首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A gridded spherical electrostatic analyzer aboard Injun 5 has been used to measure fluxes of thermal and hyperthermal electrons at subauroral latitudes in the midnight sector of the northern ionosphere between altitudes of 2500 and 850 km. Due to the offset between the geomagnetic and geographic poles hyperthermal fluxes, consisting of energetic photoelectrons that have escaped from the sunlit southern hemisphere are observed along orbits over the Atlantic Ocean and North America but not over Asia. The ambient electron temperatures (Te) near 2500 km have their highest values at trough latitudes for all longitudes. At altitudes near 1000 km elevated electron temperatures in the trough were not a consistent feature of the data. Equatorward of the trough, in the longitude sector to which conjugate photoelectrons have access, Te ~ 4000 K at 2500 km and ~ 3000 K at 1000 km. For regions with the conjugate point in darkness Te ? 2300 K over the 1000–2500 km altitude range. The effective thermal characteristics of conjugate photoelectrons are studied as functions of altitude and latitude. The observations indicate that (1) at trough latitudes elevated electron temperatures in the topside ionosphere are mostly produced by sources other than conjugate photoelectrons, and (2) at subtrough latitudes, in the Alantic Ocean-North American longitude sector, conjugate photoelectrons contribute significantly to the heating of topside electrons. Much of the conjugate photoelectron energy is deposited at altitudes >2500 km then conducted along magnetic field lines into the ionosphere.  相似文献   

2.
The ELectron Spectrometer (ELS) from the Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) flown on the Mars Express spacecraft has an 8% energy resolution, combined with the capability to oversample the martian electron distribution. This makes possible the resolution and identification of electrons generated as a result of the He 304 Å ionization of CO2 at the martian exobase on the dayside of the planet. Ionospheric photoelectrons were observed during almost every pass into the ionosphere and CO2 photoelectron peaks were identified near the terminator. Atmospherically generated CO2 photoelectrons are also observed at 10,000 km altitude in the martian tail near the inner magnetospheric boundary. Observations over a wide range of spacecraft orbits showed a consistent presence of photoelectrons at locations along the inner magnetospheric boundary and in the ionosphere, from an altitude of 250 to 10,000 km.  相似文献   

3.
A one-dimensional model of the Venus thermosphere has been constructed which includes computation of the heating efficiency of solar ultraviolet radiation, heat loss by radiation to space of infrared-active species, thermal transport by molecular and eddy conduction, and viscous dissipation. By comparing model predictions with results obtained from the Pioneer Venus Orbiter space-craft, the results indicate that energy transport parameterized by eddy heat conduction plays a dominant role in determining thermospheric temperature T. It is suggested that there exists a feedback mechanism linking heating and thermospheric circulation such that eddy cooling maintains an asymptotic temperature T~300°K for both solar-maximum and solar-minimum conditions. We also study the variation in thermospheric temperature with solar zenith angle, atomic oxygen-mixing ratio, rate of vibrational excitation of CO2 by ground-state O atoms, and the assumed transfer of O(1D) electronic energy to CO2 vibrational energy.  相似文献   

4.
The ambient photoelectron spectrum above 300 km has been measured for a sample of 500 AE-E orbits during the period 13 December 1975 to 24 February 1976 corresponding to solar minimum conditions. The 24 h average and maximum ΣKp were 19 and 35, respectively. The photoelectron flux above 300 km was found to have an intensity and energy spectrum characteristic of the 250–300 km production region only when there was a low plasma density at the satellite altitude. Data taken at local times up to 3 h after sunrise were of this type and the escaping flux was observed to extend to altitudes above 900 km with very little modification, as predicted by several theoretical calculations. The flux at high altitudes was found to be extremely variable throughout the rest of the day, probably as a result of attenuation and energy loss to thermal plasma along the path of the escaping photoelectrons. This attenuation was most pronounced where the photoelectrons passed through regions of high plasma density associated with the equatorial anomaly. At altitudes of 600 km, the photoelectron fluxes ranged from severely attenuated to essentially unaltered—depending on the specific conditions, Photoelectron fluxes from conjugate regions were often less attenuated than those observed arriving from the high density regions immediately below. Comparison of the observed attenuations, photoelectron line broadening, and energy loss due to coulomb scattering from the thermal plasma with rough calculations based on stopping power and transmission coefficients of thermal plasma for fast electrons yielded order of magnitude agreement—satisfactory in view of the large number of assumptions necessary for the calculations. Overall, the impression of the high altitude photoelectron flux which emerges from this work is that the fluxes are extremely variable as a consequence of interactions with the thermal plasma whose density is in turn affected by electrodynamic and neutral wind processes in the underlying F region.  相似文献   

5.
Darrell F. Strobel 《Icarus》2008,193(2):612-619
Hydrodynamic escape of N2 molecules from Pluto's atmosphere is calculated under the assumption of a high density, slow outflow expansion driven by solar EUV heating by N2 absorption, near-IR and UV heating by CH4 absorption, and CO cooling by rotational line emission as a function of solar activity. At 30 AU, the N2 escape rate varies from in the absence of heating, but driven by an upward thermal heat conduction flux from the stratosphere, for lower boundary temperatures varying from 70-100 K. With solar heating varying from solar minimum to solar maximum conditions and a calculated lower boundary temperature, 88.2 K, the N2 escape rate range is , respectively. LTE rotational line emission by CO reduces the net solar heat input by at most 35% and plays a minor role in lowering the calculated escape rates, but ensures that the lower boundary temperature can be calculated by radiative equilibrium with near-IR CH4 heating. While an upward thermal conduction heat flux at the lower boundary plays a fundamental role in the absence of heating, with solar heating it is downward at solar minimum, and is, at most, 13% of the integrated net heating rate over the range of solar activity. For the arrival of the New Horizons spacecraft at Pluto in July 2015, predictions are lower boundary temperature, T0∼81 K, and N2 escape rate , and peak thermospheric temperature ∼103 K at 1890 km, based on expected solar medium conditions.  相似文献   

6.
Recent observations of strong vertical thermospheric winds and the associated horizontal wind structures, using the 01(3P-1D)nm emission line, by ground-based Fabry-Perot interferometers in Northern Scandinavia have been described in an accompanying paper (Paper I). The high latitude thermosphere at a height of 200–300 km displays strong vertical winds (30–50m ms?1)of a persistent nature in the vicinity of the auroral oval even during relatively quiet geomagnetic conditions. During an auroral substorm, the vertical (upward) wind in the active region, including that invaded by a Westward Travelling Surge, may briefly(10–30 min)exceed 150 m s?1. Very large and rapid changes of horizontal wind structure (up to 500 m?1 in 30 min) usually accompany such large impulsive vertical winds. Magnetospheric energy and momentum sources generate large vertical winds of both a quasi-steady nature and of a strongly time-dependent nature. The thermospheric effects of these sources can be evaluated using the UCL three-dimensional, time-dependent thermospheric model. The auroral oval is, under average geomagnetic conditions, a stationary source of significant vertical winds (10–40 m s?1). In large convective events (directly driven by a strong momentum coupling from the solar wind) the magnitude may increase considerably. Auroral substorms and Westward Travelling Surges appear to be associated with total energy disposition rates of several tens to more than 100 erg cm?2s?1, over regions of a few hours local time, and typically 2–5° of geomagnetic latitude (approximately centred on magnetic midnight). Such deposition rates are needed to drive observed time-dependent vertical (upward) winds of the order of 100–200m s?1.The response of the vertical winds to significant energy inputs is very rapid, and initially the vertical lifting of the atmosphere absorbs a large fraction (30% or more) of the total substorm input. Regions of strong upward winds tend to be accompanied in space (and time) by regions of rather lower downward winds, and the equatorward propagation of thermospheric waves launched by auroral substorms is extremely complex.  相似文献   

7.
Previous modeling by Banaszkiewicz et al. (2000a,b) showed that the CH4 thermospheric mixing ratio on Titan could vary as much as 35-40% due to ion-neutral chemical reactions. A new vertical methane profile has been computed by simultaneously modifying the stratospheric methane mixing ratio and the K(z) previously considered by Lara et al. (1996) and Banaszkiewicz et al. (2000a,b). A satisfactory fit of the methane thermospheric abundance and stratospheric mixing ratio of other minor constituents is achieved by placing the homopause at ∼1000 km and increasing the methane stratospheric mixing ratio (qCH4) up to 3.8%. The new proposed eddy diffusion coefficient steadily rises from 1×107 cm2 s−1 at 700 km to 1×1010 cm2 s−1 at 1500 km, whereas the stratospheric values are in the range (4-20)×103 cm2 s−1. Other likely ionization sources that can influence the methane distribution are (i) a metallic ion layer produced by micrometeoroid infall and (ii) frequent X-rays solar flares. Analysis of the effects of these ionization sources on the methane distribution indicates that, unlike previously assumed, CH4 can suffer considerable variations. These variations, although proved in this work, must be cautiously regarded since several assumptions have to be made on the rate of N2 and CH4 ionization by the processes previously mentioned. Hence, these results are only indicative of methane sensitivity to ionospheric chemistry.  相似文献   

8.
Nightglow emissions provide insight into the global thermospheric circulation, specifically in the transition region (~70–120 km). The O2 IR nightglow statistical map created from Venus Express (VEx) Visible and InfraRed Thermal Imaging Spectrometer (VIRTIS) observations has been used to deduce a three-dimensional atomic oxygen density map. In this study, the National Center of Atmospheric Research (NCAR) Venus Thermospheric General Circulation Model (VTGCM) is utilized to provide a self-consistent global view of the atomic oxygen density distribution. More specifically, the VTGCM reproduces a 2D nightside atomic oxygen density map and vertical profiles across the nightside, which are compared to the VEx atomic oxygen density map. Both the simulated map and vertical profiles are in close agreement with VEx observations within a ~30° contour of the anti-solar point. The quality of agreement decreases past ~30°. This discrepancy implies the employment of Rayleigh friction within the VTGCM may be an over-simplification for representing wave drag effects on the local time variation of global winds. Nevertheless, the simulated atomic oxygen vertical profiles are comparable with the VEx profiles above 90 km, which is consistent with similar O2 (1Δ) IR nightglow intensities. The VTGCM simulations demonstrate the importance of low altitude trace species as a loss for atomic oxygen below 95 km. The agreement between simulations and observations provides confidence in the validity of the simulated mean global thermospheric circulation pattern in the lower thermosphere.  相似文献   

9.
The solar extreme ultraviolet (e.u.v.) flux and solar ultraviolet (u.v.) flux in the Schumann-Runge continuum region have been measured by spectrometers on board the Atmosphere Explorer satellites from about 1974 to 1981. The solar flux spectra measured on 23 April 1974 (a day the Atmosphere Explorer satellite reference spectrum was obtained), 13–28 July 1976 (a period of spotless conditions near solar cycle minimum), and 19 February 1979 (a day near solar cycle maximum) are used to examine the global mean temperature structure of the thermosphere above 120 km. The results show that for solar cycle minimum the calculated global mean exospheric temperature is in agreement with empirical model predictions, indicating that the energy absorbed by the thermosphere is balanced by downward molecular thermal conduction. For solar cycle maximum the energy absorbed by the thermosphere is not balanced by downward thermal conduction but agreement between the calculated and observed temperature is obtained with the inclusion of 5.3μm radiational cooling by nitric oxide. Model calculations of the minor neutral constituents in the thermosphere show that about three times more nitric oxide is produced during solar cycle maximum than solar cycle minimum conditions. The results suggest that nitric oxide cooling is small during solar cycle minimum, because of low nitric oxide densities and low thermospheric temperatures, but it becomes significantly larger during solar cycle maximum, when nitric oxide densities and thermospheric temperatures are larger.23 April 1974 was a moderately disturbed day and the results of the global mean temperature calculation indicate that it is necessary to consider a high latitude heat source associated with the geomagnetic activity to obtain agreement between the calculated and observed global mean temperature structure.  相似文献   

10.
The thermal response of the Earth's ionospheric plasma is calculated for various suddenly applied electron and ion heat sources. The time-dependent coupled electron and ion energy equations are solved by a semi-automatic computational scheme that employs Newton's method for coupled vector systems of non-linear parabolic (second order) partial differential equations in one spatial dimension. First, the electron and composite ion energy equations along a geomagnetic field line are solved with respect to a variety of ionospheric heat sources that include: thermal conduction in the daytime ionosphere; heating by electric fields acting perpendicular to the geomagnetic field line; and heating within a stable auroral red are (SAR-arc). The energy equations are then extended to resolve differential temperature profiles, first for two separate ion species (H+, O+) and then for four separate ion species (H+, He+, N+, O+) in addition to the electron temperature. The electron and individual ion temperatures are calculated for conditions within a night-time SAR-arc excited by heat flowing from the magnetosphere into the ionosphere, and also for typical midlatitude daytime ionospheric conditions. It is shown that in the lower ionosphere all ion species have the same temperature; however, in the topside ionosphere above about 400 km, ion species can display differential temperatures depending upon the balance between thermal conduction, heating by collision with electrons, cooling by collisions with the neutrals, and energy transfer by inter-ion collisions. Both the time evolution and steady-state distribution of such ion temperature differentials are discussed.The results show that below 300km both the electrons and ions respond rapidly (<30s) to variations in direct thermal forcing. Above 600 km the electrons and ions display quite different times to reach steady state, depending on the electron density: when the electron density is low the electrons reach steady state temperatures in 30 s, but typically require 700 s when the density is high; the ions, on the other hand, reach steady state in 700 s when the density is high, and 1500–2500 s when the density is low. Between 300 and 600 km, a variety of thermal structures can exist, depending upon the electron density and the type of thermal forcing; however steady state is generally reached in 200–1000 s.  相似文献   

11.
We present the first 3-dimensional self-consistent calculations of the response of Saturn's global thermosphere to different sources of external heating, giving local time and latitudinal changes of temperatures, winds and composition at equinox and solstice. Our calculations confirm the well-known finding that solar EUV heating alone is insufficient to produce Saturn's observed low latitude thermospheric temperatures of 420 K. We therefore carry out a sensitivity study to investigate the thermosphere's response to two additional external sources of energy, (1) auroral Joule heating and (2) empirical wave heating in the lower thermosphere. Solar EUV heating alone produces horizontal temperature variations of below 20 K, which drive horizontal winds of less than 20 m/s and negligible horizontal changes in composition. In contrast, Joule heating produces a strong dynamical response with westward winds comparable to the sound speed on Saturn. Joule heating alone, at a total rate of 9.8 TW, raises polar temperatures to around 1200 K, but values equatorward of 30° latitude, where observations were made, remain below 200 K due to inefficient meridional energy transport in a fast rotating atmosphere. The primarily zonal wind flow driven by strong Coriolis forces implies that energy from high latitudes is transported equatorward mainly by vertical winds through adiabatic processes, and an additional 0.29-0.44 mW/m2 thermal energy are needed at low latitudes to obtain the observed temperature values. Strong upwelling increases the H2 abundances at high latitudes, which in turn affects the H+3 densities. Downwelling at low latitudes helps increase atomic hydrogen abundances there.  相似文献   

12.
A three-dimensional, time-dependent model of thermospheric dynamics has been used to interpret recent experimental measurements of high altitude winds by rocket-borne and ground-based techniques. The model is global and includes a self-consistent treatment of the non-linear, Coriolis and viscosity terms. The solar u.v. and e.u.v. energy input provides the major energy source for the thermosphere. Solar u.v. and e.u.v. heating appear to be inadequate to explain observed thermospheric temperatures if e.u.v. heating efficiency (ε) lies in the range 0.3 < ε < 0.35. If the recent solar e.u.v. data are correct, then a value of ε between 0.4 and 0.45 would bring fluxes and observed temperatures into agreement. The Heppner (1977) and Volland (1978) models of high-latitude electric field are used to provide sources of both momentum (via ion drag) and energy (via Joule heating). We find that the Heppner Model CO (equivalent to Volland Model 1) is most appropriate for very quiet geomagnetic conditions (Kp ? 2) while Model A (equivalent to Volland Model 2) provides the necessary enhancement at high latitudes for conditions of moderate activity (Kp ~ 4). Even with the addition of a polar electric field, there still appears to be a shortage of high-latitude energy input in that model winds tend to be 10 m s?1 poleward of observed winds under quiet or average geomagnetic conditions. This extra energy cannot be provided by enhancing the polar electric fields since the extra momentum would cause disagreement with the observed high latitude winds. High latitude particulate sources of relatively low energies, ~100 eV, seem the most likely candidates depositing their energy above about 200km. Relatively modest amounts of energy are then required, < 1010W global, to bring the model into agreement with both high- and mid-latitude neutral wind results.  相似文献   

13.
Nonmethane hydrocarbon breakdown in the atmosphere produces aldehydes of which a fraction are transferred into peroxyacetyl nitrates (PAN) in the presence of NO and NO2. Since ethane is destroyed photochemically primarily above 1 km, PAN can be introduced into the upper troposphere and lower stratosphere without the need to be transported from the boundary layer where most hydrocarbons are destroyed and where PAN may be lost due to thermal decomposition and heterogeneous loss. Mixing ratios of ethane in the lower troposphere increase by a factor of 4–8 from equatorial to northern mid-latitudes. This difference is directly translatable into a PAN latitude gradient. At mid-latitudes the concentration of PAN below 20 km is 0.1 ppb comparable to and in some instances larger than predicted HO2NO2 mixing ratios. Like HO2NO2 and HNO3, PAN serves as a reservoir for odd nitrogen.  相似文献   

14.
We report the detection of electrons due to photo-ionization of atomic oxygen and carbon dioxide in the Venus atmosphere by solar helium 30.4 nm photons. The detection was by the Analyzer of Space Plasma and Energetic Atoms (ASPERA-4) Electron Spectrometer (ELS) on the Venus Express (VEx) European Space Agency (ESA) mission. Characteristic peaks in energy for such photoelectrons have been predicted by Venus atmosphere/ionosphere models. The ELS energy resolution (ΔE/E∼7%) means that these are the first detailed measurements of such electrons. Considerations of ion production and transport in the atmosphere of Venus suggest that the observed photoelectron peaks are due primarily to ionization of atomic oxygen.  相似文献   

15.
《Icarus》1986,67(3):484-514
Most of the solar energy absorbed by Venus is deposited in the atmosphere, at levels more than 60 km above the surface. This unusual flux distribution should have important consequences for the thermal structure and dynamical state of that atmosphere. Because there are few measurements of the solar flux at levels above 60 km, a radiative transfer model was used to derive the structure and amplitude of the solar fluxes and heating rates in the Venus mesosphere (60–100 km). This model accounts for all sources of extinction known to be important there, including absorption and scattering by CO2, H2O, SO2, H2SO4 aerosols and an unidentified UV absorber. The distributions of these substances in our model atmosphere were constrained by a broad range of spacecraft and ground-based observations. Above the cloud tops, (71 km), near-infrared CO2 bands absorb enough sunlight to produce globally averaged heating rates ranging from 4° K/day (24-hr period) at 71 km to more than 50° K/day at 100 km. The sulfuric acid aerosols that compose the Venus clouds are primarily scattering agents at solar wavelengths. These aerosols reflect about 75% of the incident solar flux before it can be absorbed by the atmosphere or surface. The unknown substance that causes the observed cloud-top ultraviolet contrasts is responsible for most of the absorption of sunlight within the upper cloud deck (57.5−71 km). This substance absorbs almost half of the sunlight deposited on Venus and contributes to solar heating rates as large as 6° K/day at levels near 65 km. With the exception of CO2, all of the important sources of solar extinction have concentrations that vary with position, and, in general, these concentrations are not well known. To determine the sensitivity of the model results to these uncertainties, the concentrations of these opacity sources were varied in the model atmosphere and solar fluxes were computed for each case. These tests indicate that CO2 dominates the solar absorption at levels above the cloud tops and that heating rates are relatively insensitive to the distribution of other sources of extinction there. Within the upper cloud deck, uncertainties in the distribution of the UV absorber and the H2SO4 aerosols can produce heating rate errors as large as 50% at some levels. Diurnally averaged solar heating rates for the nominal opacity distribution were computed as a function of latitude at altitudes between 55 and 100 km, where most of the solar flux is deposited. The zonal wavenumber 1 (diurnal) and zonal wavenumber 2 (semidiurnal) components of the diurnally varying solar heating rates were also computed in this domain. These results should be sufficiently reliable for use in numerical dynamical models of the Venus atmosphere.  相似文献   

16.
MOL-D database is a collection of cross-sections and rate coefficients for specific collisional processes and a web service within the Serbian Virtual Observatory (SerVO) and the Virtual Atomic and Molecular Data Center (VAMDC). This database contains photo-dissociation cross-sections for the individual ro-vibrational states of the diatomic molecular ions and rate coefficients for the atom-Rydberg atom chemi-ionization and inverse electron–ion–atom chemi-recombination processes. At the moment it contains data for photodissociation cross-sections of hydrogen H\(_{2}^{+}\) and helium He\(_{2}^{+}\) molecular ions and the corresponding averaged thermal photodissociation cross-sections. The ro-vibrational energy states and the corresponding dipole matrix elements are provided as well. Hydrogen and helium molecular ion data are important for calculation of solar and stellar atmosphere models and for radiative transport, as well as for kinetics of other astrophysical and laboratory plasma (i.e. early Universe).  相似文献   

17.
Darrell F. Strobel 《Icarus》2010,208(2):878-886
The third most abundant species in Titan’s atmosphere is molecular hydrogen with a tropospheric/lower stratospheric mole fraction of 0.001 derived from Voyager and Cassini infrared measurements. The globally averaged thermospheric H2 mole fraction profile from the Cassini Ion Neutral Mass Spectrometer (INMS) measurements implies a small positive gradient in the H2 mixing ratio from the tropopause region to the lower thermosphere (∼950-1000 km), which drives a downward H2 flux into Titan’s surface comparable to the H2 escape flux out of the atmosphere (∼2 × 1010 cm−2 s−1 referenced to the surface) and requires larger photochemical production rates of H2 than obtained by previous photochemical models. From detailed model calculations based on known photochemistry with eddy, molecular, and thermal diffusion, the tropospheric and thermospheric H2 mole fractions are incompatible by a factor of ∼2. The measurements imply that the downward H2 surface flux is in substantial excess of the speculative threshold value for methanogenic life consumption of H2 (McKay, C.P., Smith, H.D. [2005], Icarus 178, 274-276. doi:10.1016/j.icarus.2005.05.018), but without the extreme reduction in the surface H2 mixing ratio.  相似文献   

18.
The EUV observations from the SMM satellite of two sunspots are presented here. These observations show the sunspots (a) to be regions of lower intensity than the surrounding plage, contrary to that found by previous authors, and (b) to have line intensities which vary little over a period of several hours. An upper limit to mass flows of 2km s-1 is derived, indicating a relatively simple energy balance for the chromosphere-corona transition zone with thermal conduction being balanced by radiative losses. Electron densities derived from Niv to Civ line ratios imply electron pressures (log N eTe) of 15.0 to 15.3.  相似文献   

19.
There is reported a series of three artificial electron clouds created at Holloman Air Force Base, New Mexico at 69, 82 and 91 km in May 1958 by the day-time thermo-chemical release of cesium. The electron cloud was created by both thermal and photo-ionization. A lower limit for the effective duration of electron clouds for this kind of release was found to be 70 km. The short duration at low altitudes is caused by both the rapid chemical consumption of the cesium atoms thereby preventing photo-ionization and the rapid electron attachment followed by mutual neutralization. The coefficient of mutual neutralization is estimated to be 10−7−10−8 cm3 sec−1. The mathematical model employed appears to be reasonably valid.  相似文献   

20.
It is shown that Titan's surface and plausible atmospheric thermal opacity sources—gaseous N2, CH4, and H2, CH4 cloud, and organic haze—are sufficient to match available Earth-based and Voyager observations of Titan's thermal emission spectrum. Dominant sources of thermal emission are the surface for wavelenghts λ ? 1 cm, atmospheric N2 for 1 cm ? λ ? 200 μm,, condensed and gaseous CH4 for 200 μm ? λ ? 20 μm, and molecular bands and organic haze for λ ? 20 μm. Matching computed spectra to the observed Voyager IRIS spectra at 7.3 and 52.7° emission angles yields the following abundances and locations of opacity sources: CH4 clouds: 0.1 g cm? at a planetocentric radius of 2610–2625 km, 0.3 g cm?2 at 2590–2610 km, total 0.4 ± 0.1 g cm–2 above 2590 km; organic haze: 4 ± 2 × 10?6, g cm, ?2 above 2750 km; tropospheric H2: 0.3 ± 0.1 mol%. This is the first quantitative estimate of the column density of condensed methane (or CH4/C2H6) on Titan. Maximum transparency in the middle to far IR occurs at 19 μm where the atmospheric vertical absorption optical depth is ?0.6 A particle radius r ? 2 μm in the upper portion of the CH4 cloud is indicated by the apparent absence of scattering effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号