首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chihiro Tao  Sarah V. Badman 《Icarus》2011,213(2):581-592
Planetary aurora display the dynamic behavior of the plasma gas surrounding a planet. The outer planetary aurora are most often observed in the ultraviolet (UV) and the infrared (IR) wavelengths. How the emissions in these different wavelengths are connected with the background physical conditions are not yet well understood. Here we investigate the sensitivity of UV and IR emissions to the incident precipitating auroral electrons and the background atmospheric temperature, and compare the results obtained for Jupiter and Saturn. We develop a model which estimates UV and IR emission rates accounting for UV absorption by hydrocarbons, ion chemistry, and non-LTE effects. Parameterization equations are applied to estimate the ionization and excitation profiles in the H2 atmosphere caused by auroral electron precipitation. The dependences of UV and IR emissions on electron flux are found to be similar at Jupiter and Saturn. However, the dependences of the emissions on electron energy are different at the two planets, especially for low energy (<10 keV) electrons; the UV and IR emissions both decrease with decreasing electron energy, but this effect in the IR is less at Saturn than at Jupiter. The temperature sensitivity of the IR emission is also greater at Saturn than at Jupiter. These dependences are interpreted as results of non-LTE effects on the atmospheric temperature and density profiles. The different dependences of the UV and IR emissions on temperature and electron energy at Saturn may explain the different appearance of polar emissions observed at UV and IR wavelengths, and the differences from those observed at Jupiter. These results lead to the prediction that the differences between the IR and UV aurora at Saturn may be more significant than those at Jupiter. We consider in particular the occurrence of bright polar infrared emissions at Saturn and quantitatively estimate the conditions for such IR-only emissions to appear.  相似文献   

2.
The planet Jupiter possesses a magnetic field and is surrounded by a magnetosphere. The occurrence of auroral and polar cap phenomena similar to those found on earth is very likely. In this work auroral and polar cap emissions in a model Jovian atmosphere are determined for proton precipitation. The incident protons, which are characterized by representative spectra, are degraded in energy by applying the continuous slowing down approximation. All secondary and higher generation electrons are assumed to be absorbed locally and their contributions to the total emissions are included. Volume emission rates are calculated from the total direct excitation rates with corrections for cascading applied. Results show that most molecular hydrogen and helium emissions for polar cap precipitation are below the ambient dayglow values. Charge capture by precipitating protons is an important source of Lyman α and Balmer α emissions and offers a key to the detection of large fluxes of low energy protons.  相似文献   

3.
Ulysses had a “distant encounter” with Jupiter when it was within 0.8 AU of the planet during February, 2004. The passage of the spacecraft was from north to south, and observations of the Jovian radio waves were carried out for a few months from high to low latitudes (+80° to +10°) of Jupiter. The statistical study performed during this “distant encounter” event provided the occurrence characteristics of the Jovian broadband kilometric radiation (bKOM), including the high-latitude component as follows: (1) the emission intensity of bKOM was found to have a sinusoidal dependence with respect to the central meridian longitude (CML), showing a broad peak at ∼180°, (2) bKOM was preferably observed in the magnetic latitudinal range from ∼+30° to +90°, and the emission intensities at the high latitudes were found to be two times larger than that at the equatorial region, and (3) the emission intensity was controlled possibly by the sub solar longitude (SSL) of Jupiter. The intensity had a sharp peak around SSL ∼210°. A 3D ray tracing approach was applied to the bKOM in order to examine the source distribution. It was suggested that: (1) the R-X mode waves generated through the Cyclotron Maser Instability process would be unable to reproduce the intense high-latitude component of the bKOM, (2) the L-O mode, which was assumed to be generated at frequencies near the local plasma frequency, was considered to be the dominant mode for past and present observations at mid- and high-latitudinal regions, and (3) the high-latitude component of bKOM was found to have a source altitude of 0.9-1.5 Rj (Rj: Jovian radii), and to be distributed along magnetic field lines having L>10.  相似文献   

4.
North to south scans of Jupiter at 7.8-μm wavelength in early 1981 confirm polar brightening events that correlate with LCMIII, such that a polar limb is bright when the corresponding magnetic pole is tilted eartward. The correlation with magnetic features of the planet suggests that the energy source for the brightenings is magnetospheric particles incident upon the polar regions of the atmosphere. The northern polar events are more prominent and more regular than the southern ones. The polar emission may be indirectly related to the ultraviolet absorber observed near the poles by Voyager 2.  相似文献   

5.
The coefficients of synchrotron emission and absorption and of Compton extinction in a gas of ultrarelativistic electrons containing a random magnetic field are represented by rapidly converging power series for a power- law distribution of electron energy having any exponent. Exact and approximate expressions are given for the frequency redistribution function. The results will be used to calculate the emission from jets of active galactic nuclei. Translated from Astrofizika, Vol. 41, No. 2. pp. 197–216, April-June, 1998.  相似文献   

6.
The Ulysses Unified Radio and Plasma (URAP) experiment has detected a new component of Jupiter's radio spectrum in the frequency range from about 10 to 30 kHz. This component is emitted in the magnetoionic ordinary mode from a localized corotating source in the northern polar region. The source is centered at system III longitude 208°, near the meridian containing the North magnetic dipole axis, at a distance of nearly 4RJ from the planet and near the last closed field line. The emission frequency is somewhat above the electron plasma frequency in the source region, but well below the electron gyrofrequency. Accompanying this O-mode emission at lower frequencies is intense Z-mode emission, which is likely to play a significant role in the generation of the O-mode.  相似文献   

7.
The relatively high contrast between planetary and solar low-frequency radio emissions suggests that the low-frequency radio range may be well adapted to the direct detection of exoplanets. We review the most significant properties of planetary radio emissions (auroral as well as satellite induced) and show that their primary engine is the interaction of a plasma flow with an obstacle in the presence of a strong magnetic field (of the flow or of the obstacle). Scaling laws have been derived from solar system planetary radio emissions that relate the emitted radio power to the power dissipated in the various corresponding flow–obstacle interactions. We generalize these scaling laws into a “radio-magnetic” scaling law that seems to relate output radio power to the magnetic energy flux convected on the obstacle, this obstacle being magnetized or unmagnetized. Extrapolating this scaling law to the case of exoplanets, we find that hot Jupiters may produce very intense radio emissions due to either magnetospheric interaction with a strong stellar wind or to unipolar interaction between the planet and a magnetic star (or strongly magnetized regions of the stellar surface). In the former case, similar to the magnetosphere–solar wind interactions in our solar system or to the Ganymede–Jupiter interaction, a hecto-decameter emission is expected in the vicinity of the planet with an intensity possibly 103–105 times that of Jupiter's low frequency radio emissions. In the latter case, which is a giant analogy of the Io–Jupiter system, emission in the decameter-to-meter wavelength range near the footprints of the star's magnetic field lines interacting with the planet may reach 106 times that of Jupiter (unless some “saturation” mechanism occurs). The system of HD179949, where a hot spot has been tentatively detected in visible light near the sub-planetary point, is discussed in some details. Radio detectability is addressed with present and future low-frequency radiotelescopes. Finally, we discuss the interests of direct radio detection, among which access to exoplanetary magnetic field measurements and comparative magnetospheric physics.  相似文献   

8.
Three-dimensional calculations are presented for the circumplanetary nature of the iogenic plasma source (pickup ions produced by electron and charge exchange processes in the plasma torus) created by O and S gases located above Io's exobase in its corona and escaping extended neutral clouds (designated as the “Outer Region”). These calculations are undertaken using neutral cloud models for O and S with realistic incomplete collisional cascade source velocity distributions and rates at Io's exobase and realistic spacetime loss processes in the plasma torus. The resulting spatial distributions for O and S about Jupiter are highly peaked at Io but extend at much lower density levels all about the planet, particularly within Io's orbit where they may play a role in the pitch angle scattering and energy loss of radially inward diffusing energetic electrons for the synchrotron radiation belts of Jupiter, in producing bite-outs in the energy distribution of energetic heavy ions near Io's orbit, and in providing a charge exchange source for energetic neutral atoms (ENAs) detected both near and far from Jupiter. For the iogenic plasma source created by these neutrals, two-dimensional distributions produced by integrating the three-dimensional information along the magnetic field lines are presented for the instantaneous values of the pickup ion rates, the total- and net-mass loading rates, the mass-per-unit-magnetic-flux source rate, the pickup conductivity, the pickup radial current, and the pickup ion power (or energy rate). On the circumplanetary spatial scale, the instantaneous iogenic plasma source is highly peaked about Io's position on its orbit around Jupiter. The degree of orbital asymmetry and its physical origin are discussed, and overall spatially integrated rates are presented. The spatially integrated net-mass loading rate is 154 kg s−1 and the total (electron impact and charge exchange) mass loading rate is 275 kg s−1. Rough minimum estimates are made for the spatially integrated total-mass loading rate created by the “Inner Region” (spatial region below Io's exobase) and are at least ∼1 to 2.5 times larger than that for the Outer Region. Implications of the iogenic plasma source created by the Outer Region and the Inner Region are discussed.  相似文献   

9.
Pitch-angle diffusion coefficients of electrons have been calculated for resonant interaction with electrostatic electron-cyclotron harmonic (ECH) waves using quasi linear diffusion theory. Calculations have been performed for the planets Earth and Jupiter at three radial distances for each planet. Electron precipitation fluxes have also been calculated and compared with observed fluxes. At Earth, electrons of energy ≤200 eV may be put on strong diffusion at L = 10. At lower L values, observed ECH wave amplitudes are insufficient to put electrons on strong diffusion. At Jupiter, electrons can be put on strong diffusion at all L values. However, the energy of electrons which may be put on strong diffusion decreases from about 1 keV at L = 7 to ~100 eV at L = 17. It is concluded that ECH waves may be partly responsible for diffuse auroral precipitation of low energy electrons at Jupiter for lower L values. At Earth contribution of ECH waves to diffuse aurora is quite small.  相似文献   

10.
During its flyby of Jupiter in February 1992, the Ulysses spacecraft passed through the Southern Hemisphere dusk-side Jovian magnetosphere, a region not previously explored by spacecraft. Among the new findings in this region were numerous, sometimes periodic, bursts of high energy electrons with energies extending from less than 1.5 MeV to beyond 16 MeV. These bursts were discovered by the High Energy Telescope (HET) and the Kiel Electron Telescope (KET) of the COSPIN Consortium. In this paper we provide a detailed analysis of observations related to the bursts using HET measurements. At the onset of bursts, the intensity of > 16 MeV electrons often rose by a factor of > 100 within 1 min, and multiple, pulsed injections were sometimes observed. The electron energy spectrum also hardened significantly at the onset of a burst. In most bursts anisotropy measurements indicated initial strong outward streaming of electrons along magnetic field lines that connect to the southern polar regions of Jupiter, suggesting that the acceleration and/or injection region for the electrons lies at low altitudes near the South Pole. The initial strong outward anisotropies relaxed to strong field-aligned bidirectional anisotropies later in the events. The bursts sometimes appeared as isolated events, but at other times appeared in quasi-periodic series with a period of 40 min. For smaller events shorter periods of the order 2–3 min were also observed in a few cases. For large events, multiple injections were sometimes observed in the first few minutes of the event. Radio bursts identified by the Ulysses URAP experiment in the frequency range 1–50 kHz were correlated with many of the electron bursts, and comparison of the time-intensity profiles for radio and electrons shows that the radio emission typically started several minutes before the electron intensity increase was observed. For the strongest electron bursts, small increases in the low energy (> 0.3 MeV) proton counting rates were also observed. Using a computerized identification algorithm to pick out bursts from the data record using a consistent set of criteria, 121 events were identified as electron bursts during the outbound pass, compared to only three events that satisfied the same criteria during the inbound pass through the day-side magnetosphere. No similar electron burst events have been found outside the magnetopause. Estimates of the electron content of a typical large burst (> 1027 electrons) suggest that these bursts may make significant contributions to the fluxes of electrons observed in Jupiter's outer magnetosphere, and in interplanetary space.  相似文献   

11.
12.
Ulysses plasma electron observations of bidirectional and enhanced unidirectional electron heat fluxes within 4500 RJ (0.8 a.u. or 3 months on either side of closest approach) of Jupiter are presented as evidence for the magnetic connection of the spacecraft to the Jovian bow shock. These bursts of suprathermal electrons (> 30 eV) are observed when the interplanetary magnetic field points roughly parallel or antiparallel to the Jupiter-spacecraft line. Ninety-eight possible connection events were found over the 6 month period centered on the closest approach to Jupiter. The frequency of occurrence peaked with proximity to the bow shock, with most events occurring post-encounter. These are the first observations of backstreaming suprathermal electrons made in the vicinity of the Jovian bow shock.  相似文献   

13.
The COSPIN/KET experiment onboard Ulysses has been monitoring the flux of 3–20 MeV electrons in interplanetary space since the launch of Ulysses in October 1990. The origin of these electrons has been known for a long time to be the Jovian magnetosphere. Propagation models assuming interplanetary diffusion of these electrons in the ideal Parker magnetic field were successfully developed in the past. The average electron flux measured by our experiment agrees with these models for most of the times before and after the Jovian flyby of February 1992, i.e. in and out of the ecliptic down to 28° S of heliographic latitude for the last data presented here (end of March 1993).However, in addition to this average flux level well accounted for by diffusion in an ideal Parker field, we have found very short duration electron events which we call “jets”, characterized by: (i) a sharp increase and decrease of flux; (ii) a spectrum identical to the electron spectrum in the Jovian magnetosphere; and (iii) a strong first-order anisotropy. These jets only occur when the magnetic field at Ulysses lies close to the direction of Jupiter, and most of the time (86% of the events) points outwards from Jupiter, i.e. has the same polarity after the flyby as the Jovian dipole (North to South). These events are interpreted as crossings by Ulysses of magnetic flux tubes or sheets directly connected to the location of the Jovian magnetosphere from which electrons escape into interplanetary space. The average thickness of these sheets is 1011cm or 14 Jovian radii. These jets are clearly identified up to 0.4 a.u. before the Jupiter flyby in the ecliptic plane, and up to 0.9 a.u. out of the ecliptic.Moreover, the characteristic rocking of the electron spectrum in the Jovian magnetosphere with a 10 h periodicity is found to be present during the jets, and predominantly during them. In the past, this modulation has been reported to be present in interplanetary space as far as 1 a.u. upwind of Jupiter, a fact which cannot be accounted for by diffusion in the average Parker magnetic field. Our finding gives a simple explanation to this phenomenon, the 10 h modulation being carried by the “jet” electrons which travel with no appreciable diffusion along magnetic field lines with a direction far from the ideal Parker spiral.  相似文献   

14.
The general solution for the energy distribution of relativistic electrons in which electrons generated within the source diffuse and decay through synchrotron or Compton radiation is given for the case in which the magnetic field and the diffusion coefficient are constant. A very simple spherically symmetric model with an electron point-source at the centre is considered and the equations are explicitly solved. It is shown that notwithstanding its great simplicity this model gives a fair representation of the continuous emission of the Crab nebula from the radio to the X-ray region, with the simple assumption that it is due only to ordinary synchrotron radiation. If the central point source is identified with the pulsar there appears to be an upper limit of about 107 MeV to the energy of the electrons accelerated by the pulsar mechanism.  相似文献   

15.
Analysis of experimental data on the variations in the intensities of 2–12 MeV electrons and cosmic rays and the interplanetary magnetic field (IMF) magnitude has revealed “responses” to the influence of Jupiter in these parameters. Their amplitudes, in instrumental count units, are the following: 0.15 (71%) in the electron intensity, 48 (0.8%) in the cosmic-ray intensity, and 0.19 (2.8%) in the IMF magnitude. The maximum of the response in the electron intensity and the minimum of the response in the IMF magnitude coincide and lie near the magnetic field line that runs along the Sun-Earth-Jupiter axis. The minimum of the response in the cosmic-ray intensity is shifted against the solar rotation by 75 days from the magnetic field line connecting Jupiter and the Earth. Jupiter has the strongest influence on the intensity of high-energy electrons (71% of their total intensity).  相似文献   

16.
The Ulysses spacecraft encountered the planet Jupiter in February 1992, on its journey towards high heliospheric latitude. During the approach to the planet, as well as on the outbound pass, while receding from the Jovian bow shock, the Plasma Frequency Receiver that is part of the Unified Radio and Plasma Wave experiment (URAP) recorded bursts of plasma waves in the frequency range of a few kHz. These emissions, first observed by the PWS experiment onboard the Voyager spacecraft, have been identified as upstream electron plasma waves. In this paper, we present the first analysis of the characteristics of these emissions, which are very similar to those found in the Earth's electron foreshock, upstream of the Earth's bow shock. These bursty emissions, with a peak frequency very close to the local electron plasma frequency Fpe, have a typical electric field amplitude in the range 0.01–0.1 mV m−1, with some bursts above 1 mV m−1. The frequency bandwidth over which significant power can be found above the instrument background noise ranges from below 0.2 Fpc to about 2 Fpc. On the basis of our present knowledge of similar emissions observed at Earth, we suggest that the broadband emissions are triggered by suprathermal (a few tens of eV) electrons, streaming back from Jupiter's bow shock.  相似文献   

17.
For decades, ground-based radio observations of Jovian synchrotron radiation have shown emission originating predominantly from the equatorial region and from high-latitude regions (lobes) near L∼2.5. The observations show a longitudinally asymmetric gap between the emission peaks of the lobes and the atmosphere of Jupiter. One possible explanation for these gaps is the loss of electrons through collisions with atmospheric neutrals as the electrons bounce along magnetic field lines and drift longitudinally in the presence of asymmetric magnetic fields. To assess this hypothesis, we applied the recently developed O6 and VIP4 magnetic field models to calculate the trajectories of electrons as they drift longitudinally in Jupiter's magnetic field, and derive the sizes of their equatorial drift loss cones. We then identified the shells on which electrons would be lost due to collisions with the atmosphere. The calculated drift loss cone sizes could be applied in future to the modeling of electron distribution functions in this region and could also be applied to the study of Jovian auroral zone. This method also allowed us to compute the shell-splitting effects for these drifting electrons and we find the shell-splitting to be small (?0.05RJ). This justifies a recent modeling assumption that particles drift on the same shells in a three-dimensional distribution model of electrons. We also compared the computed gaps with the observed gaps, and found that the atmospheric loss mechanism alone is not able to sufficiently explain the observed gap asymmetry.  相似文献   

18.
M.G. Heaps  J.N. Bass  A.E.S. Green 《Icarus》1973,20(3):297-303
The planet Jupiter, like the Earth, possesses a magnetic field, and, therefore, auroral activity is very likely. In this work, the auroral emissions due to electron precipitation are estimated for a model atmosphere with and without helium. The incident primary electrons, which are characterized by representative spectra, are degraded in energy by applying the continuous slow down approximation. All secondaries, tertiaries, and higher generation electrons are assumed to be absorbed locally. A compilation of excitation, dissociation, and ionization cross section data for H, H2, and He are used to model all aspects of the energy deposition process. Volume emission rates are calculated from the total direct excitation rates, and appropriate corrections for cascading are applied. Integrated column intensities of several kiloRayleighs are obtained for the various vibrational levels of the Lyman and Werner bands of H2, as well as the triplet continuum a3Σg+b3Σu+. Helium emissions are relatively small because the majority of electrons are absorbed above the region of maximum He concentration. Atomic hydrogen emissions are due mainly to dissociative excitation of molecular hydrogen rather than direct excitation.  相似文献   

19.
This paper investigates in detail the peak frequency of gyrosynchrotron radiation spectrum with self and gyroresonance absorption for a model of nonuniform magnetic field. It is found that the peak frequency shifts from lower frequency to higher frequency with increases in the low-energy cutoff, number density, input depth of energetic electrons, magnetic field strength and viewing angle. When the number density and temperature of thermal electrons increase, the peak frequency also shifts to a slightly higher frequency. However, the peak frequency is independent of the energy spectral index, high-energy cutoff of energetic electrons and the height of the radio source’s upper boundary. It is also found for the first time that there is a good linear correlation between the logarithms of the peak frequency and the low-energy cutoff, number density, input depth of energetic electrons, magnetic field strength, and viewing angle, respectively. Their correlation coefficients are higher than 0.95 and the standard errors are less than 0.06.  相似文献   

20.
High speed dust streams emanating from near Jupiter were first discovered by the Ulysses spacecraft in 1992. Since then the phenomenon has been re-observed by Galileo in 1995, Cassini in 2000, and Ulysses in 2004. The dust grains are expected to be charged to a potential of , which is sufficient to allow the planet's magnetic field to accelerate them away from the planet, where they are subsequently influenced by the interplanetary magnetic field (IMF). A similar phenomenon was observed near Saturn by Cassini. Here, we report and analyze simultaneous dust, IMF and solar wind data for all dust streams from the two Ulysses Jupiter flybys. We find that compression regions (CRs) in the IMF – regions of enhanced magnetic field – precede most dust streams. Furthermore, the duration of a dust stream is roughly comparable with that of the precedent CR, and the occurrence of a dust stream and the occurrence of the previous CR are separated by a time interval that depends on the distance to Jupiter. The intensity of the dust streams and their precedent CRs are also correlated, but this correlation is only evident at distances from the planet no greater than 2 AU. Combining these observations, we argue that CRs strongly affect dust streams, probably by deflecting dust grain trajectories, so that they can reach the spacecraft and be detected by its dust sensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号