首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Harrat Al-Birk volcanics are products of the Red Sea rift in southwest Saudi Arabia that started in the Tertiary and reached its climax at ~5 Ma. This volcanic field is almost monotonous and is dominated by basalts that include mafic–ultramafic mantle xenoliths (gabbro, websterite, and garnet-clinopyroxenite). The present work presents the first detailed petrographic and geochemical notes about the basalts. They comprise vesicular basalt, porphyritic basalt, and flow-textured basalt, in addition to red and black scoria. Geochemically, the volcanic rock varieties of the Harrat Al-Birk are low- to medium-Ti, sodic-alkaline olivine basalts with an enriched oceanic island signature but extruded in a within-plate environment. There is evidence of formation by partial melting with a sort of crystal fractionation dominated by clinopyroxene and Fe–Ti oxides. The latter have abundant titanomagnetite and lesser ilmenite. There is a remarkable enrichment of light rare earth elements and depletion in Ba, Th and K, Ta, and Ti. The geochemical data in this work suggest Harrat Al-Birk basalts represent products of water-saturated melt that was silica undersaturated. This melt was brought to the surface through partial melting of asthenospheric upper mantle that produced enriched oceanic island basalts. Such partial melting is the result of subducted continental mantle lithosphere with considerable mantle metasomatism of subducted oceanic lithosphere that might contain hydrous phases in its peridotites. The fractional crystallization process was controlled by significant separation of clinopyroxene followed by amphiboles and Fe–Ti oxides, particularly ilmenite. Accordingly, the Harrat Al-Birk alkali basalts underwent crystal fractionation that is completely absent in the exotic mantle xenoliths (e.g. Nemeth et al. in The Pleistocene Jabal Akwa Al Yamaniah maar/tuff ring-scoria cone complex as an analogy for future phreatomagmatic to magmatic explosive eruption scenarios in the Jizan Region, SW Saudi Arabia 2014).  相似文献   

2.
滇西金沙江哀牢山断裂以东广泛发育富碱斑岩型多金属矿床,其富碱斑岩体中有多处产出深源岩石包体。对包体岩石和寄主富碱斑岩及其成矿石英脉的地质年代学研究显示,深源岩石包体的成岩年龄大于寄主富碱斑岩,而富碱斑岩的成岩与成矿是基本同时的。结合铅硅锶钕同位素地球化学研究表明,在富碱岩浆的成岩过程中,伴随富硅成矿流体对围岩和岩体的交代蚀变,并与地壳岩石一定程度混染而实现成矿作用。这种富硅成矿流体作用实质上是地幔流体作用在地壳中成矿作用的延续。据此,从地幔流体交代矿物的结晶年龄(116.0 Ma)到富硅成矿流体年龄(51.2 Ma),揭示地幔流体作用贯穿于富碱岩浆成岩成矿的全过程。正是这一地幔流体作用过程,导致Si、Al、Na、K及其它硅不相容元素和成矿元素富集,进而导致其Sr-Nd同位素特征由亏损地幔向富集地幔过渡,并引起从岩体→围岩对应、从高温→低温的系列成矿效应。也正是这种流体作用,构成滇西新生代广泛成矿的内在统一制约因素和大型-超大型矿床形成的重要地球化学背景。  相似文献   

3.
Tertiary to Recent continental rifting and sea floor spreadingformed the Red Sea. Mantle xenoliths from the Saudi ArabianRed Sea margin provide an opportunity to study the mantle beneaththe flanks of this young ocean basin. The Harrat al Kishb mantlexenolith suite consists of Cr-diopside group spinel harzburgiteand lherzolite mantle wall rock, and a variety of pyroxenitesproduced by crystallization from mafic magmas within the mantle.The pyroxenites include two texturally distinct varieties ofCr-diopside group spinel websterites, and Al-augite group spinelpyroxenite, garnet-spinel websterite, and garnet-bearing spinelclinopyroxenite. All Harrat al Kishb xenoliths are deformedto some degree and many are recrystallized. Mineral exsolutionand zoning textures indicate reequilibration to decreasing temperatureconditions. Several xenoliths provide evidence for metasomaticprocesses in the mantle beneath western Saudi Arabia. Estimates of peridotite temperatures are 900–980?C withpressure bracketed between 13 and 19 kb. Al-augite spinel pyroxenitesyield temperatures of 1050–1070?C. Garnet-spinel websteritesyield temperatures and pressures in the range 1000–1030?C,13.8–16.5 kb. These P-T estimates show that mantle temperatures are elevatedwell above those predicted by low surface heat flow measurements.Mantle heating associated with rifting is young enough thatsurface heat flow has not yet equilibrated. The xenolith dataare consistent with a model of asthenosphere upwelling beneaththe Red Sea rift. Comparison of xenolith data with existingseismic refraction data reveals a coherent picture of the compositionof the western Saudi Arabian lithosphere.  相似文献   

4.
Geochemical compositions of lower crustal and lithospheric mantle xenoliths found in alkali basaltic lavas from the Harrat Ash Shamah volcanic field in southern Syria place constraints on the formation of the Arabian–Nubian Shield in northern Arabia. Compositions of lower crustal granulites are compatible with a cumulate formation from mafic melts and indicate that they are not genetically related to their host rocks. Instead, their depletion in Nb relative to other incompatible elements points to an origin in a Neoproterozoic subduction zone as recorded by an average depleted mantle Sm–Nd model age of 630 Ma.Lithospheric spinel peridotites typically represent relatively low degree (< 10%) partial melting residues of spinel lherzolite with primitive mantle compositions as indicated by major and trace element modelling of clinopyroxene and spinel. The primary compositions of the xenoliths were subsequently altered by metasomatic reactions with low degree silicate melts and possibly carbonatites. Because host lavas lack these signatures any recent reaction of the lherzolites with their host magma can be ruled out. Sm–Nd data of clinopyroxene from Arabian lithospheric mantle lherzolites yield an average age of 640 Ma suggesting that the lithosphere was not replaced since its formation and supporting a common origin of the Arabian lower crustal and lithospheric mantle sections.The new data along with published Arabian mantle xenolith compositions are consistent with a model in which the lithospheric precursor was depleted oceanic lithosphere that was overprinted by metasomatic processes related to subduction and arc accretion during the generation of the Arabian–Nubian Shield. The less refractory nature of the northern Arabian lithosphere as indicated by higher Al, Na and lower Si and Mg contents of clinopyroxenes compared to the more depleted nature of the south Arabian lithospheric mantle, and the comparable low extent of melt extraction suggest that the northern Arabian lithosphere formed in a continental arc system, whereas the lithosphere in the southern part of Arabia appears to be of oceanic arc origin.  相似文献   

5.
Mineralogy,geochemistry and petrogenesis of Kurile island-arc basalts   总被引:1,自引:0,他引:1  
Whole-rock (major- and trace-element) and mineral chemical data are presented for basaltic rocks from the main evolutionary stages of the Kurile island arc, NW Pacific. An outer, inactive arc contains a Cretaceous-Lower Tertiary sequence of tholeiitic, calcalkaline and shoshonitic basalts. The main arc (Miocene-Quaternary) is dominated by weakly tholeiitic, with lesser, alkalic basalts. The mineralogy of Kuriles basalts is characterised by An-rich plagioclases, a continuous transition from chromites to titanomagnetites, pyroxenes with low Fe3+ contents and without strong Fe-enrichment, abundance of groundmass pigeonites and the absence of amphiboles. There is an increase in K2O contents both along-arc (northwards) and towards the reararc side. The basalts show an exceptionally wide but continuous range of K2O contents (0.1–4.7%) which correlate with other LIL element contents. Tholeiitic basalts with low LIL element contents, La/Yb and Th/U, but high K/ Rb, P2O5/La and Zr/Nb were derived from depleted, lherzolitic mantle which had suffered fluid metasomatism by K, Rb, Cs, Sr, Ba, Pb and H2O only. Alkali basalts are also thought to be derived from depleted mantle but melt metasomatism involved addition of all LIL elements to a garnet lherzolite mantle. The Kuriles basalts and their mantle sources range continuously between these two end-member compositions. The metasomatic fluids/melts were probably released by early dehydration and later melting within subducted oceanic lithosphere though the process is not adequately constrained.  相似文献   

6.
A comprehensive model is developed to explain the major, trace element and strontium and neodymium isotopic characteristics of alkali basalts from Hawaii. The model is similar to that of Chen and Frey (1983) in that it requires mixing of a small melt fraction of MORB-source material with another component to generate the alkalic suite of a particular Hawaiian volcano. It differs from the Chen and Frey model in that the other end-member must be different from primitive mantle if it is to be consistent with both trace element and isotopic data. Alkali basalts and tholeiites from Kauai analyzed in this study show a nearly complete transition in Sr and Nd isotopes. There is a relatively well-constrained array on a Nd-Sr isotope correlation plot that can be explained by two-component mixing of Kauai tholeiite magma and a small amount of melt of East Pacific Rise source rock. After corrections are made for fractional crystallization (involving primarily clinopyroxene and olivine), the Sr and Ba concentrations of Kauai lavas plot along mixing curves defined by the above sources, providing positive tests of the mixing hypothesis. Implications of this model are: (1) the main source of Hawaiian shield-building tholeiites is a mixture of subducted crust, primitive mantle and depleted asthenosphere that has been homogenized prior to melting, (2) early alkalic volcanism (as at Loihi seamount) will be characterized by greater isotopic heterogeneity than will late-stage alkali basalt production, and (3) there are two fundamentally distinct types of alkalic lavas erupted towards the end of magmatism at a given Hawaiian volcano. One represents smaller degrees of melting of the same source that generated shield-building tholeiites (Kohala-type); the other derives from the mixed source discussed in this paper (Haleakala-, Kauai-type).  相似文献   

7.
This experimental study simulates the interaction of hotter, deeper hydrous mantle melts with shallower, cooler depleted mantle, a process that is expected to occur in the upper part of the mantle wedge. Hydrous reaction experiments (~6 wt% H2O in the melt) were conducted on three different ratios of a 1.6 GPa mantle melt and an overlying 1.2 GPa harzburgite from 1060 to 1260 °C. Reaction coefficients were calculated for each experiment to determine the effect of temperature and starting bulk composition on final melt compositions and crystallizing assemblages. The experiments used to construct the melt–wall rock model closely approached equilibrium and experienced <5% Fe loss or gain. Experiments that experienced higher extents of Fe loss were used to critically evaluate the practice of “correcting” for Fe loss by adding iron. At low ratios of melt/mantle (20:80 and 5:95), the crystallizing assemblages are dunites, harzburgites, and lherzolites (as a function of temperature). When the ratio of deeper melt to overlying mantle is 70:30, the crystallizing assemblage is a wehrlite. This shows that wehrlites, which are observed in ophiolites and mantle xenoliths, can be formed by large amounts of deeper melt fluxing though the mantle wedge during ascent. In all cases, orthopyroxene dissolves in the melt, and olivine crystallizes along with pyroxenes and spinel. The amount of reaction between deeper melts and overlying mantle, simulated here by the three starting compositions, imposes a strong influence on final melt compositions, particularly in terms of depletion. At the lowest melt/mantle ratios, the resulting melt is an extremely depleted Al-poor, high-Si andesite. As the fraction of melt to mantle increases, final melts resemble primitive basaltic andesites found in arcs globally. An important element ratio in mantle lherzolite composition, the Ca/Al ratio, can be significantly elevated through shallow mantle melt–wall rock reaction. Wall rock temperature is a key variable; over a span of <80 °C, reaction with deeper melt creates the entire range of mantle lithologies from a depleted dunite to a harzburgite to a refertilized lherzolite. Together, the experimental phase equilibria, melt compositions, and reaction coefficients provide a framework for understanding how melt–wall rock reaction occurs in the natural system during melt ascent in the mantle wedge.  相似文献   

8.
日喀则地区的蛇绿岩是西藏南部雅鲁藏布蛇绿岩带出露较好的蛇绿岩之一。对日喀则地区白朗蛇绿岩的主量、微量元素及Sr-Nd同位素研究表明,其基性岩石为钙碱性系列,主要氧化物具有低钛(0.6%~1.1%)和富镁(6.6%~8.7%)、高铝(15.3%~16.0%),以及烧失量普遍较高(2.8%~4.6%)的特征。岩石微量元素配分型式与N-MORB类似,又具有岛弧玄武岩的地球化学特征,表明蛇绿岩受到了俯冲作用的影响。Sr-Nd同位素特征表明源区为略富集的MORB型地幔。白朗蛇绿岩所代表的特提斯地幔域与印度洋地幔域具有相似的地球化学性质,进一步证实了现今的印度洋继承了特提斯地幔域的地球化学特征。  相似文献   

9.
Miocene to Recent volcanism in northwestern Arabia producedthe largest intraplate volcanic field on the Arabian plate (HarratAsh Shaam, Jordan). The chemically and isotopically diversevolcanic field comprises mafic alkali basalts and basanites.The magmas underwent limited fractional crystallization of ol± cpx ± plag and rare samples have assimilatedup to 20% of Late Proterozoic crust en route to the surface.However, there are subtle Sr–Nd–Pb isotopic variations(87Sr/86Sr = 0·70305–0·70377, 143Nd/144Nd= 0·51297–0·51285, 206Pb/204Pb = 18·8–19·2),which exhibit marked correlations with major elements, incompatibletrace element ratios and abundances in relatively primitivebasalts (MgO >8·5 wt %), and cannot be explained byfractional crystallization and crustal contamination alone.Instead, the data require polybaric melting of heterogeneoussources. Semi-quantitative melt modelling suggests that thisheterogeneity is the result of small degree melts (2–5%)from spinel- and garnet-facies mantle, inferred to be shallowArabian lithosphere, that mixed with smaller degree melts (<1%)from a predominantly deep garnet-bearing asthenospheric(?) sourcewith ocean island basalt characteristics. The latter may bea ubiquitous part of the asthenosphere but is preferentiallytapped at small degrees of partial melting. Volcanism in Jordanappears to be the result of melting lithospheric mantle in responseto lithospheric extension. With time, thinning of the lithosphereallowed progressively deeper mantle (asthenosphere?) to be activatedand melts from this to mix with the shallower lithospheric mantlemelts. Although Jordanian intraplate volcanism is isotopicallysimilar to examples of Late Cenozoic volcanism throughout theArabian peninsula (Israel, Saudi Arabia), subtle chemical andisotopic differences between Yemen and Jordan intraplate volcanismsuggest that the Afar plume has not been channelled northwestwardsbeneath the Arabian plate and played no role in producing thenorthern Saudi Arabian and Jordan intraplate volcanic fields. KEY WORDS: asthenosphere; intraplate volcanism; Jordan; lithospheric mantle; Sr–Nd–Pb isotopes  相似文献   

10.
长白山火山岩浆柱岩浆上升作用过程   总被引:6,自引:0,他引:6  
魏海泉 《地学前缘》2010,17(1):11-23
长白山火山岩浆柱是一个在长白山区地下总体呈串珠状排列的向东南倾斜的层状富岩浆集合体,岩浆柱宽度宽者300~500 km,窄者30~50 km,深度延伸可达上千km。在这个岩浆柱内,热物质聚集与挥发份富集可以发生部分熔融而形成不同成分与密度的岩浆,岩浆聚集上升至某个深度时的停滞聚集又可形成水平向扩展的岩浆房,压力作用下岩浆房内岩浆演化出密度较轻的岩浆则可进一步上升直至喷出地表。天池火山的母岩浆粗面玄武岩来自地幔岩浆库,由其演化形成的碱型系列粗面岩类和碱流岩类岩石则来自地壳岩浆房。拉斑玄武岩系列的偏酸性岩石来源的地壳岩浆房与碱型系列碱流岩来源的地壳岩浆房深度位置也不相同。天池火山造盾玄武岩TiO2含量和SiO2含量之间反相关关系不能单纯用岩浆房分异结晶来解释,TiO2含量较高的样品代表了源区地幔的较低熔融程度的熔体,而低程度熔融的岩浆来源于更深的位置。玄武质岩浆“熔融结束”的深度随时间的增加而增加的过程控制了岩浆形成深度随时间的增加而增加并且岩浆形成速率随时间的增加而降低的规律。天池火山碱流质岩浆房千年大喷发时岩浆超压极大值Δpmax=625 MPa,层状岩浆房半径35 km,喷出岩浆层厚700 m,喷出岩浆体积30 km3;粗面质喷发的岩浆房超压极大值Δpmax=15 MPa以上。天池火山千年大喷发时临界喷发熔体黏度μcritm>27×1010 Pa·s-1,碱流质岩浆是从一个粗面质岩浆母体经几万年的结晶分异时间演化得来的。气象站寄生火山活动喷发前临界熔体黏度μcritm=12×1011 Pa·s-1,这极高的熔体黏度与喷发物中含有大量晶体与气泡相吻合。千年大喷发级别的大规模喷发周期上万年,远大于小规模喷发几百年以内的时间周期。天池火山作用造盾阶段因为玄武岩都直接喷出了地表,多数传导与扩散的岩浆热都没有用于加热深地壳,所以早期加热效率不高。在1~16 Ma之后造锥阶段在深地壳内形成残余的部分熔融带并阻止了玄武岩的喷发,系统的热效率变得很高,残余熔体生产率也就得到了加速。全新世造伊格尼姆岩喷发阶段大量的演化的碱流质残余熔体因重力不稳定而侵入上地壳内,并且形成大得足以引起造破火山口喷发的岩浆房。  相似文献   

11.
本文报道了六合-仪征第三纪大陆碱性玄武岩十八个样品的REE、Rb、Ba、Sr、Nb、Zr、Ni、Cr、V、Sc、Y、Ga、Zn、Cu等痕量元素含量,讨论了该岩套的成因及其地幔源区的特征。石榴石橄榄岩型地幔源区经较小程度部分熔融形成了基性原始岩浆;其后经过橄榄石和单斜辉石为主的结晶分异作用,演化后的岩浆喷出地表形成玄武岩套。本区碱性玄武岩的地幔源区曾受近期富集作用影响,具有富集LREE等不相容元素的特征。  相似文献   

12.
P.R. Castillo  P. Scarsi  H. Craig   《Chemical Geology》2007,240(3-4):205-221
The classic hotspot hypothesis [Morgan, W. J., 1971. Convection plumes in the lower mantle. Nature 230, 42–43], which posits that linear volcanic chains are traces of fixed plumes in the mantle on moving lithospheric plates, was instrumental in elevating the plate tectonics paradigm in the 1960s into a modern Earth Science theory. The hypothesis itself, however, remains conjectural because many of its predictions, particularly the simple age-progressive type of volcanism, are not observed in many linear volcanic chains. As an alternative explanation, it is proposed that linear volcanic chains are formed through magmatism along pre-existing lines of weakness such as transform zones and old sutures, or along cracks created by stresses on lithospheric plates. The Marquesas linear volcanic chain in south-central Pacific has geologic features that are consistent with some of the predictions of both hypotheses. To better constrain the origin of this volcanic chain, we collected major and trace element and Sr, Nd, Pb, and He isotopic data from several Marquesan lavas. Our new analyses combined with literature data classify the samples into the well established tholeiitic to mildly alkalic, low 87Sr/86Sr, high 143Nd/144Nd, shield-building volcanic phase lava group and highly alkalic, high 87Sr/86Sr, low 143Nd/144Nd, post-shield phase group. Lead isotopes show generally higher 206Pb/204Pb ratios and suggest evidence of crustal assimilation for the shield-building phase lavas, consistent with the argument that the shield-building phase volcanism has a lithospheric source component. On the other hand, post-shield phase lavas that are predicted to represent the true composition of the mantle source by the hotspot hypothesis have higher 3He/4He ratios and these are coupled to other geochemical tracers. Thus our results show that the Marquesas volcanic chain, similar to many other linear volcanic chains, has a high 3He/4He component in its mantle source. The presence of such a distinct source component cannot be easily explained by dispersed upper mantle heterogeneities, but provides a powerful constraint for the hotspot origin of many linear volcanic chains.  相似文献   

13.
The Auckland volcanic field is a Quaternary monogenetic basaltic field of 50 volcanoes. Rangitoto is the most recent of these at ~500 year BP and may mark a change in the behaviour of the field as it is the largest by an order of magnitude and is unusual in that it erupted magmas of alkalic then subalkalic basaltic composition in discrete events separated by ≤50 years. Major and trace element geochemistry together with Sr–Nd and U-Th–Ra isotopes provides the basis for modelling the melting conditions that brought about the eruption of two chemically different lavas with very little spatial or temporal change. Sr–Nd isotopes suggest that the source for both eruptions is similar with a slight degree of heterogeneity. The basalts show high 230Th-excess compared with comparable continental volcanic fields. We show that the alkalic basalts give evidence for lower degrees of partial melting, higher amounts of residual garnet, a longer melting column and lower melting and upwelling rates compared with the subalkalic basalts. The low upwelling rates (0.1–1.5 cm/year) modelled for both magmas do not suggest a plume or major upwelling in the mantle region beneath Auckland; therefore, we suggest localised convection due to relict movement from the active subduction system situated 400 km to the southeast. A higher porosity for the initial alkalic basalt is based on 226Ra-excesses, suggesting movement of melt by two different porosities: the initial melt travelling in fast high porosity channels from greater depths preserving a high 230Th-excess and the subsequent subalkalic magma travelling from a shallower depth through lower porosity diffuse channels preserving a high 226Ra-excess; this creates a negative array in (226Ra/230Th) versus (230Th/238U) space previously only seen in mid ocean ridge Basalt data. This mechanism suggests the Auckland volcanic field may operate by the presence of discrete melt batches that are able to move at different depths and speeds giving the field its erratic spatial and temporal pattern of eruptions, a type of behaviour that may have implications for the evolution of other continental volcanic fields worldwide.  相似文献   

14.
R.C. Price  R.C. Wallace 《Lithos》1976,9(4):319-329
Rare gabbroic inclusions within a lherzolite-nodule bearing, fractionated, alkalic lava are of two types: olivine-two pyroxene-spinel-metagabbro and amphibole-two pryoxene-spinel-metagabbro. The metagabbros represent cumulates which have crystallized from alkalic basalt magma at high temperature. Metamorphic aggregates and coronas consisting of clinopyroxene-orthopyroxene and spinel with or without amphibole are attributed to complex subsolidus reactions between olivine and plagioclase; olivine, clinopyroxene and plagioclase; olivine and clinopyroxene; olivine, clinopyroxene, plagioclase and ilmenite in response to decreasing temperature as the rocks cooled at pressures of around 11 Kb (35–40 km) and temperatures in the range 1000–1150°C. The lower crust and upper mantle below East Otago must contain bodies of fractionated alkalic basalt showing granulitic mineralogy.  相似文献   

15.
Drought and human adjustment in Saudi Arabia   总被引:1,自引:0,他引:1  
Drought is one of the natural hazards which causes death and damage for property particularly in drylands of the world. Drought as a natural hazard tends to limit and disrupt human activities. On the other hand, man has tried to adjust his living conditions to this hazard. The adjustment to drought is different from one country to another. Adjustment to drought is affected by culture, income, and by the political system in the country. In the case of Saudi Arabia adjustment to drought hazard is usually the work of both individuals, and government. The Saudi Arabian government has spent large sums of money to reduce impact of drought hazard.  相似文献   

16.
Nickel enrichment in mantle olivine beneath a volcanic front   总被引:4,自引:1,他引:3  
We found abnormally Ni-rich olivine (Fo = 93) with up to 5.3 wt% of NiO, ten times higher than the ordinary mantle value (0.4 wt%), in a highly metasomatized mantle peridotite xenolith from Avacha volcano, the Kamchatka arc, Russia. The Ni enrichment displays outward diffuse circular domains (<1 mm across) in fine-grained (mostly <100 μm) olivine-rich parts. Associated metasomatic orthopyroxene also shows high NiO (<1.1 wt%). Such high Ni concentrations in olivine cannot be attained in ordinary residual or cumulus peridotites, but are achievable via diffusion from Ni-rich sulfide melt. Sulfur-bearing silicic melt, the main metasomatic agent for the Avacha peridotites, separated sulfide melt, which was fractionated to be Ni-rich at relatively low temperatures. This is a new way of mobility and redistribution of Ni in the mantle, which is active in the mantle wedge, especially beneath a volcanic front.  相似文献   

17.
The recent development of activity–composition relations for mineral and melt phases in high‐grade metamafic rocks allows mineral equilibria tools to be used to further aid our understanding of partial melting and the mineralogical consequences of melt segregation in these rocks. We show that bulk compositional data from natural amphibolites cover a wide compositional range, with particular variability in the content and ratios of Ca, Na and K indicating that low‐grade metasomatic alteration can substantially alter the igneous protolith chemistry and potentially affect the volume and composition of melt generated. Mineral equilibria calculations for five samples that span the compositional variability in our data set indicate that melting occurs primarily via the fluid‐absent breakdown of amphibole+quartz to produce a pressure‐sensitive peritectic assemblage of augite, orthopyroxene and/or garnet. The introduction of orthopyroxene at the onset of the amphibolite‐to‐granulite‐facies transition at lower pressure results in an increased rate of melt production until quartz is typically exhausted, and this is similarly seen for the introduction of garnet at higher pressure. Calculated melt compositions are dependent on the protolith composition, but initial solidus melting and biotite breakdown produce 1–3 mol.% of K‐rich granitic melts. As hornblende melting proceeds, 15–20 vol.% of either more granodioritic‐to‐tonalitic or granodioritic‐to‐trondhjemitic melt is produced. Once quartz is exhausted, intermediate to mafic melt compositions are produced at ultrahigh‐temperature conditions. Quartz‐rich lithologies with high Ca coupled to low Na and K are the most fertile under orogenic conditions, yielding up to 25 mol.% of sub‐alkalic granitic melt by 850°C. Such rocks did not experience significant subsolidus alteration. Altered compositions with low Ca and elevated Na and K are not as fertile, yielding less than 15 mol.% of alkalic granitic melt by 850°C. These melt volumes are enough to be segregated, and can make a contribution to granite magmatism and intracrustal differentiation that should not be overlooked.  相似文献   

18.
Neoproterozoic to Cambrian ultrapotassic (K2O up to 13 wt%) peralkalic alkali-feldspar-rich syenitic plutons were emplaced along the boundary between the Cachoeirinha-Salgueiro and Alto Pajeu tectonostratigraphic terranes of the Borborema structural province, northeastern Brazil. Syenite and alkalic pyroxenitic magmas coexisted in these plutons, which locally carry mica pyroxenite xenoliths. In the Triunfo batholith, the largest peralkalic pluton in the region, syenites and alkalic pyroxenites have high pyroxene-corrected δ18O values (+8.1 to + 8.5‰SMOW in the syenite and +7.6 to + 7.7‰ in the alkalic pyroxenite), high δ34S (+12.3‰CDT in syenite and + 11.2‰CDT in alkalic pyroxenite), high initial 87Sr/86Sr ratios (0.7098, syenite and alkalic pyroxenite data lying on the same Rb-Sr isochron), and low εNd (?15.3 to ?17.2 in syenite and ?16.1 in pyroxenite). Whole-rock δ18OSMOW for mica pyroxenite xenoliths varies from +7.5 to +8.0‰SMOW. Syenite, alkalic pyroxenite, and xenoliths all are enriched in large-ion lithophile elements (LILE). These geochemical and isotopic signatures suggest that the magmas were derived from an incompatible-element-enriched mantle source; this protolith probably resulted from hybridization by addition of crustal material via subduction at ~2.4 Ga, as estimated from Nd model ages. Partial melting of metasomatized material and magma emplacement at a late stage of the Brasiliano Orogeny (566 Ma) were controlled by mantle-deep shear zones during the amalgamation of the Cachoeirinha-Salgueiro and Alto Pajeu terranes.  相似文献   

19.
苏鲁超高压变质带胡家林超镁铁质岩成因及构造意义   总被引:1,自引:1,他引:0  
胡家林超镁铁质杂岩体产于苏鲁超高压变质带中部,纯橄岩和(石榴)单斜辉石岩呈不连续透镜体产于蛇纹石化橄榄岩中。纯橄岩遭受了部分蛇纹石化(烧失量=6.6%~13.2%),全岩富集强相容元素(Ni、Cr、Co)和Ir族PGE(IPGE;Ir、Os、Ru)及高IPGE/PPGE值,亏损Al、Ti、V,具高Mg~#橄榄石(Fo=91.7~92.4)和高Cr~#(0.68~0.76)尖晶石。纯橄岩高耐熔地球化学及矿物化学特征和古老的大陆岩石圈地幔相一致,表明其原岩来源于弧前地幔,代表了华北克拉通古老的大陆岩石圈地幔残留。(石榴)单斜辉石岩全岩呈相对低含量的强相容元素(Cr、Ni、Co)和IPGE,高含量的Al、Ti、V和流体迁移元素(Sr、Pb和Ba),球粒陨石标准化REE配分图呈明显"上凸"型,具低Mg~#橄榄石(Fo=76.6~76.8)和低Al_2O_3(2.76%)和高SiO_2(54.56%~56.87%)的单斜辉石。全岩组成和矿物化学表明其原岩为俯冲带内超镁铁质火成堆晶岩,最初岩浆由地幔岩高程度部分熔融的熔体和俯冲带中富H_2O流体和/或熔体构成。(石榴)单斜辉石岩原岩曾被地幔流带入扬子大陆俯冲板片和上覆地幔楔之间的俯冲通道,经历了超高压变质作用和生成大量石榴石。(石榴)单斜辉石岩在折返过程中,与大陆岩石圈地幔楔剥离的蛇纹石化橄榄岩及纯橄岩相结合,形成超镁铁质杂岩体,整体被低密度的俯冲板片(主要由花岗质片麻岩和变质沉积岩组成)裹挟,折返至地壳浅部。  相似文献   

20.
CENOZOIC VOLCANISM AND LITHOSPHERETECTONIC EVOLUTION IN NORTH TIBET  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号