共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermodynamic properties of the lower mantle are determined from the seismic profile, where the primary thermodynamic variables are the bulk modulus K and density ρ. It is shown that the Bullen law (K ∝ P) holds in the lower mantle with a high correlation coefficient for the seismic parametric Earth model (PEM). Using this law produces no ambiguity or trade-off between ρ0 and K0, since both K0 and K′0 are exactly determined by applying a linear K?ρ relationship to the data. On the other hand, extrapolating the velocity data to zero pressure using a Birch-Murnaghan equation of state (EOS) results in an ambiguous answer because there are three unknown adjustable parameters (ρ0, K0, K′0) in the EOS.From the PEM data, K = 232.4 + 3.19 P (GPa). The PEM yields a hot uncompressed density of 3.999 ± 0.0026 g cm?3 for material decompressed from all parts of the lower mantle. Even if the hot uncompressed density were uniform for all depths in the lower mantle, the cold uncompressed mantle would be inhomogeneous because the decompression given by the Bullen law crosses isotherms; for example, the temperature is different at different depths. To calculate the density distribution correctly, an isothermal EOS must be used along an isotherm, and temperature corrections must be placed in the thermal pressure PTH.The thermodynamic parameters of the lower mantle are found by iteration. Values of the three uncompressed anharmonic parameters are first arbitrarily selected: α0 (hot), the coefficient of thermal expansion; γ0, the Grüneisen parameter; and δ, the second Grüneisen parameter. Using γ0 and the measured ρ0 (hot) and K0 (hot), the values of θ0 (Debye temperature) and q = dlnγ/dlnρ are found from the measured seismic velocities. Then from (αKT)0 and q the thermal pressure PTH at all high temperatures is found. Correlating PTH against T to the geotherm for the lower mantle, PTH is found at all depths Z. The isothermal pressure, along the 0 K isotherm, at every Z is found by subtracting PTH from the measured P given by the seismic model. Using the isothermal pressure at depth Z, the solution for the cold uncompressed density ρ0C and the cold uncompressed bulk modulus, KT0 is found as a trace in the KT0?ρ0C plane. A narrow band of solutions is then found for ρ0C and KT0 at all depths.The thermal expansion at all T is found from [ρ0C ? ρ0 (hot)/ρ0C. From Suzuki's formula, the best fit to the thermal expansion determines γ0 and α0 (hot). When the values of these two parameters do not agree with the original assumptions, the calculation is repeated until they do agree. In this way all the important thermodynamic parameters are found as a self-consistent set subject only to the assumptions behind the equations used. 相似文献
2.
Siegfried Franck 《Physics of the Earth and Planetary Interiors》1982,27(4):249-254
This paper is concerned with some new problems of the dynamics and energetics of the Earth's core. The model of the so-called gravitationally-powered dynamo is investigated under the assumption of liquid immiscibility in the FeS system as a possible core material. In this way the growing inner core causes nucleation of small FeS-droplets that ascend under the release of gravitational potential energy. This energy is enough to drive a dynamo with a toroidal magnetic field of mean size. 相似文献
3.
M.A. Khan 《Physics of the Earth and Planetary Interiors》1983,31(3):231-240
Accuracy tests on the most recent GEM (Goddard Earth Model) gravity models for the representation of the Earth's gravity field, using specially devised statistical techniques of comparative evaluation, show that there is steady improvement in these models with time. On this comparative basis, the accuracy of determination for the spherical harmonic coefficients of the Earth's gravity field is ~ 100% for n = 2–6, 90–99% for n = 7–10, 55–80% for n = 11–14 and ? 50% for n ? 15, deteriorating rapidly with increasing n. The higher degree coefficients corresponding to n ≥ 15 do not seem to be determined accurately enough to be useful from a geophysical standpoint, though their cumulative contribution is undoubtedly useful for specific orbital computations. The estimated errors are 0.3 mGal for n = 2–6, 1.5 mgal for the frequency range n = 2–10, 3 mGal for n = 2–14 and 5–6 mGal for n = 2–22. These error estimates, especially the ones for the higher frequency range, may have been affected by possible errors in the comparison standards used for this evaluation. Consequently, some of the higher degree coefficients of recent GEM models may be more accurate than predicted by these tests.Due to the inherent deficiency of the comparison standards, the errors given in this paper should be treated as error estimates. The steady and progressive improvement, shown by the various GEM gravity models when tested against comparison standards 10E and WGS 72, i.e. the more recent a gravity model, the better it tests against the comparison standards in contrast to its predecessors, is remarkable, as the comparison standards themselves are several years older than the gravity models tested here. This clearly validates our choice of comparison standards, as well as the premises and predictions of our evaluation techniques. It also demonstrates the power and potential of these techniques, which only seem to be limited by the level of accuracy of the available standard of comparison. 相似文献
4.
This paper studied some properties of PdSwr phase related to 670 km discontinuities in detail, and theoretically processed a preliminary analysis to this phase. We discussed the relationships between the incident angle ih of PdSwr phase with its path, epicentral distance, travel-time and relative amplitude due to low velocity zone (LVZ) of upper mantle, and preliminarily pointed out the main characters of PdSwr phase recorded in seismogram. The PdSwr phase is concentrated in range of 13.5(~96.5(. When epicentral distance is greater than 33(, the start point of PdSwr phase is relatively well distinguishable and could thus be determined more easily. When the epicentral distance is between 13.5( to 33(, the triplication of PdSwr(s travel-time curve could be slightly distinguished due to the low velocity zone and 220 km seismic velocity discontinuity of upper mantle. The relevant observed PdSwr phase should be in a more complex pattern and it should be more difficult to determine its start point. 相似文献
5.
M.J. Randall 《Physics of the Earth and Planetary Interiors》1976,12(1):P1-P4
The contention that dissipation within the body of the earth has only a second-order effect on the eigen-frequencies of the free oscillations arises from the neglect of the dispersion that must accompany attenuation. Consideration of three models for the attenuation-dispersion pair shows that frequency shifts of the order of 1% are to be expected — a result of some significance in the inversion of free-oscillation data. 相似文献
6.
7.
Orson L. Anderson 《Physics of the Earth and Planetary Interiors》1979,18(3):221-231
The value of the acoustic Grüneisen parameter, γa, in the earth's interior has been computed using data from recent models obtained by inversion of normal data. In this paper we emphasize the data from the PEM model of the earth because there has been sufficient smoothing of the seismic data so that the derivatives d ln νs/d ? and d ln νp/d ? can be well defined at all depths.The results for the lower mantle show that γa decreases exponentially from 1.3 to 1.0, and there are several consistent cross-checks of the limiting values. We find γa is about 1.5 for the inner core and outer core. These results confirm, in broad outline, the results of others who computed γ for the core by entirely different methods. They also confirm a higher value of γ in the inner core. The value of γa in the lower mantle follows a ρ?1.35 law, which is reminiscent of the expirical law γρ = constant, commonly used in shock-wave analyses. 相似文献
8.
E. Takahashi 《Bulletin of Volcanology》1978,41(4):529-547
Mafic and ultramafic xenoliths, in the Holocene calc-alkali andesite of Ichinomegata(1) crater in Oga peninsula and those in the Plio-Pleistocene alkali-olivine basalts of Oki-Dōgo island in the Japan Sea, have been studied in detail. Based on geothermometry and geobarometry, and relative abundance of the rock types of the xenoliths, petrologic models of the crust and upper mantle beneath these two areas were constructed. The crust and upper mantle beneath Ichinomegata crater are characterized by hydrous and relatively low temperature conditions. On the other hand, the crust and upper mantle beneath Oki-Dōgo island are characterized by nearly anhydrous and high temperature conditions, and presence of thick lavers of peridotite and pvroxenite cumulates in the uppermost mantle. The crust and upper mantle of the western part of the Northeast Honshū Arc can be considered as similar to those beneath Ichinomegata crater, because of the common occurrence of similar mafic xenoliths from many andesite volcanoes in this area. The crust and upper mantle of the northern part of the Southwest Honshū Arc, in the same way, can be regarded as similar to those beneath Oki-Dōgo island. Differences in amount of hydrous minerals of deep-seated rocks between the two areas can be interpreted as due to the presence of migrating water derived from the subducting Pacific plate in the Northeast Honshū Arc. Difference in slope of the geotherm may be due to the difference in temperature of the partial melt zones beneath these two areas. Bulk chemical compositions of the lower crustal materials of the Japanese island arcs, 85 mafic inclusions from 15 volcanoes, are listed, and it is concluded that they are cumulates or metamorphosed cumulates in the lower crust. 相似文献
9.
P. Noziéres 《Physics of the Earth and Planetary Interiors》1978,17(2):55-74
A mathematical model that might be relevant to the dynamic properties of the earth's dynamo is constructed. The model involves one mechanical variable (convection velocity at constant geometry) and two electromagnetic degrees of freedom. It represents a generalization of the Rikitake coupled dynamos. We first show that the problem involves two very different time scales, a fast MHD scale and a slow inductive scale. Using the ratio of these scales as an expansion parameter, we solve analytically the non-linear differential system which describes the dynamics of our model. We first isolate a slow motion, and we study its stability against fast MHD ocillations. For large amplitudes, we show how to construct an expansion in the drift of the fast orbit. We survey in some detail the various possible regimes. Among them, we find a typical “ratchet like” relaxation behaviour, which may perhaps explain the very sudden reversals of the earth's field. Orders of magnitude and possible generalizations are briefly sketched. 相似文献
10.
Ian Jackson 《Earth and Planetary Science Letters》1983,62(1):91-103
The physical properties(?, K, K′) of the adiabatically decompressed lower mantle are interpreted in terms of an (Mg,Fe)SiO3 perovskite + magnesiowüstite mineralogy. The approach employed in this paper involves the removal of the relatively better characterised magnesiowüstite component from the two-phase mixture in order to highlight the physical properties required of the perovskite phase for consistency between the seismological data and any proposed compositional model. It is concluded that a wide tradeoff (emphasized by Davies [1]) between composition, temperature and the physical properties (especially thermal expansion) of the perovskite phase accommodates most recently proposed compositional models including Ringwood's [2] pyrolite and the more silicic models of Burdick and Anderson [3], Anderson [4], Sawamoto [5], Butler and Anderson [6], Liu [7,8] and Watt and Ahrens [9]. 相似文献
11.
大兴安岭域,包括大兴安岭及其两侧盆地,穿过额尔古纳地块、兴安地块、松嫩地块和辽源地体.本文在东北地区已有的近东西向的全球地学断面(GGT)资料基础上,在大兴安岭两侧补充了2条近南北向的地球物理剖面,组构了综合地球物理栅状图;又结合区域内其他7条经综合解译的地球物理剖面,分析讨论了研究区壳幔结构特征及其地质意义.论文得到如下初步结果:(1)研究区莫霍界面以大兴安岭重力梯级带为分界,西部和东部深度有明显差异;以索伦山-西拉木伦河缝合带为界的南北岩石圈-软流圈界面(LAB)深度、软流圈有明显差异.呈现出地壳东西分带、岩石圈地幔南北分块的特征.(2)额尔古纳-兴安微板块具有较稳定的岩石圈地幔组构,与南部的中朝板块的岩石圈地幔具有较大差别;额尔古纳地块与西伯利亚板块的岩石圈特征更为接近.(3)获得古缝合带位置线索.林西以南的翁牛特下方存在明显的LAB南北向抬升,这是古亚洲洋闭合在岩石圈尺度上留下的遗迹;索伦山缝合带东延至西拉木伦河,是古亚洲洋闭合的场所.(4)大兴安岭域跨过两条板块缝合带,该区域北部与中部岩石圈组构特征相近,但它们的岩石圈地幔基底并不相同,这是在塔源-喜桂图缝合带于早古生代的拼合之后由数亿年的长期壳幔物质横向均衡作用所致.
相似文献12.
Recent studies have shown that major nominally anhydrous minerals in the Earth’s mantle, such as olivine, pyroxene and garnet, can incorporate considerable amounts of water as structurally bound hydroxyl. Even a small amount of water is present in mantle minerals, it can strongly affect a number of physical properties, including density, sound velocity, melting temperature, and electrical conductivities. The presence of water can also influence the dynamic behavior, lead to lateral velocity heterogeneities, and affect the material circulation of the Earth’s deep interior. In particular, seismic studies have reported the existence of low-velocity zones in various locations of the Earth’s upper mantle and transition zone, which has been expected to be associated with the presence of water in the region. In the past two decades, the effect of water on the elasticity and sound velocities of minerals at relevant pressure-temperature (P-T) conditions of the Earth’s mantle attracted extensive interests. Combining the high P-T experimental and theoretical mineralogical results with seismic observations provides crucial constraints on the distribution of water in the Earth’s mantle. In this study, we summarize recent experimental and theoretical mineral physics results on how water affects the elasticity and sound velocity of nominally anhydrous minerals in the Earth’s mantle, which aims to provide new insights into the effect of hydration on the density and velocity profile of the Earth’s mantle, which are of particular importance in understanding of water distribution in the region. 相似文献
13.
14.
R.G. Roberts 《Physics of the Earth and Planetary Interiors》1983,33(3):198-212
The composition of the upper mantle is of great significance to our understanding of plate tectonics and global evolution. Information about the physical properties of the Earth at upper mantle depths, including lateral variations in electrical conductivity, can be deduced from measurements of the electric and magnetic fields at the Earth's surface. Electromagnetic methods appear to give poorer resolution than do some other methods, for example seismics, but as they are sensitive to quite different properties of a medium they provide a different and complementary class of information.The basic theory of electromagnetic sounding methods is briefly reviewed below, and evidence regarding lateral conductivity inhomogeneities in the Earth's upper mantle is examined. While lateral electrical conductivity inhomogeneities appear to be the rule rather than the exception, the interpretation of electromagnetic data still presents difficulties and the results from many regions are not as yet unambiguous. Where the data are of sufficient resolution, a rapid increase in electrical conductivity can usually be identified within the upper mantle. The depth to this highly conductive zone is different in different tectonic environments, but is broadly consistent between analogous but widely separated tectonic environments. A comparatively shallow conducting region is found beneath the ocean lithosphere. The depth of this region is dependent on lithospheric age. Many of the more shallow conducting regions in both continental and oceanic environments are associated with high heat flow values and seismic low velocity zones. These highly conducting regions may be zones of partial melt. 相似文献
15.
Craig R. Bina 《Pure and Applied Geophysics》1993,141(1):101-109
Seismologically determined properties of the 400 km discontinuity may be compared to experimentally determined properties of the associated phase transformation in order to place constraints upon upper mantle bulk composition. Disagreement among previous studies is commonly ascribed to differences in elastic equations of state (especially to assumptions about pressure and temperature derivatives) between studies. However, much of the disparity between studies is actually due to the selection of different seismic data functionals (P-wave velocity,S-wave velocity, etc.) for comparison to minnral clasticity calculations, rather than to the differences in elasticity data sets and equations of state. Within any given study, bulk sound velocity comparisons generally yield more olivine-rich compositional estimates than doP-wave velocity comparisons, which in turn indicate more olivine thanS-wave velocities. Indeed, such variation in compositional estimates within a given study (arising from choice of data functional) exceeds the variation between studies (arising from elastic equation of state approx mations). it can be argued that bulk sound velocities are better constrained seismologically than densities and, being independent of assumptions about shear moduli, should provide more reliable compositional estimates thanP-orS-wave velocities.Using recently measured bulk and shear moduli equations of state, mutually consistent estimates of upper mantle olivine content can be obtained fromP-wave,S-wave, and bulk sound velocity contrasts at 400 km only if ln /T of has a value of about–2×10–4K–1, yielding approximately 52% olivine by volume. A value of ln /T smaller in magnitude would require reassessment of several underlying assumptions. 相似文献
16.
17.
Jean-Louis Le Mouel Vincent Courtillot 《Physics of the Earth and Planetary Interiors》1981,24(4):236-241
Recently observed secular acceleration impulses (SAI) of the geomagnetic field are interpreted in terms of organized motions of the outer core layers. Such motions have planetary dimensions (5000 km) and a large amplitude (3 × 10?4 m s?1) and are established in very short times (less than one year). The correlation of SAI observed in the Northern Hemisphere with minima in the Earth's rotation rate (around 1840, 1905 and 1970) is shown to be consistent with a simple model involving electromagnetic coupling of the weakly conducting (of the order of 100 ω?1 m?1) mantle, of a coherent outer core layer (thickness 100 to a few hundred kilometres) and of the rest of the core. The magnitude of the torque which acts suddenly on both parts of the core at the time of the impulses is estimated. 相似文献
18.
Sang-Heon Shim Thomas S. DuffyKenichi Takemura 《Earth and Planetary Science Letters》2002,203(2):729-739
The pressure-volume-temperature equation of state (EOS) of gold is fundamental to high-pressure science because of its widespread use as an internal pressure standard. In particular, the EOS of gold has been used in recent in situ multi-anvil press studies for determination of phase boundaries related to the 660-km seismic discontinuity. These studies show that the boundaries are lower by 2 GPa than expected from the depth of the 660-km discontinuity. Here we report a new P-V-T EOS of gold based on the inversion of quasi-hydrostatic compression and shock wave data using the Mie-Grüneisen relation and the Birch-Murnaghan-Debye equation. The previously poorly constrained pressure derivative of isothermal bulk modulus and the volume dependence of Grüneisen parameter (q=d lnγ/d ln V) are determined by including both phonon and electron effects implicitly: K′0T=5.0±0.2 and q=1.0±0.1. This combined with other accurately measured parameters enables us to calculate pressure at a given volume and temperature. At 660-km depth conditions, this new EOS yields 1.0±0.2 GPa higher pressure than Anderson et al.’s EOS which has been used in the multi-anvil experiments. However, after the correction, there still exists a 1.5-GPa discrepancy between the post-spinel boundary measured by multi-anvil studies and the 660-km discontinuity. Other potential error sources, such as thermocouple emf dependence on pressure or systematic errors in spectroradiometry, should be investigated. Theoretical and experimental studies to better understand electronic and anharmonic effects in gold at high P-T are also needed. 相似文献
19.
20.
The high-pressure phase transformations of monticellite and implications for upper mantle mineralogy
Lin-Gun Liu 《Physics of the Earth and Planetary Interiors》1979,20(1):p25-p29
The phase assemblages of monticellite (CaMgSiO4) were investigated in the pressure range 80–300 kbar at about 1000°C in a diamond-anvil cell with laser heating. Incorporating earlier work, the following phase transformations are found: where the percentages give the decreases in zero-pressure volume for the new assemblage. If merwinite is a stable mantle mineral phase, even in very small quantities (~1 mole percent), the results imply that olivine might decrease substantially in amount in the lower part of the Earth's upper mantle. This study also suggests that the observed seismic discontinuities in the mantle should not be entirely attributed to high-pressure polymorphism or decompositions of individual mineral species, and that some discontinuities may result from chemical reactions between the individual phases. 相似文献