首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fire-history investigations in the Jackson Hole area of northwestern Wyoming reveal that most current stands of aspen and lodgepole pine regenerated following extensive fires between 1840 and 1890 and that widespread fires occurred in the 1600s and 1700s. White man's major effect on the fire incidence has been the successful suppression during the past 30–80 yr. Successional changes in the absence of fire include the deterioration of aspen stands, massive invasions of subalpine fir in lodgepole pine stands, great increase in conifer cover, heavy fuel buildups in lodgepole pine and Douglas fir stands, and increase in sagebrush and other shrubs. Steps are being taken, starting in 1972, to allow fire to play a more natural role in Grand Teton and Yellowstone National Parks. Teton National Forest plans experimental prescribed burning to determine whether fire can stimulate successful aspen regeneration in the presence of large numbers of wintering elk.  相似文献   

2.
Fire and other disturbances of the forests in Mount Rainier National Park   总被引:1,自引:0,他引:1  
The recent history of catastrophic disturbances in forests was reconstructed at Mount Rainier National Park. Basic data were ages of trees based on ring counts of early seral conifer species and maps of age-class boundaries from field work and aerial photographs. Maps illustrate age classes of the forests and show disturbances from fires, snow avalanches, and lahars (volcanic mudflows). Fires are by far the most important major disturbers, followed by snow avalanches and lahars. Fires over 250 ha in size are called fire events. Burns over 1000 ha, which may have been one fire or a series of fires within a short time, are called fire episodes. Important fire events or episodes occurred in the years 1230, 1303, 1403, 1503, 1628, 1688, 1703, 1803, 1825, 1856, 1858, 1872, 1886, 1894, 1930, and 1934 A.D. The largest fire episode was in 1230; it affected approximately 47% of the forests in the park. The majority of the forests are over 350 yr old, and several stands are over 1000 yr old. Stands 350 yr and 100 to 200 yr in age are the most extensive age classes in the park. Three fire frequency indices are compared. None describe fire frequency at Mount Rainier well. Natural fire rotation was estimated at about 434 yr. All but two episodes of major fires since 1300 A.D. correspond well with major droughts reconstructed for locations east of the Cascade Range crest. Impacts of humans on the disturbance regime may have increased the frequency of fire in the 1850–1900 period, followed by a decrease in frequency after 1900. Fuel build-up as a result of fire suppression should have no significant impact on fire frequency, since fires are relatively infrequent and fuels accumulate naturally.  相似文献   

3.
The paucity of low- and middle-elevation paleoecologic records in the Northern Rocky Mountains limits our ability to assess current environmental change in light of past conditions. A 10,500-yr-long vegetation, fire and climate history from Lower Decker Lake in the Sawtooth Range provides information from a new region. Initial forests dominated by pine and Douglas-fir were replaced by open Douglas-fir forest at 8420 cal yr BP, marking the onset of warmer conditions than present. Presence of closed Douglas-fir forest between 6000 and 2650 cal yr BP suggests heightened summer drought in the middle Holocene. Closed lodgepole pine forest developed at 2650 cal yr BP and fires became more frequent after 1450 cal yr BP. This shift from Douglas-fir to lodgepole pine forest was probably facilitated by a combination of cooler summers, cold winters, and more severe fires than before. Five drought episodes, including those at 8200 cal yr BP and during the Medieval Climate Anomaly, were registered by brief intervals of lodgepole pine decline, an increase in fire activity, and mistletoe infestation. The importance of a Holocene perspective when assessing the historical range of variability is illustrated by the striking difference between the modern forest and that which existed 3000 yr ago.  相似文献   

4.
High-resolution charcoal and pollen analyses were used to reconstruct a 4600-yr-long history of fire and vegetation near Taylor Lake in the wettest forests of coastal Oregon. Today, fires in these forests are rare because the season of ignition does not coincide with months of dry fuels. From ca. 4600 to 2700 cal yr B.P. fire episodes occurred at intervals of 140±30 yr while forest vegetation was dominated by disturbance-adapted taxa such as Alnus rubra. From ca. 2700 cal yr B.P. to the present, fire episodes have become less common, occurring at intervals of 240±30 yr, and fire-sensitive forest taxa, such as Tsuga heterophylla and Picea sitchensis, have become more prominent. Fire occurrence during the mid-Holocene was similar to that of the more xeric forests in the eastern Coast Range and suggests that summer drought was widespread. After ca. 2700 cal yr B.P., a decrease in fire episode frequency suggests that cooler conditions and possibly increased summer fog allowed the establishment of present-day Picea sitchensis forests within the watershed. These results provide evidence that fire has been an important disturbance agent in the Coast Range of Oregon, and variations in fire frequency and climate have led to the establishment of present-day forests.  相似文献   

5.
The impact of fire on the environment of the various Sierran conifer forests varies with intensity and frequency. Generally, however, fire (1) prepares a seedbed; (2) cycles nutrients within the system; (3) adjusts the successional pattern; (4) modifies conditions affecting wildlife; (5) influences the mosaic of age classes and vegetation types; (6) alters the numbers of trees susceptible to disease and insects; and (7) both reduces and creates fire hazards. Natural fire frequency apparently coincides with levels of fuel accumulation that result in burns of relatively low intensity at frequent intervals. This may average 8 yr in mixed conifer forests, although frequencies from 4 to 20 yr or more are found in particular sites.In all probability, giant sequoia and various pines of the Sierra survive today because of the role fire plays in the various forest types. National Park Service management policies are aimed at restoring fire, as nearly as possible, to its natural role in Sierran conifer forests. This is being accomplished by prescribed burning at lower and middle elevation types and by allowing lightning fires to burn in higher elevation forests.  相似文献   

6.
One objective of wilderness and parkland fire-ecology research is to describe the relationships between fire and unmanaged ecosystems, so that strategies can be determined that will provide a more nearly natural incidence of fire. More than 50 yr of efforts directed toward exclusion of wildland fires in the Northern Rocky Mountains (western Montana and northern Idaho) have resulted in a definite and observable impact on the forest ecosystems in this region. Fire-ecology investigations in Glacier National Park and the Selway-Bitterroot Wilderness have helped to reveal the nature of this impact and to provide a better understanding of the natural role of fire within these coniferous ecosystems. Such areas provide a unique opportunity to study and test approaches designed to perpetuate unmodified ecosystems. However, we still don't understand all of the long-term consequences of fire control in those forest communities that have evolved fire-dependent characteristics.  相似文献   

7.
Charcoal particles are widespread in terrestrial and lake environments of the northern temperate and boreal biomes where they are used to reconstruct past fire events and regimes. In this study, we used botanically identified and radiocarbon-dated charcoal macrofossils in mineral soils as a paleoecological tool to reconstruct past fire activity at the stand scale. Charcoal macrofossils buried in podzolic soils by tree uprooting were analyzed to reconstruct the long-term fire history of an old-growth deciduous forest in southern Québec. Charcoal fragments were sampled from the uppermost mineral soil horizons and identified based on anatomical characters. Spruce (Picea spp.) fragments dominated the charcoal assemblage, along with relatively abundant wood fragments of sugar maple (Acer saccharum) and birch (Betula spp.), and rare fragments of pine (Pinus cf. strobus) and white cedar (Thuja canadensis). AMS radiocarbon dates from 16 charcoal fragments indicated that forest fires were widespread during the early Holocene, whereas no fires were recorded from the mid-Holocene to present. The paucity of charcoal data during this period, however, does not preclude that a fire event of lower severity may have occurred. At least eight forest fires occurred at the study site between 10,400 and 6300 cal yr B.P., with a dominance of burned conifer trees between 10,400 and 9000 cal yr B.P. and burned conifer and deciduous trees between 9000 and 6300 cal yr B.P. Based on the charcoal record, the climate at the study site was relatively dry during the early Holocene, and more humid from 6300 cal yr B.P. to present. However, it is also possible that the predominance of conifer trees in the charcoal record between 10,400 and 6300 cal yr B.P. created propitious conditions for fire spreading. The charcoal record supports inferences based on pollen influx data (Labelle, C., Richard, P.J.H. 1981. Végétation tardiglaciaire et postglaciaire au sud-est du Parc des Laurentides, Québec. Géographie Physique et Quaternaire 35, 345-359) of the early arrival of spruce and sugar maple in the study area shortly after deglaciation. We conclude that macroscopic charcoal analysis of mineral soils subjected to disturbance by tree uprooting may be a useful paleoecological tool to reconstruct long-term forest fire history at the stand scale.  相似文献   

8.
Forest ecology suffers from a lack of long-term community records. Preserved pollen data are richer in such information than is generally realized. By applying suitable statistical techniques to pollen records, one can learn much about competition, succession, and population dynamics in past tree communities. In this study, preserved pollen records from Everitt Lake, Nova Scotia, are analyzed as time series. Time domain studies reveal the post-fire responses of individual tree taxa. Correlograms yield models of past forest succession patterns. The models explain some effects of changing fire frequency, thus suggesting mechanisms by which fire, competition, and climate combine to produce long-term forest composition changes. Frequency domain studies suggest relationships between disturbance cycles, stand composition, and forest mosaics. Fire frequencies are seen to be highest where fire-dependent species abound and most regular where tree stands have uniform, not mixed, composition.  相似文献   

9.
火后泥石流是火烧迹地最为严重的次生地质灾害,相对于传统泥石流和震后泥石流,其物源启动模式及致灾机理呈现出特殊性。通过对四川省乡城县仁额拥沟火烧迹地沟道不同时间尺度下的累积侵蚀量统计分析,将火烧迹地物源启动分为3个阶段:坡面侵蚀阶段、高含沙水流沟道侵蚀阶段和泥石流沟道刨蚀阶段,其中面蚀到沟蚀转变所需的汇流面积与斜坡倾斜度和火烈度呈负相关,高含沙水流转变为泥石流后常常造成沟道侵蚀率的激增;火烧后2 a的坡面侵蚀量相当于火烧前10~30 a的侵蚀总量,且主要发生在中度及严重火烧区;火烧区的滑坡发育率远高于未火烧区,但未发现火烈度对滑坡体积有明显影响,其主要受临空面高度影响,并呈幂函数正相关,滑坡物源启动模式为坡脚切坡触发的逐级牵引后退式补给。  相似文献   

10.
Cox  Robin S.  Hill  Tiffany T.  Plush  Tamara  Heykoop  Cheryl  Tremblay  Crystal 《Natural Hazards》2019,96(1):213-224

Fire has become one of the main disturbances in terrestrial ecosystems worldwide. It is known that elevation influences the occurrence of fire events; however, this variable has been poorly studied, although it is of particularly relevance to the Mexican topography. The objective of this research was to analyze the altitudinal distribution of forest fires in Mexico over a period of 11 years. Elevation gradients were defined based on a Digital Elevation Model and the main ecoregions of the country: (1) shrubland and tropical forests (0–1000 masl), (2) grasslands (1001–2000 masl) and (3) temperate forests (>?2000 masl). Each ecoregion was divided into Climate Research Units and the number of fires per unit was quantified. The G Getis–Ord statistic was applied in order to define the spatial patterns presented by the fire events. A relationship between the occurrence of fires and the El Niño Southern Oscillation phenomenon was also determined through a Pearson correlation. The results showed that the occurrence of fire events presented variability along elevation gradients, with elevation a determining factor in their occurrence. Gradient 3, with the highest elevation, had the greatest number of fires and also presented the largest area of fire event clustering. These results contribute to the knowledge of the spatial distribution of forest fires in Mexico and are of value to appropriate decision-making for effective fire management.

  相似文献   

11.
In boreal forest ecosystems, wildfire severity (i.e. the extent of fire‐related tree mortality) is affected by environmental conditions and fire intensity. A burned area usually includes tree patches that partially or entirely escaped fire, called ‘residual patches’. Although the occurrence of residual patches has been extensively documented, their persistence through time, and thus their capacity to escape several consecutive fires, has not yet been investigated. Macroscopic charcoal particles embedded in organic soils were used to reconstruct the fire history of 13 residual patches of the eastern Canadian boreal mixedwood forest. Our results display the existence of two types of residual patches: (i) patches that only escaped fire by chance, maybe because of local site or meteorological conditions unsuitable for fire spread (random patches), and (ii) patches with lower fire susceptibility, also called ‘fire refuges’ that escaped at least two consecutive fires, probably because of particular site characteristics. Fire refuges can escape fire for more than 500 years, up to several thousand years, and probably burn only during exceptionally severe fire events. Special conservation efforts could target fire refuges owing to their old age, long ecological continuity and potential specific biological diversity associated to different microhabitats.  相似文献   

12.
We reconstructed a 10,500-yr fire and vegetation history of a montane site in the North Cascade Range, Washington State based on lake sediment charcoal, macrofossil and pollen records. High-resolution sampling and abundant macrofossils made it possible to analyze relationships between fire and vegetation. During the early Holocene (> 10,500 to ca. 8000 cal yr BP) forests were subalpine woodlands dominated by Pinus contorta. Around 8000 cal yr BP, P. contorta sharply declined in the macrofossil record. Shade tolerant, mesic species first appeared ca. 4500 cal yr BP. Cupressus nootkatensis appeared most recently at 2000 cal yr BP. Fire frequency varies throughout the record, with significantly shorter mean fire return intervals in the early Holocene than the mid and late Holocene. Charcoal peaks are significantly correlated with an initial increase in macrofossil accumulation rates followed by a decrease, likely corresponding to tree mortality following fire. Climate appears to be a key driver in vegetation and fire regimes over millennial time scales. Fire and other disturbances altered forest vegetation at shorter time scales, and vegetation may have mediated local fire regimes. For example, dominance of P. contorta in the early Holocene forests may have been reinforced by its susceptibility to frequent, stand-replacing fire events.  相似文献   

13.
We evaluated the spatiotemporal changes in wildfire regime and exposure in a fire-prone Mediterranean area (Sardinia, Italy) in relation to changes in ignition patterns, weather, suppression activities, and land uses. We also used wildfire simulations to identify fine-scale changes in wildfire exposure of important features on the island. Sardinia experienced a sharp reduction in fire number and area burned between the periods 1980–1994 and 1995–2009. Despite this decrease, losses and fatalities from wildfires continue. This suggests that localized areas and seasons of high wildfire risk persist on the island. Our analysis showed (1) a reduction in area burned (60,000–20,000 ha/year) and ignitions (3,700–2,600 fires/year), (2) an advance of 15 days for the fire season peak, (3) an increase in spring temperatures, and (4) an increase in fire exposure for WUI areas. Little change was noted for land use types and associated fuels. Most likely the reduction in fire activity may be due to a combination of social factors and suppression capabilities. On the other hand, simulation modeling suggested pockets of high wildfire exposure in specific places. The combined empirical analyses and simulation modeling provided a robust approach to understanding the spatiotemporal dynamics of wildfire risk on the island.  相似文献   

14.
The human influence on environmental processes has been described for many types of land use. One of the oldest tools to modify people’s environment is fire, which has dominated fire regimes in many regions over long time scales. This paper focuses on a German case study region, where 80–90% of the fires are human-caused. The objectives of this study are the application of the Regional Fire Model (Reg-FIRM), a process-based fire model that is incorporated into the LPJ Dynamic Global Vegetation Model, to temperate forests under historic climate conditions and to explore ranges of potential impacts of future climate change on fire and vegetation dynamics. Simulation experiments are designed to simulate historic fire pattern and to explore influences of vegetation on fire. Simulated fire pattern reproduced the observed average fire conditions reasonably well although with a smaller amplitude. This leads to underestimation of extreme fire years as well as an overestimation of low fire years. Vegetation composition influenced fire spread conditions in the temperate forest and had little impact on fire ignition potentials, except when only broad-leaved deciduous forests were assumed. Fire is likely to change under climate change conditions. Simulated experiments were conducted to explore the effects of climate change and rising CO2 concentration given the potential natural vegetation as the best-case for Brandenburg. Three GCM scenarios predicting different future climatic changes were applied, and resulted in quantitatively different future fire patterns. Depending on future precipitation pattern and the influence of the CO2 effect on canopy conductance and thus litter moisture, fire was predicted to either decrease or slightly increase in Brandenburg forests, but the burnt area would not exceed current, extreme fire years. Generally, fire changes had no implication for vegetation composition in Brandenburg, but reduced vegetation carbon gain after 2050. In the HadCM3 application, simulated increase in grass cover due to a large burnt area after 2075 accelerated fire spread conditions, thus still increasing the burnt area, while climatic fire danger and number of fires already began to decline. These interactions underline the importance to consider the full range of fire processes and interactions with vegetation dynamics in a simulation model.  相似文献   

15.
A high-resolution macroscopic charcoal record from Lago Melli (42°46′S, 73°33′W) documents the occurrence of forest fires in the lowlands of Isla Grande de Chiloé, southern Chile, over the last 16,000 yr. Our data suggest that fire activity in this region was largely modulated by the position/intensity of the southern westerlies at multi-millennial time scales. Fire activity was infrequent or absent between 16,000-11,000 and 8500-7000 cal yr BP and was maximal between ∼ 11,000-8500 and 3000-0 cal yr BP. A mosaic of Valdivian/North Patagonian rainforest species started at ∼ 6000 cal yr BP, along with a moderate increase in fire activity which intensified subsequently at 3000 cal yr BP. The modern transition between these forest communities and the occurrence of fires are largely controlled by summer moisture stress and variability, suggesting the onset of high-frequency variability in summer precipitation regimes starting at ∼ 5500 cal yr BP. Because negative anomalies in summer precipitation in this region are teleconnected with modern El Niño events, we propose that the onset of El Niño-like variability at ∼ 5700-6200 cal yr BP led to a reshuffling of rainforest communities in the lowlands of Isla Grande de Chiloé and an increase in fire activity.  相似文献   

16.
The forests of the Siskiyou Mountains are among the most diverse in North America, yet the long-term relationship among climate, diversity, and natural disturbance is not well known. Pollen, plant macrofossils, and high-resolution charcoal data from Bolan Lake, Oregon, were analyzed to reconstruct a 17,000-yr-long environmental history of high-elevation forests in the region. In the late-glacial period, the presence of a subalpine parkland of Artemisia, Poaceae, Pinus, and Tsuga with infrequent fires suggests cool dry conditions. After 14,500 cal yr B.P., a closed forest of Abies, Pseudotsuga, Tsuga, and Alnus rubra with more frequent fires developed which indicates more mesic conditions than before. An open woodland of Pinus, Quercus, and Cupressaceae, with higher fire activity than before, characterized the early Holocene and implies warmer and drier conditions than at present. In the late Holocene, Abies and Picea were more prevalent in the forest, suggesting a return to cool wet conditions, although fire-episode frequency remained relatively high. The modern forest of Abies and Pseudotsuga and the present-day fire regime developed ca. 2100 cal yr B.P. and indicates that conditions had become slightly drier than before. Sub-millennial-scale fluctuations in vegetation and fire activity suggest climatic variations during the Younger Dryas interval and within the early Holocene period. The timing of vegetation changes in the Bolan Lake record is similar to that of other sites in the Pacific Northwest and Klamath region, and indicates that local vegetation communities were responding to regional-scale climate changes. The record implies that climate-driven millennial- to centennial-scale vegetation and fire change should be considered when explaining the high floristic diversity observed at present in the Siskiyou Mountains.  相似文献   

17.
Every year, there are almost 50,000 forest fires in Europe (127/day), which have burned an area equal to more than 450,000 ha. An effective management of forest fires is therefore fundamental in order to reduce the number of the fires and, especially, the related burned areas, preserving the environment and saving human lives. However, some problems still exist in the structure of information and in the harmonization of data and fire management procedures among different European countries. Pursuing the same interoperability aims, the European Union has invested in the development of the INSPIRE Directive (Infrastructure for Spatial Information in Europe) to support environmental policies. Furthermore, the EU (European Union) is currently working on developing ad hoc infrastructures for the safe management of forests and fires. Moving from this premises and following an analysis of the state of the art of information systems for forest fire-fighting, in the light of the end-user requirements, the paper presents the INSPIRE—compliant design of a geographical information system, implemented using open-source platforms.  相似文献   

18.
We present a new stratigraphic (pollen and nonpollen microfossils and charcoal particle) sequence with five AMS dates, covering about the last 9000 yr, of a core collected from the Spanish northern meseta, one of the territories of the Iberian Peninsula for which little paleobotanical information is available. The results support the hypothesis of the permanence of the pine forests, in more or less pure masses or large timber stands, during the Holocene in some Iberian continental zones. The typical substitution in postglacial dynamics of heliophyllous species, such as pines or Cupressaceae, by broadleaf trees did not occur in this inland region. Presumably, factors linked to the substrate, in this case very deep sand dunes covering vast areas, may have contributed to the scarce local competitiveness of the broadleaf trees, which would account for the hegemony of pines in this region. Based on the dynamics of aquatic plants and nonpollen microfossils, an initial phase previous to 7500 14C yr B.P. of high levels in the lake can be identified by high percentages of hydrophytes. A progressive increase in helophytes and the gradual infilling of the lake over the last 5000 yr appear to indicate a phase of aridification similar to those established for the western Mediterranean. Study of charcoal particles, more abundant in the last 2500 yr, has given rise to certain hypotheses regarding the incidence of recurring fires of a local or regional nature.  相似文献   

19.
《Quaternary Science Reviews》2007,26(17-18):2167-2184
The northwestern Great Basin lies in the transition zone between the mesic Pacific Northwest and xeric intermountain West. The paleoenvironmental history based on pollen, macroscopic charcoal, and plant macrofossils from three sites in the northwestern Great Basin was examined to understand the relationships among the modern vegetation, fire disturbance and climate. The vegetation history suggests that steppe and open forest communities were present at high elevations from ca 11,000 to 7000 cal yr BP, and were replaced by forests composed of white fir, western white pine, and whitebark pine in the late Holocene. Over the last 11,000 years, fires were more frequent in mid-elevation forests (10–25 fire episodes/1000 years) and rare in high-elevation forests (2–5 fire episodes/1000 years). Applying modern pollen–climate relationships to the fossil pollen spectra provided a means to interpret past climate changes in this region. In the past 9000 years summer temperatures decreased from 1 to 4 °C, and annual precipitation has increased 7–15%. These results indicate that the millennial-scale climate forcing driving vegetation changes can be quantified within the intermountain West in general and northwestern Great Basin in particular. In addition, fire can be considered an important component of these ecosystems, but it does not appear to be a forcing mechanism for vegetation change at the resolution of these records.  相似文献   

20.
Artificial neural networks (ANNs) show a significant ability to discover patterns in data that are too obscure to go through standard statistical methods. Data of natural phenomena usually exhibit significantly unpredictable non-linearity, but the robust behavior of a neural network makes it perfectly adaptable to environmental models such as a wildland fire danger rating system. These systems have been adopted by many developed countries that have invested in wildland fire prevention, and thus civil protection agencies are able to identify areas with high probabilities of fire ignition and resort to necessary actions. Since one of the drawbacks of ANNs is the interpretation of the final model in terms of the importance of variables, this article presents the results of sensitivity analysis performed in a back-propagation neural network (BPN) to distinguish the influence of each variable in a fire ignition risk scheme developed for Lesvos Island in Greece. Four different methods were utilized to evaluate the three fire danger indices developed within the above scheme; three of the methods are based on network’s weights after the training procedure (i.e., the percentage of influence—PI, the weight product—WP, and the partial derivatives—PD methods), and one is based on the logistic regression (LR) model between BPN inputs and observed outputs. Results showed that the occurrence of rainfall, the 10-h fuel moisture content, and the month of the year parameter are the most significant variables of the Fire Weather, Fire Hazard, and Fire Risk Indices, respectively. Relative humidity, elevation, and day of the week have a small contribution to fire ignitions in the study area. The PD method showed the best performance in ranking variables’ importance, while performance of the rest of the methods was influenced by the number of input parameters and the magnitude of their importance. The results can be used by local forest managers and other decision makers dealing with wildland fires to take the appropriate preventive measures by emphasizing on the important factors of fire occurrence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号