首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stellar ultraviolet light near 2500 Å is attenuated in the Earth's upper atmosphere due to strong absorption in the Hartley continuum of ozone. The intensity of stars in the Hartley continuum region has been monitored by the University of Wisconsin stellar photometers aboard the OAO-2 satellite during occultation of the star by the Earth's atmosphere. These data have been used to determine the ozone number density profile at the occultation tangent point. The results of approximately 12 stellar occultations, obtained in low latitudes, are presented, giving the nighttime vertical number density profile of ozone in the 60- to 100-km region. The nighttime ozone number density has a bulge in its vertical profile with a peak of 1 to 2×108 cm?3 at approximately 83 km and a minimum near 75 km. The shape of the bulge in the ozone number density profile shows considerable variability with no apparent seasonal or solar cycle change. The ozone profiles obtained during a geomagnetic storm showed little variation at low latitudes.  相似文献   

2.
The temporal response of ion and neutral densities to a geomagnetic storm has been investigated on a global scale with data from consecutive orbits of OGO-6 (>400km) for 4 days covering both magnetically quiet and disturbed conditions. The first response of the neutral atmosphere to the storm takes place in the H and He densities which start to decrease near the time of the storm sudden commencement. The maximum decreases in H and He were more than 40% of the normal density at high latitudes. A subsequent increase in O and N2 densities occurs about 8 hours later than the change in H and He densities, while the relative O and N2 density changes indicate a depletion of atomic oxygen in the lower thermosphere by more than a factor of two. The overall features of the change in the neutral atmosphere, especially the patterns of change for individual species, strongly support the physical picture that energy is deposited primarily at high latitudes during the storm, and the thermosphere structure changes through (1) heating of the lower thermosphere and (2) generation of large scale circulation in the atmosphere with upwelling at high latitudes and subsidence at the equator. The storm-time response of H+ occurs in two distinct regions separated by the low latitude boundary of the light ion trough. While on the poleward side of the boundary the H+ density decreases in a similar manner to the decrease in H density, on the equatorward side of the boundary the H+ decrease occurs about half a day later. It is shown that the decrease of H+ density is principally caused by the decrease in H density for both regions. The difference in H+ response between the two regions is interpreted as the difference in H+ dynamics outside and inside the plasmasphere. The O+ density shows an increase, the pattern of which is rather similar to that for O. Two possibilities for explaining the observed change in O+ density are suggested. One attributes the observed increase in O+ density to an increase in the plasma temperature during the storm. The other possibility is that the increase in the production rate of O+ due to an increase in O density exceeds the increase in the loss rate of O+ due to an increase in N2 density, especially around the time of sunrise. Hence the change in O+ density in the F-region may actually be controlled by the change in O density.  相似文献   

3.
The first effects of a nearby (~ 10 parsec) supernova on the Earth's atmosphere will be caused by ultraviolet radiation dissociating molecular oxygen. The event will be of about one month's duration. Several months later nuclear gamma radiation may arrive, causing a decrease in atmospheric ozone. Cosmic radiation from the supernova remnant will not intercept the Earth for at least 1000 years at which time ozone will be seriously depleted.Supernova ultraviolet radiation increases column ozone and atomic oxygen. Atmospheric thermal structure is modified with a large temperature increase in the mesosphere and lower thermosphere and a decrease at higher altitudes caused by enhanced heat loss due to atomic oxygen radiation and conduction.  相似文献   

4.
J.L. Elliot  J. Veverka 《Icarus》1976,27(3):359-386
The characteristics of spikes observed in the occultation light curves of β Scorpii by Jupiter are reviewed and discussed. Using a model in which the refractivity (density) gradients in the Jovian atmosphere are parallel to the local gravitational field, the spikes are shown to yield information about (i) the [He]/-[H2] ratio in the atmosphere, (ii) the fine scale density structure of the atmosphere and (iii) high-resolution images of the occulted stars. The spikes also serve as indicators for ray crossing. Observational limits are placed on the magnitude of horizontal refractivity gradients; these appear to be absent on scales of a few kilometers at altitudes corresponding to number densities less than 2 × 1014 cm?3. Spikes are produced by atmospheric density variations, perhaps due to atmospheric layers, density waves or turbulence. To discriminate among these possibilities, future occultation observations should be made from a number of observation sites at two or more wavelengths simultaneously with high time resolution techniques. Given a large telescope and suitable observing techniques, useful information about Jupiter's atmosphere can be obtained from future occultations of early-type stars as faint as V ~ + 6–7.  相似文献   

5.
A generalized wave-optical theory of stellar occultations by a turbulent planetary atmosphere is developed. The finite scale height of the atmosphere is retained for the first time. It is found that the finite scale height of the atmosphere affects the scintillations observed during the occultation in a number of ways which are most easily understood in terms of an effective Fresnel scale. We demonstrate the validity of a phase-changing screen approximation for occultation by a turbulent atmosphere in parameter ranges of general interest. Using this approximation various statistical properties of the fluctuating intensity are calculated explicitly. We present expressions for the total scintillation power, correlation function of the intensity, the cross-correlation at two frequencies, and its application to refractivity determinations. All of these expressions are given as a function of occultation depth and of parameters of the mean atmosphere and turbulence.  相似文献   

6.
The OGO-6 UV photometer experiment measured the atomic oxygen OI 1304 Å triplet in the Earth's dayglow between 400 and 1100 km. We have analyzed the data for the period 15 September–25 October 1969 by obtaining best-fit models in which the 1304 Å emission is excited by solar resonance scattering and photoelectron excitation. Provided the excitation processes are specified, we find a unique relationship between the vertical column density of atomic oxygen and the zenith 1304 Å intensity. This is essentially independent of the atmospheric temperature. Because of the large numerical uncertainties, the excitation sources are determined from the 1304 Å data and quiet-time in situ measurements of atomic oxygen density. They are found to be in good agreement with recent solar measurements of the 1304 Å lines and with calculations of the photoelectron excitation source. The deduced variations of atomic oxygen column densities over the daytime atmosphere are found to agree well with the Jacchia 1971 models. During the geomagnetic storm, the column density generally increased above a fixed altitude. However, the latitudinal dependence is complex. Following the strong geomagnetic activity between 15 September and 1 October, depletions in atomic oxygen are observed. At times, there is evidence of high-altitude transport of atomic oxygen from high latitude to low latitude.  相似文献   

7.
This VIRTIS instrument on board Venus Express has collected spectrally resolved images of the Venus nightside limb that show the presence of the (0,0) band of the infrared atmospheric system of O2 at 1.27 μm. The emission is produced by three-body recombination of oxygen atoms created by photodissociation of CO2 on the dayside. It is consistently bright so that emission limb profiles can be extracted from the images. The vertical distribution of O2() may be derived following Abel inversion of the radiance limb profiles. Assuming photochemical equilibrium, it is combined with the CO2 vertical distribution to determine the atomic oxygen density. The uncertainties on the O density caused by the Abel inversion reach a few percent at the peak, increasing to about 50% near 120 km. We first analyze a case when the CO2 density was derived from a stellar occultation observed with the SPICAV spectrometer simultaneously with an image of the O2 limb airglow. In other cases, an average CO2 profile deduced from a series of ultraviolet stellar occultations is used to derive the O profile, leading to uncertainties on the O density less than 30%. It is found that the maximum O density is generally located between 94 and 115 km with a mean value of 104 km. It ranges from less than 1×1011 to about 5×1011 cm−3 with a global mean of 2.2×1011 cm−3. These values are in reasonable agreement with the VIRA midnight oxygen profile. The vertical O distribution is generally in good agreement with the oxygen profile calculated with a one-dimensional chemical-diffusive model. No statistical latitudinal dependence of the altitude of the oxygen peak is observed, but the maximum O density tends to decrease with increasing northern latitudes. The latitudinal distribution at a given time exhibits large variations in the O density profile and its vertical structure. The vertical oxygen distribution frequently shows multiple peaks possibly caused by waves or variations in the structure of turbulent transport. It is concluded that the O2 infrared night airglow is a powerful tool to map the distribution of atomic oxygen in the mesosphere between 90 and 115 km and improve future Venus reference atmosphere models.  相似文献   

8.
L. Montabone  S.R. Lewis  D.P. Hinson 《Icarus》2006,185(1):113-132
We describe an assimilation of thermal profiles below about 40 km altitude and total dust opacities into a general circulation model (GCM) of the martian atmosphere. The data were provided by the Thermal Emission Spectrometer (TES) on board the Mars Global Surveyor (MGS) spacecraft. The results of the assimilation are verified against an independent source of contemporaneous data represented by radio occultation measurements with an ultra-stable radio oscillator, also aboard MGS. This paper describes a comparison between temperature profiles retrieved by the radio occultation experiments and the corresponding profiles given by both an independent, carefully tuned GCM simulation and by an assimilation of TES observations performed over the period of time from middle, northern summer in martian year 24, corresponding to May 1999, until late, northern spring in martian year 27, corresponding to August 2004. This study shows that the assimilation of TES measurements improves the overall agreement between radio occultation observations and the GCM analysis, in particular below 20 km altitude, where the radio occultation measurements are known to be most accurate. Discrepancies still remain, mostly during the global dust storm of year 2001 and at latitudes around 60° N in northern winter-early spring. These are the periods of time and locations, however, for which discrepancies between TES and radio occultation profiles are also shown to be the largest. Finally, a further direct validation is performed, comparing stationary waves at selected latitudes and time of year. Apart from biases at high latitudes in winter time, data assimilation is able to represent the correct wave behaviour, which is one major objective for martian assimilation.  相似文献   

9.
We analyze an extensive data set of immersion and emersion lightcurves of the occultation of 28 Sgr by Saturn's atmosphere on 3 July 1989. The data give profiles of number density as a function of altitude at a variety of latitudes, at pressures ranging from about 0.5 to about 20 μbar. The atmosphere is essentially isothermal in this range, with a temperature close to 140 K for an assumed mean molecular weight of 2.135. Owing to favorable ring geometry, an accurate radial scale is available for all observations, and we confirm the substantial equatorial bulge produced by zonal winds of ∼450 m/s first observed in the Voyager radio-occultation experiments. The fact that the bulge is still present at microbar pressures suggests that the equatorial winds persist to high altitudes. According to our radial scale, the 2.4-μbar level, which corresponds to half-flux in the stellar occultations, is at an equatorial radius of 60,960 km. This radial scale is in good agreement with the Voyager radio-occultation data at mbar pressures and allows smooth interpolation of the isothermal structure between the stellar-occultation and radio-occultation regions. We do not have such a smooth interpolation between our data and Voyager ultraviolet occultation data, unless we discard the lowest 200 km of Voyager ultraviolet data. When this is done, we obtain a complete atmospheric model from an equatorial radius of 61,500 km down to an equatorial radius of 60,500 km. This model gives excellent agreement between all 28 Sgr, Voyager, and Pioneer 11 data.  相似文献   

10.
Two independent analyses of the dual-frequency radio-occultation experiment performed by Mariner 10 at Venus are presented. Using closed-loop frequency data obtained at NASA's Goldstone facility, we have computed S- and X-band pressure-temperature profiles for Venus' neutral atmosphere, and an S-band profile of the nightside ionosphere. Neutral atmosphere dispersion between the two frequencies is negligible (less than 0.1% in refractivity), as expected for a CO2 atmosphere. The results confirm those obtained by Howard et al. (1974) from the same S-band data with an accuracy of ±5°K at a given pressure level, though there is a discrepancy of 1 km in the radial scale between the two analyses. These two Mariner 10 profiles are compared with the Mariner 5 occultation profile and in situ measurements by Veneras 8, 9, and 10. The occultation was also monitored at the Owens Valley Radio Observatory, though only at X-band. Despite the much lower quality of these data, a reasonable neutral atmosphere refractivity profile above 65 km was obtained from the occultation entry. Uncertainties in the calculated temperatures, however, are too large to permit useful comparison with previous results. The existence of real anomalies in both the amplitude and frequency of the signal during exit from occultation is confirmed.  相似文献   

11.
Six values of the rate of rotation of the Earth's upper atmosphere have been obtained by analysis of the orbital inclinations of four balloon satellites in the intervals just before the final decay of their orbits. The effective heights of these results range from about 350 to about 675 km. The values themselves range from 0·8 to 1·4 times the Earth's rotation and correspond to zonal wind speeds between 100 m/sec westward and 200 m/sec eastward. All the results correspond to fairly specific local times and are consistent with a diurnal wind pattern in low latitudes having a strong eastward maximum near local midnight and a lesser westward maximum near 10:00 LT. They argue against the contention of a sharp decrease in the rate with respect to that of the Earth, which is supposed to begin at about 360 km. The factors involved in the determination of these values and the method used are discussed in considerable detail.  相似文献   

12.
We consider the application of the stellar occultation method to the studies of planetary atmospheres and its history and briefly describe the instruments designed for such measurements (SPICAM/Mars-96, GOMOS/ENVISAT). In comparison with solar occultations, this method allows the profiles to be measured almost at any time of the day and at any location of the planet, irrespective of the orbit of the spacecraft from which observations are carried out. Based on the measuring characteristics of the SPICAM-Light UV spectrometer for the spectral range 118–320 nm with a resolution of 0.9 nm (for the ESA Mars Express Mission; launched in June 2003), we simulate the capabilities of the method to study the Martian atmosphere. In stellar occultation measurements, the stellar spectrum changes because of the absorption by CO2 and O3, other gases, and aerosols. The profiles of the CO2 and O3 density (and, hence, the temperature) and the aerosol content can be restored by solving the inverse problem. Observations of bright stars (no fewer than 30) three to five times in a turn allow us to measure the atmospheric density at altitudes 10–150 km with an accuracy of about 2% and the temperature at altitudes 20–130 km with an accuracy of 3 K. Ozone is measured with an accuracy of several percent at altitudes 25–40 km or lower, depending on the conditions. Optically thin clouds and hazes, particularly on the nightside where no measurements are possible in reflected light, can be studied. The SPICAV experiment, which is similar to SPICAM-Light, is part of the Venus Express (to be launched in 2005) scientific payload. On Venus, stellar occultations can be used to measure the atmospheric temperature and density above clouds at altitudes up to 130–150 km and to study the SO2 profile. The results of our simulations can be easily extended to instruments with different measuring characteristics.  相似文献   

13.
The instantaneous structure of planetary exospheres is determined by the time history of energy dissipation, chemical, and transport processes operative during a prior time interval set by intrinsic atmospheric time scales. The complex combination of diurnal and magnetospheric activity modulations imposed on the Earth's upper atmosphere no doubt produce an equally complex response, especially in hydrogen, which escapes continuously at exospheric temperatures. Vidal-Madjar and Thomas (1978) have discussed some of the persistent large scale structure which is evident in satellite ultraviolet observations of hydrogen, noting in particular a depletion at high latitudes which is further discussed by Thomas and Vidal-Madjar (1978). The latter authors discussed various causes of the H density depletion, including local neutral temperature enhancements and enhanced escape rates due to polar wind H+ plasma flow or high latitude ion heating followed by charge exchange. We have reexamined the enhancement of neutral escape by plasma effects including the recently observed phenomenon of low altitude transverse ion acceleration. We find that, while significant fluxes of neutral H should be produced by this phenomenon in the auroral zone, this process is probably insufficient to account for the observed polar depletion. Instead, the recent exospheric temperature measurements from the Dynamics Explorer-2 spacecraft suggest that neutral heating in and near the high latitude cusp may be the major contributor to depleted atomic hydrogen densities at high latitudes.  相似文献   

14.
The July 12, 1973, occultation of Europa by Io was observed in 30 wavelength channels in the spectral region λλ3200-11, 000 Å with the 200-inch Hale telescope and a multichannel spectrometer. The data are presented in absolute units above the Earth's atmosphere. The data are analyzed to obtain the spectral reflectivity of seven localized areas on the disk of Europa centered on 324°W longitude. The equatorial material is confirmed to be darker than the eastward-skewed bright north polar cap and a hint is evident that the darker material as well may be somewhat redder than the cap material.  相似文献   

15.
Mitra has suggested that the Superrotation of the upper atmosphere is caused by a deposition of meteoroids. The meteoroids are assumed to impart to the atmosphere the excess of their orbital angular momentum per unit mass over the Earth's angular momentum per unit mass. The process is to take place in the height region above 150 km. Only above this height is a Superrotation of the atmosphere observed. In this report the forces that tend to make the atmosphere corotate with the Earth are analysed. It is shown that the most important of these forces is ion drag, and not viscous drag as postulated by Mitra. As the net angular spin momentum imparted by the meteoroids seems to be less than Mitra's estimate and its main part is applied to the atmosphere at altitudes much lower than 150 km, the hypothesis that meteoroids provide a significant contribution to the Superrotation is rejected.  相似文献   

16.
The average rotation rate of the upper atmosphere can be found by analysis of the changes in the orbital inclinations of satellites, and results previously obtained have indicated that the atmospheric rotation rate appreciably exceeds the Earth's rotation rate at heights between 200 and 400 km.We have examined all such results previously published in the light of current standards of accuracy: some are accepted, some revised, and some rejected as inadequate in accuracy. We also analyse a number of fresh orbits and, adding these to the accepted and revised previous results, we derive the variation of zonal wind speed with height and local time. The rotation rate (rev/day) averaged over all local times increases from near 1.0 at 150 km height to 1.3 near 350 km (corresponding to an average west-to-east wind of 120 m/s), and then decreases to 1.0 at 400 km and probably to about 0.8 at greater heights. The maximum west-to-east winds occur in the evening hours, 18–24 h local time: these evening winds increase to a maximum of about 150 m/s at heights near 350 km and decline to near zero around 600 km. In the morning, 4–12 h local time, the winds are east to west, with speeds of 50–100 m/s above 200 km. We also tentatively conclude that, at heights above 350 km, the average rotation rate is greater in equatorial latitudes (0–25°) than at higher latitudes.  相似文献   

17.
Radiative-convective equilibrium models for Jupiter and Saturn have been produced in a study centered primarily on the stratospheric energy balance and the possible role of aerosol heating. These models are compared directly to the thermal structure profiles obtained from Voyager radio occultation measurements. The method is based on a straightforward flux divergence formulation derived from earlier work (J. S. Hogan, S. I. Rasool, and T. Encrenaz 1969, J. Atmos. Sci.26, 898–905). The balance between absorbed and emitted energies is computed iteratively at each level in the atmosphere, assuming local thermodynamic equilibrium and employing a standard treatment of opacities. Results for Jupiter indicate that a dust-free model (no aerosol heating) furnishes a good mean thermal profile for the stratosphere when compared with the Voyager 1 radio occultation (RSS) measurements. These observations of the equatorial region (0° and 12°S, respectively) exhibit periodic vertical structure. Of course, among many possible complications, the Voyager profiles may not represent typical excursions from the mean. The aerosol heat depositions required to match these profiles exactly, relative to the nominal dust-free model, are reasonably consistent with independent estimates for “continuum” absorbers. Other interpretations are discussed, along with a survey of problems encountered in intercomparing the lower portions (P ? 300 mb) of the models, the RSS profiles, and a recent IRIS equatorial profile. Although aerosol heating cannot be ruled out at low latitudes on Jupiter, our results indicate that it may not be required to reproduce the Voyager 1 RSS profiles. On the other hand, heating by aerosols or some other absorber seems necessary in order to match the high-latitude Voyager 2 RSS temperature profile. The Saturn models are relatively simple and in good-to-excellent agreement with the Voyager 2 RSS profiles at all levels. Our comparisons indicate that aerosol heating played a minor role in Saturn's midlatitude stratospheric energy balance at the time of the Voyager 2 encounter. These models, however, may need to be reassessed once the hydrocarbon concentrations have been more precisely determined.  相似文献   

18.
L. Wasserman  J. Veverka 《Icarus》1973,18(4):599-604
Brinkmann's method of deriving the composition of a planetary atmosphere from the timing of occultation curve spikes is discussed in detail. Contrary to the statement made in Brinkmann's paper, it is shown that not only must the spikes be timed, but the intensity of the background occultation curve must be determined at the points at which the spikes occur. The fact that the method does depend on intensity measurements introduces significant uncertainties in practice, so that the method is not as powerful as previously supposed.  相似文献   

19.
Cosmic rays are a significant source of ionization in the stratosphere and the lower mesosphere. Because the collision cross section of these energetic particles is small, the ion-pair production rate above 30 km is directly proportional to the atmospheric number density. Between 30 and 18 km increasing numbers of secondary cosmic ray particles cause a rapid increase in the ionization rate which is proportional to a simple power law in number density or pressure. The Earth's magnetic field also modulates the incident flux so that for magnetic latitudes below about 60° the ion-pair production rate is also proportional to a factor of (A+B sin4Λ).  相似文献   

20.
Observations of the 24 May 1981 occultation of an uncatalogued star by Neptune made at the Cerro Tololo Inter-American Observatory have been analyzed to yield temperature profiles of Neptune's upper atmosphere for number densities near 5 × 1013 cm?3. The mean temperatures at immersion (latitude ?56°) and emersion (latitude ?16°) obtained by numerical inversion were 140 ± 10°K and 154 ± 10°K, respectively. The immersion and emersion profiles are remarkably similar in overall shape, suggestive of global atmospheric layering. From the astrometry of the event, precise relative positions of Neptune and the occulted were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号