首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Previous work has parameterized the pitch angle dependence of the charge-exchange lifetime τ of ring current ions in terms of γ, the power of the cosine of the mirror latitude λm of the particles, such that τ(λm)τ(0) ≌cosγ λm at given L. Using the atomic hydrogen density model of Johnson and Fish, previous authors have suggested values of γ = 5 or 6. We here evaluate γ as a function of λm and L using the more recent Chamberlain density models, and show that γ = 3?4 is more appropriate over most of the pitch angle and L range. Consequently, ion distributions in the ring current decay phase are expected to become rather less anisotropic in pitch angle due to chargeexchange than previously believed. We have also investigated the use of several other simple approximate analytic forms for τ(λm)τ(0), one of which gives far better agreement with the numerical results than the cosγ λm, variation, and should hence be used in future studies.  相似文献   

2.
Brandt  P. C: Son  Mitchell  D.G.  Roelof  E.C.  Burch  J.L. 《Solar physics》2001,204(1-2):377-386
Global images of the Earth's inner magnetosphere and its response to the coronal mass ejection (CME) on the 15 July 2000 were obtained by the IMAGE spacecraft. The images were taken in energetic neutral atoms (ENA) by the High-Energy Neutral Atom (HENA) imager. ENAs are produced by charge exchange between the hot ion population of the magnetosphere and the cold neutral hydrogen geocorona. The ENA images show how plasma is injected into the nightside magnetosphere as the interplanetary magnetic field (IMF) turns strongly southward. As the IMF B z increases and the storm intensity decreases, the ENA images show that the ring current becomes closed and symmetric as IMF B z reaches positive values.  相似文献   

3.
Variations of the cosmic ray cut-off rigidities have been observed at mid latitudes during the magnetic storm period 16–18 December 1971. In the present paper the cut-off changes over Europe are determined on an hourly basis from the registrations of 10 European neutron monitor stations. As a first order approximation it is assumed that the observed cut-off variations originate from a spherical current sheet concentric with the Earth and with a current density proportional to the cosine of the geomagnetic latitude. Applying results obtained by Treiman (1953), the radii of the current sphere can then be deduced from the dependences of the relative cut-off rigidity variations on geomagnetic latitude. The sphere is found to be located between 4 and 6 Earth radii during the main phase of the magnetic storm on 17 December 1971. A comparison of these results with in situ measurements carried out in the equatorial plane by Explorer 45 shows good agreement.  相似文献   

4.
The UCL 3-dimensional time-dependent thermospheric model, with atomic and molecular components, is used to study composition changes in the neutral gas at F-layer heights produced by a severe magnetic storm. The computations give the mean molecular weight (MW), temperature and winds as functions of latitude, longitude, height and time for a period of 30 h.Starting from quiet-day conditions, the simulation starts with a 6-h “substorm” period in which strong electric fields are imposed in the auroral ovals, accompanied by particle input. Weaker electric fields are imposed for the remaining 24 h of the simulation. The energy input causes upwelling of air in the northern and southern auroral ovals, accompanied by localized composition changes (increases of MW), which spread no more than a few hundred kilometres from the energy sources. There is a corresponding downward settling of air at winter midlatitudes and low latitudes, producing widespread decreases of MW at a fixed pressure-level. These storm effects are superimposed on the quiet-day summer-to-winter circulation, in which upwelling occurs in the summer hemisphere and down welling in the winter hemisphere. The composition changes seen at a fixed height differ somewhat from those at a fixed pressure-level, because of the expansion resulting from the storm heating.The results can be related to the well-known prevalence of “negative” F-layer storms (with decreases of F2-layer electron density) in summer, and “positive” F-layer storms in winter and at low latitudes. However, the modelled composition changes are not propagated far enough to account for the observed occurrence of negative storms at some distance from the auroral ovals. This difficulty might be overcome if particle heating occurs well equatorward of the auroral ovals during magnetic storms, producing composition changes and negative storm effects at midlatitudes. Winds do not seem a likely cause of negative storm effects, but other factors (such as increases of vibrationally-excited N2) are possibly important.  相似文献   

5.
We investigate the decay of bound electron-positron pairs (positronium) in strong magnetic fields (of order 1012 Gauss, which are assumed for neutron stars) on the basis of a correct treatment of the two-body problem, thus improving previous work by Carr and Sutherland (1978). We find that, even in the presence of a strong magnetic field, the decay of the ground state of positronium must be momentum conserving, whereby the possibility of the one-photon decay is ruled out. We calculate the transition rate for the two-photon annihilation process which turns out to be larger than the field free transition rate by a factor (1/)2 B/B cr (where is the electromagnetic coupling constant, andB cr=m e 2 c 2/(e)=4.41×1013 Gauss).  相似文献   

6.
N. Gopalswamy 《Solar physics》1990,126(2):367-370
A new mechanism has been proposed for the continuum and burst components of solar storm radiation by Genkin, Erukhimov, and Levin (1989a, b). In this paper, we point out that while bursts can be explained by the proposed mechanism of scattering on plasma turbulence generated density fluctuations, the continuum cannot be explained by sattering on thermal ion density fluctuations. The reason is, under the same coronal conditions, second harmonic emissions will dominate over the fundamental emission due to scattering on thermal ion density fluctuations in contradiction to observations. We also note that the range of plasma wave densities needed for this mechanism may not be realistic for the case of plasma wave generation due to loss cone instability. It is further argued that coalescence of plasma waves with low-frequency waves still seems to be the plausible mechanism.  相似文献   

7.
Energetic protons haying ring type distributions are shown to generate low-frequency electrostatic waves, propagating nearly transverse to the geomagnetic field lines, in the ring current region by exciting Mode 1 arid Mode 2 nonresonant instabilities and a resonant instability. Mode 1 nonresonant instability has frequencies around ~4 Hz with transverse wavelengths of ~(8–80) km, and it is likely to occur in the region L = (7–8). Mode 2 nonresonant instability can generate frequencies ~(850–1450) Hz with transverse wavelengths ~(2–20) km. The typical frequencies and transverse wavelengths associated with the resonant instability are (950–1250) Hz and (30–65) km. Both the Mode 2 nonresonant instability and the resonant instability can occur in the ring current region with L = (4–6). The low-frequency modes driven by energetic protons could attain maximum saturation electric field amplitude varying from 0.8 mV/m to 70 mV/m. It is suggested that the turbulence produced by the low-frequency modes may cause pitch angle scattering of ring current protons in the region outside the plasmapause resulting in the ring current decay.  相似文献   

8.
Assuming that the formation of the ring current belt is a direct consequence of an enhanced crosstail electric field and hence of an enhanced convection, we calculate the total ring current kinetic energy (KR) and the ring current energy injection rate (UR) as a function of the cross-tail electric field (ECT); the cross-tail electric field is assumed to have a step function-like increase. The loss of ring current particles due to recombination and charge-exchange is assumed to be distributed over the whole ring current region. It is found that: (1) the steady-state ring current energy KR is approximately linearly proportional to ECT; (2) the characteristic time tc for KR to reach the saturation level is 3–4 h; (3) the injection rate UR is proportional to ECTβ where β ? 1.33?1.52; and (4) the characteristic time tp for UR to reach the peak value is 1–2 h and the peak UR value is 50% higher than the steady-state value. Since β is now determined specifically for an enhanced convection, an observational determination of the relationship between ECT(or φCT) and UR is essential to a better understanding of ring current formation processes. If the observed β is greater than 1.5, additional processes (e.g. an injection of heavy ions from the ionosphere to the plasma sheet and subsequently to the ring current region) may be required.  相似文献   

9.
Characteristics of the time variations of Dst during magnetic storms are discussed in the context of several energizing and loss processes thought to be important for the production and decay of the storm time ring current. The energy input rate UR may be more accurately evaluated if the predominant lifetime for ring current particle loss is taken as a few hours during main phase energizations, and a few tens of hours for particles remaining during recovery phases, and allowing for populations with a range of lifetimes during recurrent episodes of energization.  相似文献   

10.
It is shown that the direct current dissipation is very unlikely to be the heat source of the coronal loop, because it accompanies unacceptably high heating rate in the chromospheric portion of the loop. This also suggests that a rather weak current density can supply the heat to a small (R < 107 cm) chromospheric magnetic features. A larger magnetic element may be heated by the direct current dissipation only if the current changes directions within a single element so that the generated magnetic field is sufficiently weak to insure MHD stability.  相似文献   

11.
Low altitude satellite measurements of protons in the 1–100 keV range indicate two energy dependent proton precipitation boundaries. At low invariant latitudes mostly below 60° there is a region of moderately weak proton precipitation. The poleward boundary of this region tends to be at higher latitudes for the high energy protons than for the low energy protons. At high invariant latitudes there is a region where both the low and high energy protons precipitate with an isotropic pitch-angle distribution. The equatorward boundary of this region tends to be at lower latitudes for protons with energy more than 100 keV than for those in the 1–6 keV range. This region with isotropic pitch-angle distribution is located well outside the plasmapause both for the 1–6 and 100-keV protons.Between these two precipitation zones there is a region where the proton pitch-angle distribution is highly anisotropic with almost no protons in the loss cone. This region tends to be wider and more pronounced in the 1–6 than in the 100-keV protons.These findings lend further support to the mechanism of ion-cyclotron instability as the cause of proton pitch-angle diffusion in the low and intermediate regions. The process responsible for the strong diffusion at auroral latitudes has not yet been identified.  相似文献   

12.
Pitch-angle diffusion of ring current protons is investigated, assuming that the scattering is caused by resonant interaction with electrostatic ion loss-cone waves. Bounce averaged diffusion coefficients are presented for different wave energy distributions. It is found that wave amplitudes about 1 mV/m are required to give strong diffusion of protons with average energy.  相似文献   

13.
It is shown that the field line resonance phenomenon that occurs for quasi-transverse signals in a non-uniform cold plasma generally occurs for disturbances with a compressional magnetic component in a hot plasma like the ring current. The equations describing such localised signals are derived and discussed in various limits. It is pointed out that recent observations of low frequency compressional oscillations on spacecraft may be an example of such localised signals.  相似文献   

14.
Solving the nonlinear partial differential equations of magnetohydrodynamics numerically, we examine (1) the time development of a purely toroidal magnetic field (a magnetic ring) and (2) the interaction of a magnetic ring with a poloidal magnetic field. Axisymmetry and incompressibility are assumed. Parameters are chosen to correspond to photospheric conditions. In case (1), the magnetic ring contracts to the axis and then splits in two with one ring travelling up along the axis and the other down. In case (2), a large toroidal velocity field is generated which has opposite direction of flow above and below the magnetic ring. The magnetic and flow patterns of case (2) may persist with little change for a relatively long time. We conjecture that toroidal magnetic fields may be involved in the bright rings of sunspots or in the dynamics of spicules.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

15.
The rate of energy input to the ring current is studied as a function of solar wind parameters. The ring current dissipation rate is also examined. The decay constant τ in the main phase of a storm has been shown to be independent of its intensity and to equal (4 ± 2) h. In the recovery phase τ rises with increasing storm intensity.  相似文献   

16.
The inductive electric field generated by a time-dependent symmetric ring current has been investigated. The symmetric ring current was modelled by a population of protons drifting in a magnetic dipole field. The interaction of these protons with ion-cyclotron waves was assumed to be the dominant energy loss process for the ring current protons, at least under certain conditions. The calculation, with spectral densities for the ion-cyclotron waves that are based on experimental data, showed that an azimuthal inductive electric field of as much as 0.25 mV/m can be produced by this mechanism. Furthermore there is evidence that if the spectral density of the waves is substantially larger than the one adopted here, the electric field might increase to the order of 1.0 mV/m or more.  相似文献   

17.
In the present paper the radiation production and energy deposition by ring current protons precipitated along magnetic field lines into the mid-latitude upper atmosphere is investigated. Specifically, we are interested in protons lost from the ring current by plasma instabilities. We first determine the magnitude and sharpness of the atmospheric loss cone. We then study the behavior of the precipitated hydrogen particles in the denser atmosphere using a Monte Carlo calculation. It is found that the energy deposition and radiation production will critically depend on how far the ring current protons diffuse into the loss cone before being neutralized in the atmosphere; this in turn will depend on the strength of the plasma turbulence in the ring current belt region.  相似文献   

18.
The effect of an electric field induced by a rapidly decaying ring current on the motion of charged particles in the magnetosphere has been investigated using Euler potentials. For a model consisting of the earth dipole and the symmetric ring current, the electric field satisfies the condition E . B = 0.

Under this circumstance, the E × B drift of the particle can be identified as the motion of the magnetic field lines and vice versa. The time dependent electric field induced can be evaluated in a Spherical polar coordinate system by the formula

where and β are Euler potentials.

A model calculation on the particle drift velocity vD = E × B/B2 shows that the radial component of the drift velocity is in good agreement with those deduced from whistler duct studies.  相似文献   


19.
In the forward part of the magnetosphere the distant tail current system approximates a magnetic quadrupole composed of two distorted adjacent solenoids. The current in the neutral sheet at this distance is accurately approximated as an infinitesimally thin current sheet. We have calculated the magnetic field near the Earth by integrating over the entire tail current system assuming the magnetotail is a cylinder of constant radius and that the tail current decreases with distance into the tail as |x|?13. The field is then represented by a scalar potential expanded into spherical harmonics which may be conveniently added to the spherical harmonic expansion of the scalar potential representing the magnetopause current system.  相似文献   

20.
Unusually great fluctuations in the ΔB module of the geomagnetic field have been observed in the polar cap from the satellite Cosmos-321. They are explained by small-scale two-sheet field-aligned current systems which exist during the periods when magnetic fields having a considerable northward Bz(Bz 10 nT) component are observed in interplanetary space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号