive phase of solar flares. We show that the upward motion of the magnetic X-point tracing the filament eruption begins several minutes before the impulsive phase of the flare, where the explosive magnetic reconnection starts at the X-point magnetic field configuration located under the filament. No change occurs in the character of the motion of the X-point during the onset of the explosive magnetic reconnection. The upward speed of the X-point is about 110 km s-1 at the onset of the impulsive phase. We give an important condition leading to filament eruptions, which relate to the state of the current sheet under the filament, where the magnetic energy can be released. 相似文献
13.
High-resolution Hαobservations indicate that filaments consist of an assembly of thin threads.In quiescent filaments,the threads are generally short,whereas in active region filaments,the threads are generally long.In order to explain these observational features,we performed one-dimensional radiative hydrodynamic simulations of filament formation along a dipped magnetic flux tube in the framework of the chromospheric evaporation-coronal condensation model.The geometry of a dipped magnetic flux tube is characterized by three parameters,i.e.,the depth(D),the half-width(w)and the altitude(h)of the magnetic dip.A survey of the parameters in numerical simulations shows that when allowing the filament thread to grow in 5 days,the maximum length(Lth)of the filament thread increases linearly with w,and decreases linearly with D and h.The dependence is fitted into a linear function Lth=0.84w-0.88D-2.78h+17.31(Mm).Such a relation can qualitatively explain why quiescent filaments have shorter threads and active region filaments have longer threads. 相似文献
14.
We calculate the reverse shock (RS) synchrotron emission in the optical and the radio wavelength bands from electron–positron pair-enriched gamma-ray burst ejecta with the goal of determining the pair content of gamma-ray bursts (GRBs) using early-time observations. We take into account an extensive number of physical effects that influence radiation from the RS-heated GRB ejecta. We find that optical/infrared flux depends very weakly on the number of pairs in the ejecta, and there is no unique signature of ejecta pair enrichment if observations are confined to a single wavelength band. It may be possible to determine if the number of pairs per proton in the ejecta is ≳100 by using observations in optical and radio bands; the ratio of flux in the optical and radio at the peak of each respective RS light curve is dependent on the number of pairs per proton. We also find that over a large parameter space, RS emission is expected to be very weak; GRB 990123 seems to have been an exceptional burst in that only a very small fraction of the parameter space produces optical flashes this bright. Also, it is often the case that the optical flux from the forward shock is brighter than the RS flux at deceleration. This could be another possible reason for the paucity of prompt optical flashes with a rapidly declining light curve at early times as was seen in GRBs 990123 and 021211. Some of these results are a generalization of similar results reported in Nakar & Piran. 相似文献
15.
Simone Bianchi Raffaella Schneider 《Monthly notices of the Royal Astronomical Society》2007,378(3):973-982
The presence of dust at high redshift requires efficient condensation of grains in supernova (SN) ejecta, in accordance with current theoretical models. Yet observations of the few well-studied supernovae (SNe) and supernova remnants (SNRs) imply condensation efficiencies which are about two orders of magnitude smaller. Motivated by this tension, we have (i) revisited the model of Todini & Ferrara for dust formation in the ejecta of core collapse SNe, and (ii) followed, for the first time, the evolution of newly condensed grains from the time of formation to their survival – through the passage of the reverse shock – in the SNR. We find that 0.1–0.6 M⊙ of dust form in the ejecta of 12–40 M⊙ stellar progenitors. Depending on the density of the surrounding interstellar medium, between 2 and 20 per cent of the initial dust mass survives the passage of the reverse shock, on time-scales of about 4–8 × 104 yr from the stellar explosion. Sputtering by the hot gas induces a shift of the dust size distribution towards smaller grains. The resulting dust extinction curve shows a good agreement with that derived by observations of a reddened QSO at z = 6.2 . Stochastic heating of small grains leads to a wide distribution of dust temperatures. This supports the idea that large amounts (∼0.1 M⊙ ) of cold dust ( T ∼ 40 K) can be present in SNRs, without being in conflict with the observed infrared emission. 相似文献
16.
Energy transport in a hot flare plasma is examined with particular reference to the influence of fluid motion. On the basis of dimensional considerations the dynamical timescale of the flare plasma is shown to be comparable to the timescale for energy loss by conduction and radiation. It is argued that mass motion is likely to have a profound influence on the evolution of the flare.The detailed response of a flare filament to a localized injection of energy is then analyzed. Radiative, conductive and all dynamical terms are included in the energy equation. Apart from greatly enhancing the rate of propagation of the thermal disturbance through space, mass motion is found to be significant in transferring energy through the moving fluid.Finally the predicted thermal structure is discussed and it is concluded that the presence of mass motions in the flare may be inferred from the form of the soft X-ray differential emission measure. 相似文献
17.
P. C. H. Martens 《Solar physics》1986,107(1):95-108
The two-dimensional Van Tend and Kuperus (1978) scenario for pre-flare energy build-up is extended to a fully three-dimensional model and applied to the 16 May, 1981 flare observed at Debrecen. It is shown that there is plenty of free energy (1033 erg) available to explain the ensuing large two-ribbon flare. This estimate is an order of magnitude larger than the simple estimate made by Van Tend, as a result of the three-dimensional character of the present model. It is further confirmed that the global form of the preflare circuit is decisive for determining the amount of energy stored in the preflare configuration, while the internal structure of the filament is of little importance. This is in accordance with the similar claims of Alfvén and Van Tend and Kuperus.Order of magnitude estimates are derived for all the lumped circuit parameters of the preflare filament-return current circuit; self-inductance, resistance, current strength, and applied voltage. It is found that the model gives correct predictions for the independently observed photospheric flow velocity and current strength in filaments.NAS/NRC Resident Research Associate. 相似文献
18.
We use conventional numerical integrations to assess the fates of impact ejecta in the Saturn system. For specificity we consider impact ejecta launched from four giant craters on three satellites: Herschel on Mimas, Odysseus and Penelope on Tethys, and Tirawa on Rhea. Speeds, trajectories, and size of the ejecta are consistent with impact on a competent surface (“spalls”) and into unconsolidated regolith. We do not include near-field effects, jetting, or effects peculiar to highly oblique impact. Ejecta are launched at velocities comparable to or exceeding the satellite's escape speed. Most ejecta are swept up by the source moon on time-scales of a few to several decades, and produce craters no larger than 19 km in diameter, with typical craters in the range of a few km. As much as 17% of ejecta reach satellites other than the source moon. Our models generate cratering patterns consistent with a planetocentric origin of most small impact craters on the saturnian icy moons, but the predicted craters tend to be smaller than putative Population II craters. We conclude that ejecta from the known giant craters in the saturnian system do not fully account for Population II craters. 相似文献
19.
《New Astronomy》2014
The plasma from solar filament eruptions sometimes falls down to the lower solar atmosphere. These interesting events can help us to understand the properties of downflows, such as the temperature and the conversion between kinetic energy and thermal energy. We analyze the case of a filament eruption in active region NOAA 11283 and brightening caused by the return of filament material on September 7 and 8, 2011, observed by the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) aboard the Solar Dynamics Observatory (SDO). Magnetic flux cancellation was observed as a result of the eruption after the eruptive filament started to ascend. Another filament near the eruptive filament was disturbed by an extreme ultraviolet (EUV) wave that was triggered by the eruptive filament, causing it to oscillate. Based on coronal seismology, the mean magnetic field strength in the oscillatory filament was estimated to be approximately 18 ± 2 G. Some plasma separated from the filament and fell down to the solar northwest surface after the filament eruption. The velocities of the downflows increased at accelerations lower than the gravitational acceleration. The main characteristic temperature of the downflows was about 5 × 104 K. When the plasma blobs fell down to lower atmospheric heights, the high-speed downward-travelling plasma collided with plasma at lower atmospheric heights, causing the plasma to brighten. The brightening was observed in all 8 AIA channels, demonstrating that the temperature of the plasma in the brightening covered a wide range of values, from 105 K to 107 K. This brightening indicates the conversion between kinetic energy and thermal energy. 相似文献
20.
We report here on a survey of distal fine-grained ejecta deposits on the Moon, Mars, and Venus. On all three planets, fine-grained ejecta form circular haloes that extend beyond the continuous ejecta and other types of distal deposits such as run-out lobes or ramparts. Using Earth-based radar images, we find that lunar fine-grained ejecta haloes represent meters-thick deposits with abrupt margins, and are depleted in rocks ?1 cm in diameter. Martian haloes show low nighttime thermal IR temperatures and thermal inertia, indicating the presence of fine particles estimated to range from ∼10 μm to 10 mm. Using the large sample sizes afforded by global datasets for Venus and Mars, and a complete nearside radar map for the Moon, we establish statistically robust scaling relationships between crater radius R and fine-grained ejecta run-out r* for all three planets. On the Moon, r* ∼ R−0.18 for craters 5-640 km in diameter. For Venus, radar-dark haloes are larger than those on the Moon, but scale as r* ∼ R−0.49, consistent with ejecta entrainment in Venus’ dense atmosphere. On Mars, fine-ejecta haloes are larger than lunar haloes for a given crater size, indicating entrainment of ejecta by the atmosphere or vaporized subsurface volatiles, but scale as R−0.13, similar to the ballistic lunar scaling. Ejecta suspension in vortices generated by passage of the ejecta curtain is predicted to result in ejecta run-out that scales with crater size as R1/2, and the wind speeds so generated may be insufficient to transport particles at the larger end of the calculated range. The observed scaling and morphology of the low-temperature haloes leads us rather to favor winds generated by early-stage vapor plume expansion as the emplacement mechanism for low-temperature halo materials. 相似文献