首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT Permian aeolian sediments on the island of Arran are divisible into dune (including draa) and interdune deposits. Both types display a distinctive and unusually wide variation in grain size. The dominant features of the dune deposits are grainfall lamination, sandflow lamination, and inverse graded lamination associated with ripple-form lamination and normal graded lamination. The flat-lying aeolian interdune deposits are characterised by granule and sand ripples, horizontal lamination in coarse sand and granules, plane bed lamination and inverse graded lamination. Associated structures include ripple-form lamination and deflation lags. Three types of trace fossil associated with completely bioturbated horizons occur in some low-angle dune and interdune deposits.
The aeolian facies interfinger with alluvial fan deposits giving rise to three recognizable facies belts. Marginal aeolian deposits are associated with fluvial conglomerates and are dominated by interdune deposits and occasionally very thin barchan deposits (set height 3-37 cm). Intermediate aeolian deposits are characterized by interbedded crescentic dune, small draa (dune set height 5 cm-4.5 m) and interdune deposits, and rare fluvial and lake sediments. Basinal aeolian deposits are dominated by draa deposits (dune set height 0.2-28 m) associated with rare interdune sediments. Transverse dunes and draas were moved by north-eastern palaeowinds towards the foot of the alluvial fans. The aeolian sediments were deposited in a fault-bounded desert basin.  相似文献   

2.
A transverse crescentic draa in the Algodones dune field, California, was monitored for a year using surface process mapping, aerial photography and supplemental wind measurement. The draa is oriented by the long-term resultant wind, whereas its superimposed features are in equilibrium with the bedform-modified secondary airflow. Surface airflow and the movement of superimposed bedforms is typically oblique or parallel to the draa brinkline, particularly on the lee slope. Comparison of measurements of draa movement and sand deposition on the lee slope, with expected rates calculated from wind data and draa size, confirm that there is a significant component of sand flow parallel to the draa brinkline. The internal structure being generated at the base of the draa lee slope is inferred from the surface processes active there. Within the space of a kilometer two types of compound cross-strata, separated by an area of simple cross-strata, are being produced. This has significant implications for interpretations of ancient aeolian strata. Variations in internal structure types found in lateral sequence may be generated by one complex bedform, and these cross-strata may be simple or compound. Second-order bounding surface orientations indicate resultant primary palaeowind directions; compound cross-strata dip directions indicate secondary flow conditions. The existence of cross-strata dip directions oblique or perpendicular to the second-order surface indicates longitudinal secondary flow on the lee face, but not necessarily a longitudinal or oblique draa. Without further detailed knowledge about various draa configurations and behaviour, stratification attributed to draas can be used only to interpret activity on the lower draa lee face.  相似文献   

3.
Hurricane washover fans from the Texas Gulf Coast exhibit large-scale rhomboid bed forms developed on washover deposits of fine sand with varying shell content. Washover processes inferred from aerial photographs, storm characteristics, and physical settings suggest that these bed forms are the product of (1) storm surge flooding or (2) high wind shear stress. Multiple bed forms, including large-scale rhombs, are responsible for sedimentary structures preserved in washover deposits. Proximal channels exhibit scour and fill sequences capped by mud drapes. Mid-channel fan deposits also have scour bases marked by shell lags which are overlain by horizontal laminations and foreset and backset laminae. Distal fan sediments are relatively shell free and are interbedded with tidal flat deposits characterized by bioturbated, alternating sand and mud laminae. Rhomboidal patterns can form on the free surface of water in response to five processes: (1) wave interference from two externally independent sources, (2) wave interference from refraction of a single set of wave fronts, (3) standing oblique waves caused by bed roughness elements, (4) standing oblique waves formed at channel boundaries and channel transitions, and (5) wind stress. Geologically, standing oblique waves from unidirectional nearly supercritical flow is probably the most important process in rhomboid bed form development.  相似文献   

4.
《Quaternary Science Reviews》2003,22(10-13):1085-1092
Climate changes over the Holocene have directly impacted on both coastal processes and human use of coastal areas. This paper presents results from the dating of wind blown sand deposits collected from coastal and archaeological sites in Northern Scotland. Archaeological remains are frequently found interspersed with sand deposits and represent distinct periods of occupation of settlement sites within the local landscapes. In some cases storm events sufficiently inundate the sites with sand to result in periodic abandonment. Storm events can also have dramatic results on adjacent rock coastlines, with storm boulder ridges emplaced by large waves, burying sand deposits on cliff-top sites. Work has been undertaken using a quartz SAR protocol to date sand deposition at two archaeological sites in Orkney and a cliff-top site in Shetland. These dates provide chronological information, which help to construct regional chronologies of climatic instability and environmental change and allow the SAR-OSL method to be assessed as an accurate sediment dating tool in this context.  相似文献   

5.
The Hornby Bay Group is a Middle Proterozoic 2.5 km-thick succession of terrestrial siliciclastics overlain by marine siliciclastics and carbonates. A sequence of conglomeratic and arenaceous rocks at the base of the group contains more than 500 m of mature hematitic quartz arenite interpreted to have been deposited by migrating aeolian bedforms. Bedforms and facies patterns of modern aeolian deposits provided a basis for recognizing two sequences of aeolian arenite. Both sequences interfinger with alluvial—wadi fan conglomerates and arenites deposited by braided streams. Depositional processes, facies patterns and paleotopographic position of the arenites are consistent with modern sand sea dynamics.Distal aeolian facies in both sequences are composed of trough crossbed megasets deposited by climbing, sinuous-crested, transverse dunes. Megasets comprise a gradational assemblage of tabular to wedge-planar cosets formed by deflation/reactivation of dune lee slopes and migration of smaller superposed aeolian bedforms (small dunes and wind ripples). Megasets in the proximal facies are thinner, display composite internal stratification and have a tabular-planar geometry which suggests that they were formed by smaller, straight-crested transverse dunes. Most stratification within the crossbeds is inferred to have formed by the downwind climbing of aeolian ripples across the lee slopes of dunes.Remarkably few Precambrian aeolian deposits have been reported previously. This seems anomalous, because most Precambrian fluvial sediments appear to have been deposited by low sinuosity (braided) streams, the emergent parts of which are prime areas for aeolian deflation. Frequent floods and rapid lateral migration of Precambrian humid climate fluvial systems probably restricted aeolianite deposition to arid paleoclimates. Thus the apparent anomaly may reflect non-recognition and/or non-preservation of aeolianites and/or variations in some aspect of sand sea formation and migration unique to the Precambrian. Reconstruction of the Hornby Bay Group aeolianites using recently developed criteria for their recognition suggests that the latter reason did not exert a strong influence.  相似文献   

6.
The existence of a mid‐Cretaceous erg system along the western Tethyan margin (Iberian Basin, Spain) was recently demonstrated based on the occurrence of wind‐blown desert sands in coeval shallow marine deposits. Here, the first direct evidence of this mid‐Cretaceous erg in Europe is presented and the palaeoclimate and palaeoceanographic implications are discussed. The aeolian sand sea extended over an area of 4600 km2. Compound crescentic dunes, linear draa and complex aeolian dunes, sand sheets, wet, dry and evaporitic interdunes, sabkha deposits and coeval extradune lagoonal deposits form the main architectural elements of this desert system that was located in a sub‐tropical arid belt along the western Tethyan margin. Sub‐critically climbing translatent strata, grain flow and grain fall deposits, pin‐stripe lamination, lee side dune wind ripples, soft‐sediment deformations, vertebrate tracks, biogenic traces, tubes and wood fragments are some of the small‐scale structures and components observed in the aeolian dune sandstones. At the boundary between the aeolian sand sea and the marine realm, intertonguing of aeolian deposits and marine facies occurs. Massive sandstone units were laid down by mass flow events that reworked aeolian dune sands during flooding events. The cyclic occurrence of soft sediment deformation is ascribed to intermittent (marine) flooding of aeolian dunes and associated rise in the water table. The aeolian erg system developed in an active extensional tectonic setting that favoured its preservation. Because of the close proximity of the marine realm, the water table was high and contributed to the preservation of the aeolian facies. A sand‐drift surface marks the onset of aeolian dune construction and accumulation, whereby aeolian deposits cover an earlier succession of coastal coal deposits formed in a more humid period. A prominent aeolian super‐surface forms an angular unconformity that divides the aeolian succession into two erg sequences. This super‐surface formed in response to a major tectonic reactivation in the basin, and also marks the change in style of aeolian sedimentation from compound climbing crescentic dunes to aeolian draas. The location of the mid‐Cretaceous palaeoerg fits well to both the global distribution of other known Cretaceous erg systems and with current palaeoclimate data that suggest a global cooling period and a sea‐level lowstand during early mid‐Cretaceous times. The occurrence of a sub‐tropical coastal erg in the mid‐Cretaceous of Spain correlates with the exposure of carbonate platforms on the Arabian platform during much of the Late Aptian to Middle Albian, and is related to this eustatic sea‐level lowstand.  相似文献   

7.
This paper describes the use of NAnoscale Metals in EarthGas (NAMEG) and MObile forms of MEtals in Overburden (MOMEO) methods in regional scale geochemical exploration for giant deposits in terrains covered by overburden. These methods are based on the premise that gases generated from the earth's interior can not only transport mobile forms of elements from an ore deposit and its geochemical halos to the surface to form a local anomaly, but also transport them from distinct bedrock “geochemical blocks” hosting large and giant ore deposits and give rise to large regional geochemical anomalies and geochemical provinces at the surface.Regional NAMEG and MOMEO surveys for giant gold deposits were carried out in Shandong Province, where the largest gold deposits in China are found, and in the Muruntau region of the Kyzylkum Desert, Uzbekistan, one of the world's largest gold ore provinces.In Shandong Province, where most of the area is covered by complex overburden, large regional anomalies in earthgas and water-extractable Au were delineated over and around the giant gold deposits. For many trace elements, the anomalies are larger in area and have greater contrast than those from other methods. High concentration of water soluble Au extends into the southern area covered by transported overburden, suggesting that this region may have potential for the discovery of new concealed gold deposits. The anomalous provinces of Au in both earthgas and water soluble salts coincide with a deep fault, supporting the idea that the deep fault is the main conduit of Au from the interior.In the central Kyzylkum Desert, nearly all Au-hosting rocks are covered by sedimentary sequences overlain by desert sand. Gold and As anomalies over Muruntau and Kokpatas gold deposits have contrasts ranging from 2 to 400 times background. Strong anomalies were also discovered in the south of the Muruntau region, suggesting a promising area for the discovery of new giant gold deposits.  相似文献   

8.
Large barchan-shaped sand deposits have been observed in the north west of Torres Strait. These deposits share characteristics of both subaerial barchan dunes and subaqueous sand banks. A study of satellite imagery indicate that the deposits migrate in the direction indicated by their horns (10-15 m west per year), and that sediment is shed from their horns, features that are characteristic of barchan dunes. However the orientations of sand dunes superimposed upon the sand banks indicate the presence of mutually-evasive channels and circulation of sediment around the sand bank, a characteristic of subaqueous sand banks. The presence of mutually-evasive channels is the criteria used to categorise the deposits as sand banks.Barchan forms are known to exist in regions with limited sediment supply and unidirectional current or wind regimes. In the Torres Strait both these criteria are met. Previous work has demonstrated the presence of a net westward current through the Torres Strait that is driven by the southeast trade winds. The relatively high displacement of the wind-driven currents during the trade wind season relative to the monsoon appears to provide the necessary ‘unidirectional’ regime to form barchans. The low, and typically eastwards, displacement of the residual monsoon season current appears to have a negligible affect on the barchan form. While seasonal wind-driven currents appear to maintain the barchan shape of the sand banks, tidal currents actively maintain mutually-evasive channels observed by variations in dune orientation on the sand banks. A sediment starved environment combined with bedload transport attributed to both wind driven and tidal currents is concluded to create a unique hydrodynamic environment where sand banks can attain a barchan form.  相似文献   

9.
INTRODUCTIONAccordingtopresentdata,theepithermaloredepositsdistributeovertheworld.However,thereisaspecialphe-nomenonwhichthee...  相似文献   

10.
深水内波、内潮汐沉积类型及其油气意义   总被引:3,自引:0,他引:3  
深水内波、内潮汐沉积可归纳为水道型和非水道型两种基本沉积类型。水道型沉积常发育双向递变层序和单向递变层序,单砂层较厚,它不仅是油气的良好储层,而且常与深水重力流沉积和深水背景泥岩沉积一起构成有利的地层或岩性圈闭,应当列为深水沉积区油气勘探的重点目标。非水道型深水内波、内潮汐沉积一般发育由砂泥频繁薄互层所构成的对偶层双向递变层序和对偶层单向递变层序,单砂层很薄,油气勘探意义可能不大。广泛分布的大型沉积物波(分为粗、细粒两种)和水道口附近的内潮汐砂坝,是两种比较特殊的内波、内潮汐沉积建造。根据现有研究实例和沉积成因水流理论分布范围等,建立了深水内波、内潮汐综合沉积模式。  相似文献   

11.
ABSTRACT Stokes surfaces in aeolian deposits are caused by wind scour of unconsolidated material to a roughly planar horizon controlled by near-surface water-tables (Stokes, 1968). A water-table forms a downward limit of scour through the cohesion of damp or wet sand near water-table, and through early cementation by evaporites precipitated in the sediments as water evaporates near the sand-air interface. Study of modern analogues reveals that Stokes surfaces exist in a variety of depositional settings, including a coastal offshore prograding sand sea (Jafurah, Saudi Arabia); a coastal onshore prograding sand sea (Guerrero Negro, Mexico) and a continental sand sea (White Sands, New Mexico, USA). These modern analogues indicate that our concept of Stokes surfaces must be broadened to include the following: (i) modern analogues for Stokes surfaces described here cover areas on the order of 25 km2. These may be as representative of similar surfaces in ancient rocks as hypothesized plains of deflation requiring removal of entire sand seas; (ii) Stokes surfaces occupy a continuum in scale from local to extensive, and erosional surfaces of different magnitude may be stacked closely in the sediments; (iii) Stokes surfaces, although erosional in nature, are commonly associated with deposits both above and below the Stokes bounding surface which plainly reveal the influence of a near-surface groundwater control on wind sedimentation. Moreover, the erosional relief of the bounding surface itself (as well as other features) reveals the influence of a groundwater-table; (iv) Stokes surfaces may be diachronous, representing the lateral shift of a zone of scour within a sand sea rather than simultaneous removal of all dunes from the area encompassed by the erosional surface; (v) Stokes surfaces and associated deposits are often laterally transitional to surfaces and deposits of adjacent depositional environments, including interdunes, tidal flats, lagoons, beaches, lakes and non-aeolian sabkhas. Finally, modern examples from different depositional settings suggest that while most Stokes surfaces have many features in common (such as erosional ridges due to early cementation), there are some features which may, with further study, be revealed to be distinctive of an individual depositional setting.  相似文献   

12.
阿拉善高原干涸湖床沉积物与华北地区沙尘暴   总被引:13,自引:3,他引:13  
文章通过内蒙古阿拉善高原古居延泽干涸湖床沉积物、周缘活动沙丘、沙质草原地表土壤及古代弃荒土地的粒度组成分析,论述干涸湖床沉积物对沙尘天气的影响。古居延泽湖床沉积粒度分析结果表明,干涸湖床的地表湖相沉积物粒径小于10μm的颗粒占64%以上,可以在一般风暴条件下在大气中搬运几千公里,这意味着西北地区干涸湖床产生的粉尘在风暴作用下可以横扫整个东亚北部地区。中国西北地区冬、春季多西北风造成沙尘暴或扬沙天气,西部沙漠、沙地或沙质草场遭遇强风时沙尘被席卷进气流,但其中粗砂粒扬起的高度、搬运的距离有限,当风力稍稍减弱,粗颗粒砂粒沉降,而粉尘继续悬浮运移。当强风途径下一个沙区时新的沙尘加入,沙尘暴呈“接力方式”继续向东南部移动。  相似文献   

13.
The Lower Jurassic erg (aeolian sand sea) deposits of the Wingate Sandstone on the Colorado Plateau are beautifully exposed near Many Farms, Arizona. These 3-D outcrops allow a detailed study of structures and sequenses in the erg body. The erg sequence comprises chiefly oblique dune deposits. The dune facies are in most cases characterized by a well-developed tripartite upbuilding. Each dune coset contains unusually thick and intricate bottomsets, medial low-angle dipping toesets, and upper steeply dipping foresets. The foresets reveal significant across-crest transport of sand and dip within a narrow range of directions towards the ESE. The bottomset beds are composed of compound cross-bedding that documents strong along-crest transport towards the SSW, whereas the toeset beds reveal upslope, downslope, and along-crest transport of sand. The ancient dunes apparently formed in a directionally varying wind flow with prevailing winds (early summer) from the NW and periodic strong winds (late summer) from the SW. The dunes were oblique not only to seasonal transport directions, but also to the resultant annual transport direction and dune migration direction. This was caused by the interaction of the dune system with the primary winds which resulted in secondary airflow and significant along-crest transport of sand. The erg deposits at Many Farms are separated by a number of super bounding surfaces suggesting several episodes of erg formation and destruction. The initial erg system was dominated by transverse dunes, but overlying ergs only contained oblique dunes. All erg systems were bounded to the SW by wide regions of erg margin environments in which aeolian sand sheet, fluvial, and lacustrine facies were deposited. Even though fluvial deposits are absent from the main part of the sequence at the study area, the effects of this system are reflected within the erg deposits at Many Farms.  相似文献   

14.
Although partly active aeolian sand sheets and dunes cover large areas in the zones of (dis)continuous permafrost, little precise information is available about the influence of cold-climate conditions on modern aeolian processes. This means that palaeoenvironmental reconstructions in the stabilised, mainly Late Pleistocene dune fields and cover sand regions in the ‘sand belts’ of the European Lowlands and the Northern Great Plains of the USA and Canada, are necessarily still based on ancient evidence. Cold-climate wind deposits are typically derived from areas of abundant sediment supply like unvegetated flood plains, glacial outwash plains, till plains and lake shores. The common parabolic and transverse dune forms resemble those observed in temperate regions. Although a variety of periglacial features has been identified in Late Pleistocene dune and cover sands none of them indicate that permafrost is crucial to aeolian activity. Specific structures in aeolian strata permit tentative interpretation of the moisture content of depositional sand surfaces, the nature of annual sedimentation cycles and the processes by which strata were deposited and/or contorted. But surprisingly little is known about the role of vegetation in the process of sand accumulation. Dunes are most informative with respect to reconstructions of past wind regimes, which offer important data for verification of palaeoclimatic simulations.  相似文献   

15.
《Applied Geochemistry》2006,21(3):492-514
Geochemical mapping of northern Honshu in the Northeast Japan Arc was carried out using stream sediments at a sampling density of one sample per 130 km2. More than 50 elements were determined in 395 stream sediment samples (<0.18 mm fraction). In geochemical maps, areas with especially low concentrations of large ion lithophile elements (LILE), Be and Li widely overlap with the distribution of Quaternary volcanic rocks along the volcanic front. The areas rich in mafic elements are associated with mafic rocks in many cases. On a regional scale, Ni, Cr and Cu contents are higher in the eastern Paleozoic–Mesozoic basement zone, Pb and Tl tend to be higher on the western zones, and Zn and Cd are high in the western back-arc zone. The areas especially rich in Cu, Zn, Cd, Pb, Bi and Tl coincide with the distribution of large mineral deposits. High concentrations related to Kuroko, hydrothermal-vein, and skarn-type deposits are recognized. High values of As and Sb are related to active geothermal areas near volcanoes and ore deposits. Chemical variations of K, Ce, Th and Sn in the stream sediments are concordant with chemical variations in major rocks. The median and mean concentrations for the stream sediments in northern Honshu, showing arc signatures, are lower in Rb, Cs, Th, Li, K, Be, Ta, LREE, Ni, Hg and Sn, and higher in Sc, Ca and Cd relative to the whole area of Japan, largely because of the contribution of Cenozoic island-arc volcanic rocks that are generally poor in incompatible elements. The averaged chemical compositions of the stream sediments for the geologic zones show systematic variations of many elements. The contrasting variations of LREE and Th contents, which are lower in the zones of Cenozoic rocks relative to the zones of pre-Neogene basements, reflect the regional variations in the main rocks, and also reflect the change of geological settings of the studied area from the continental margin to an island arc during the Cenozoic.  相似文献   

16.
The Late Proterozoic Bakoye 3 Formation is a predominantly aeolian unit deposited in the glacially influenced cratonic Taoudeni Basin of western Africa. The Bakoye 3 can be divided into five distal units, two proximal units, and a local upper massive sandstone. The basal Unit 1 shows a complex interfingering of aeolian and subaqueous structures, and is interpreted as the precursor of the overlying erg sequences. Unit 2 consists of compound, trough cosets of aeolian cross-strata dominated by grain-flow strata. The unit is interpreted to represent draas with superimposed, small, crescentic dunes. A super bounding surface marks the termination and planation of the erg. Unit 3 is distinguished from the underlying Unit 2 by its larger, overall simple sets of trough cross-strata, interpreted to represent simple, large, crescentic dunes. Unit 4 occurs only locally in laterally discontinuous, large troughs. In one case the trough is filled by small sets of tabular cross-strata dominated by grain-flow deposits. At another section, wedges of coarse-grained wind-ripple strata fill the trough. Unit 4 may represent remnants of ergs or, more likely, local deposition in depressions. The depressions, in the latter scenario, formed with the development of a second super surface that truncates Unit 3. Unit 5 consists of very large sets of wind-ripple cross-strata with less common sets of grain-flow deposits. These deposits are believed to represent enormous dunes with large plinths and subordinate slip face development. A third super surface separates Unit 5 from overlying marine deposits. Together, Units 1–5 represent the core of the ergs in a distal position relative to adjacent upland source areas. Proximally, aeolian deposits are simple, smaller, trough sets interpreted as moderate sized crescentic dunes. Coarse-grained braided stream deposits are prominent. Locally, the top of the Bakoye 3 is marked by channelized mass-flow deposits containing aeolian blocks, and is believed to have resulted from iceberg grounding. An overall environment for the Bakoye 3 is one of uplands marked by ice sheets, with outwash plains extending distally to aeolian ergs. Super surfaces, all marked by polygonal fractures and coarsegrained sediment, represent periods of erg termination that may be linked to glacial-fluvial-aeolian cycles.  相似文献   

17.
Aeolian sand entrainment, saltation and deposition are important and closely related near surface processes. Determining how grains are sorted by wind requires a detailed understanding of how aerodynamic sand transport processes vary within the saltating layer with height above the bed. Grain‐size distribution of sand throughout the saltation layer and, in particular, how the associated flux of different grain size changes with variation in wind velocity, remain unclear. In the present study, a blowdown wind tunnel with a 50 cm thick boundary layer was used to investigate saltating sand grains by analyzing the weight percentage and transport flux of different grain‐size fractions and the mean grain size at different wind velocities. It was found that mean grain size decreases with height above the sand bed before undergoing a reversal. The height of the reversal point ranges from 4 to 40 cm, and increases with wind velocity following a non‐linear relationship. The content of the finer fractions (very fine and fine sand) initially increases above the sand bed and then decreases slightly with height, whereas that of the coarser fractions (medium and coarse sand) exhibits the opposite trend. The content of coarser grains and the mean grain size of sand in the saltation layer increase with wind velocity, indicating erosional selectivity with respect to grains in multi‐sized sand beds; but this size selectivity decreases with increasing wind velocity. The vertical mass flux structure of fine sand and very fine sand does not obey a general exponential decay pattern under strong wind conditions; and the coarser the sand grain, the greater the decrease rate of their transport mass with height. The results of these experiments suggest that the grain‐size distribution of a saltating sand cloud is governed by both wind velocity and height within the near‐surface boundary layer.  相似文献   

18.
A study reach of the Calamus River, Nebraska Sand Hills, has a low sinuosity (less than 1.3) and braiding parameter (less than 1). Depending on sinuosity, the channel is occupied by alternate bars and point bars, the emergent parts of which form nuclei for midstream bars (islands). Channel migration occurs by bend expansion and translation, downstream and lateral growth of islands, and by chute cutoff. Channel-bed sediment is mainly medium-grained sand, but gravel and coarser sand sizes occur in thalweg areas adjacent to cutbanks and upstream parts of bars and islands, and finer sands occur on the downstream parts of bars and filling channels. Curved-crested dunes cover most of the channel bed at most flow stages, with ripples restricted to shallow areas near banks. Bed material is mostly large-scale cross-stratified, with small-scale cross-strata interbedded with plant debris occurring in topographically high areas near banks. Vibracores through channel bars show a basal erosion surface overlain by large-scale cross-stratified sands, in turn overlain by small-scale cross-stratified sand interbedded with plant debris. The overall sequence generally fines upwards, but the large-scale cross-stratified portion either fines upwards, coarsens upwards, or shows little grain size variation. Lithofacies distributions vary spatially within and between bars depending on position in the bar and local channel curvature/width, in a similar way to unbraided rivers elsewhere. Lithofacies of bar deposits are similar to those in the active channel, and the elevations of the basal erosion surface and adjacent channel thalweg correspond closely. Channels abandoned by chute cutoff are filled progressively from the upstream end, and comprise deposits similar to the downstream parts of bars (i.e. fining upwards). The downstream extremities of channel fills may contain large proportions of peat relative to sand, but little mud due to the paucity of such fine suspended load in the Calamus.  相似文献   

19.
Primary sand and gravel deposits in Britain play an important role in preserving our cultural heritage and are also a valuable aggregate resource. While an understanding of the extrinsic properties of the soil archive (such as pH, redox, groundwater) can provide a firstorder assessment of the potential risk to any archaeologically sensitive deposits, we have very poor definition of spatial variations in the extrinsic properties of soil that influence archaeological preservation at a regional and national scale. Developments in digital geological mapping, remote sensing, and geochemical survey data undertaken by the British Geological Survey (BGS) have, however, significantly extended capabilities in this respect and can potentially be used to provide a primary assessment of the sensitivity of the present soil archive and the potential risk from changes to the soil process on cultural material in areas earmarked for aggregate extraction. Two of the major factors affecting archaeological preservation—soil acidification and groundwater—can be mapped or predicted at scales of better than 1:50,000 across increasingly large parts of the country using a combination of regional hydrogeological, geophysical, and geochemical data. Additional data from site investigations may further refine preservation potential as a function of changes in redox potential and acidity. These data, maps and models can be used to (1) better establish a baseline for archaeological preservation at a regional and national scale and (2) improve our understanding of how the physical and chemical properties of the near surface environment can be managed to sustainably preserve archaeological materials in areas impacted by sand and gravel extraction. © 2009 Wiley Periodicals, Inc.  相似文献   

20.
Sand transport model of barchan dune equilibrium   总被引:9,自引:0,他引:9  
Erosion and deposition over a barchan dune near the Salton Sea, California, is modelled by book-keeping the quantity of sand in saltation following streamlines of transport. Field observations of near-surface wind velocity and direction plus supplemental measurements of the velocity distribution over a scale model of the dune are combined as input to Bagnold-type sand-transport formulae corrected for slope effects. A unidirectional wind is assumed. The resulting patterns of erosion and deposition compare closely with those observed in the field and those predicted by the assumption of equilibrium (downwind translation of the dune without change in size or geometry). Discrepancies between the simulated results and the observed or predicted erosional patterns appear to be largely due to natural fluctuation in the wind direction. Although the model includes a provision for a lag in response of the transport rate to downwind changes in applied shear stress, the best results are obtained when no delay is assumed. The shape of barchan dunes is a function of grain size, velocity, degree of saturation of the oncoming flow, and the variability in the direction of the oncoming wind. Smaller grain size or higher wind speed produce a steeper and more blunt stoss-side. Low saturation of the inter-dune sandflow produces open crescent-moon-shaped dunes, whereas high saturation produces a whaleback form with a small slip face. Dunes subject to winds of variable direction are blunter than those under unidirectional winds. The size of barchans could be proportional to natural atmospheric scales, to the age of the dune, or to the upwind roughness. The upwind roughness can be controlled by fixed elements or by the sand is saltation. In the latter case, dune scale may be proportional to wind velocity and inversely proportional to grain size. However, because the effective velocity for transport increases with grain size, dune scale may increase with grain size as observed by Wilson (1972).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号