首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quantitative estimates of ionization sources that maintain the night-time E- and F-region ionosphere are given. Starlight (stellar continuum radiation in the spectral inverval 911–1026 Å) and resonance scattering of solar Ly-β into the night sector are the most important sources in the E-region and are capable of maintaining observable electron densities of order (1–4) × 103 cm?3. Starlight ionization rates have substantial variations (factors of 2–4) with latitude and time of year since the brightest stars in the night sky occur in the southern Milky Way and Orion regions. In the lower F-region the major O+ source in the equatorial ionosphere is 910 Å radiation from the O+ recombination in the F2-region, whereas in the extratropical ionosphere interplanetary 584 Å radiation only exceeds resonance scattering of solar 584 and 304 Å radiation as the dominant O+ source during the month of December.  相似文献   

2.
One of the most striking and persistent features in high latitude regions as seen by the ISIS-2 scanning auroral photometer is a fairly uniform belt of diffuse auroral emission extending along the auroral oval. Indications are that this region follows, contributes to, and may in a sense actually define the auroral oval during quiet times.The diffuse belt is sharply defined at its equatorward edge, which is located at an invariant latitude of about 65° in the midnight sector during relatively low magnetic activity (Kp = 1?3). The poleward edge of the region is not as sharply defined but is typically at about 68°. Discrete auroras (arcs and bands) are located, in general, near the poleward boundary of the diffuse aurora. The position of the belt appears to be relatively unaffected by the occurrence of individual substorms, even when discrete forms have moved well poleward. Representative intensities at 5577 Å are 1–2 kR (corrected for albedo) at quiet times and may reach 5 kR during an auroral substorm.It appears that the mantle aurora and proton aurora constitute this diffuse aurora in the midnight sector. Precipitating protons and electrons both contribute to the emissions in this region.  相似文献   

3.
An expression for the vertical velocity of the neutral atmosphere in the F-region is derived for Joule heating by the electric field that drives the auroral electrojet. When only vertical expansion is allowed, it is found that the vertical wind must always increase monotonically with altitude. The heating rate is proportional to the F-region ion density, so that appreciable heating, even during high electric fields, requires some production mechanism of ionization such as auroral secondary ionization or solar photoionization, in the lower F-region. Once started at night, when an ionizing source is present in the lower F-region, the expansion of the atmosphere transports ionization upward, thereby increasing the heating rate, and hence the expansion rate, i.e. positive feedback. Electric field strengths and F-region ion densities of 50 mV/m and 2 × 1011e/m3, respectively, will produce vertal neutral wind speeds of several tens of m/sec in the 300–500 km altitude range. During periods of high magnetic activity, i.e. high electric field, Joule heating can produce large increases in the relative N2 concentration in the upper F-region; computations made with a simple model suggest that tenfold increases can occur at 400 km altitude 12?1 hr after the onset of magnetic activity, a result in agreement with satellite observations. When the Joule heating theory is applied to incoherent scatter data taken during one period of high heating, the horizontal electric field in the F-region is found to decrease markedly, possibly approaching zero as the field penetrates a weak, discrete auroral arc; the decrease began 10–20 km from the arc.  相似文献   

4.
The ionization structure of the auroral arc was measured on a sounding rocket which penetrated into a bright auroral arc. The E-region electron density becomes large (2 ~ 5 × 105 el/cm3 only in the moving auroral arc, whose N2+ 4278 Å brightness is 1 ~ 2·5 kR. The electron density in the D-region beneath the lower boundary of the arc (75 ~ 98 km in altitude) is also considerably enhanced to 2 ~ 5 × 104 el/cm3.The observed E-region electron density can be interpreted theoretically as due to the direct ionization by precipitating electrons, whose energy spectrum is approximately represented by an exponential type having the characteristic energy of 2 keV. The correlation between the electron density and the N2+ 4278 Å brightness can be reasonably explained by considering the simultaneous effects on the ionization and the optical excitation caused by the primary electrons having a flux of 9 × 109 el/cm2/sec per 1 kR of the 4278 Å emission.Further analyses using the electron density data from four other sounding rockets have shown that the D-region ionization has good correlations to the cosmic noise absorption (CNA) and the magnetic substorm activities observed simultaneously at the ground station, whereas it has poor correlation to the same quantity of the E-region measured in the same experiment. It is found that the observed D-region ionization is much larger than that predicted by the theory which takes into account the Bremsstrahlung X-ray ionization along with the direct impact ionization when it is applied to the precipitating electron flux spectrum consistent to the E-region ionization and optical excitation.After all the present experimental results suggest a dual nature of the electron precipitation spectrum in the substorm, i.e. the softer part which is localized in the auroral arc and the harder part which is spatially wide-spread over the substorm area.  相似文献   

5.
Ionogram and all-sky camera data have been recorded on the Air Force Cambridge Research Laboratories' Flying Ionospheric Laboratory in the day sector of the auroral oval under conditions of darkness. The airborne measurements show that the polar F-layer irregularity zone, which is characterized on ionograms by a generally non-retarded and spread F type echo, exhibits meridional motions similar to the day-sector auroras. The polar F-layer irregularity zone and the day-sector auroras move equatorward and then move poleward in harmony with the development and decay of a magnetospheric substorm. We suggest that the polar cusp also moves in essentially the same fashion.  相似文献   

6.
Results of a numerical computer investigation of the geomagnetically quiet, high latitude F-region ionosphere are presented. A mathematical model of the steady state polar convective electric field pattern is used in conjunction with production and loss processes to solve the continuity equation for the ionization density in a unit volume as it moves across the polar cap and through the auroral zones.Contours of electron density (~ 300 km altitude) over the polar region are computed for various geophysical conditions. Results show changes in the F-region morphology within the polar cap in response to varying the asymmetry of the global convective electric fields but no corresponding change in the morphology of the mid-latitude ionospheric trough. The U.T. response of the ionosphere produces large diurnal changes in both the polar cap densities and trough morphology. In agreement with observations, the model shows diurnal variations of the polar cap density by a factor of about 10 at midwinter and a negligible diurnal variation at midsummer. The phase of the polar cap diurnal variation is such that the maximum polar cap densities occur approximately when the geomagnetic pole is nearest to the Sun (i.e. when the polar cap photo-ionization is a maximum).Within the accuracy of this model, the results suggest that transport of ionization from the dayside of the auroral zone can numerically account for the maintenance of the polar cap ionosphere during winter when no other sources of ionization are present. In addition, east-west transport of ionization, in conjunction with chemical recombination is responsible for the major features of the main trough morphology.There is little seasonal variation in the depth or latitude of the ionization trough, the predominant seasonal change being the longitudinal extent of the trough.The polar wind loss of ionization is of secondary importance compared to chemical recombination.  相似文献   

7.
We have solved the coupled momentum and continuity equations for NO+, O2+, and O+ions in the E- and F-regions of the ionosphere. This theoretical model has enabled us to examine the relative importance of various processes that affect molecular ion densities. We find that transport processes are not important during the day; the molecular ions are in chemical equilibrium at all altitudes. At night, however, both diffusion and vertical drifts induced by winds or electric fields are important in determining molecular ion densities below about 200 km. Molecular ion densities are insensitive to the O+ density distribution and so are little affected by decay of the nocturnal F-region or by processes, such as a protonospheric flux, that retard this decay. The O+ density profile, on the other hand, is insensitive to molecular ion densities, although the O+ diffusion equation is formally coupled to molecular ion densities by the polarization electrostatic field. Nitric oxide plays an important role in determining the NO+ to O2+ ratio in the E-region, particularly at night. Nocturnal sources of ionization are required to maintain the E-region through the night. Vertical velocities induced by expansion and contraction of the neutral atmosphere are too small to affect ion densities at any altitude.  相似文献   

8.
Photometric observations of dayside auroras are compared with simultaneous measurements of geomagnetic disturbances from meridian chains of stations on the dayside and on the nightside to document the dynamics of dayside auroras in relation to local and global disturbances. These observations are related to measurements of the interplanetary magnetic field (IMF) from the satellites ISEE-1 and 3. It is shown that the dayside auroral zone shifts equatorward and poleward with the growth and decay of the circum-oval/polar cap geomagnetic disturbance and with negative and positive changes in the north-south component of the interplanetary magnetic field (Bz). The geomagnetic disturbance associated with the auroral shift is identified as the DP2 mode. In the post-noon sector the horizontal disturbance vector of the geomagnetic field changes from southward to northward with decreasing latitude, thereby changing sign near the center of the oval precipitation region. Discrete auroral forms are observed close to or equatorward of the ΔH = 0 line which separates positive and negative H-component deflections. This reversal moves in latitude with the aurora and it probably reflects a transition of the electric field direction at the polar cap boundary. Thus, the discrete auroral forms observed on the dayside are in the region of sunward-convecting field lines. A model is proposed to explain the equatorward and poleward movement of the dayside oval in terms of a dayside current system which is intensified by a southward movement of the IMF vector. According to this model, the Pedersen component of the ionospheric current is connected with the magnetopause boundary layer via field-aligned current (FAC) sheets. Enhanced current intensity, corresponding to southward auroral shift, is consistent with increased energy extraction from the solar wind. In this way the observed association of DP2 current system variations and auroral oval expansion/contraction is explained as an effect of a global, ‘direct’ response of the electromagnetic state of the magnetosphere due to the influence of the solar wind magnetic field. Estimates of electric field, current, and the rate of Joule heat dissipation in the polar cap ionosphere are obtained from the model.  相似文献   

9.
The direction of motion of the auroral forms in several sectors of the auroral oval during substorms is studied. The creation phase is characterized by the equatorward displacement of the luminous region in evening (15–21 LT) and in day (09–15 LT) hours, while individual forms in the luminous region drift mainly poleward with a mean velocity of 230 m/sec in day hours and equatorward with the mean velocity of 230 m/sec in evening hours. The equatorial shift of the luminous region correlates well with the BZ-component of the interplanetary magnetic field. The onset of the displacement coincides with the southward BZ-rotation and is accompanied by auroral intensity increase for about 10–20 min.During the expansive and recovery phases the day auroras drift poleward with mean velocities of 330 and 300 m/sec, respectively. In the evening sector the individual auroral forms drift both poleward and equatorward during the expansive phase and drift mainly towards the pole during the recovery phase with a mean velocity of 200 m/sec. In the morning sector characteristics of the motion of the individual auroral forms are more complicated than in the other sectors. The well defined shifts of the luminous region are not discovered. The possible relation between the motions of individual auroral forms with the magnetosphere convection is discussed.  相似文献   

10.
Under magnetically quiet conditions, ionospheric plasma in the midlatitude F-region corotates with the Earth and relative east-west drifts are small compared to the corotation velocity. During magnetic storms, however, the enhanced dawn-to-dusk magnetospheric convection electric field often penetrates into the midlatitude region, where it maps into the ionosphere as a poleward electric field in the 18:00 LT sector, producing a strong westward plasma drift. To evaluate the ionospheric response to this east-west drift, the time-dependent O+ continuity equation is solved numerically, including the effects of production by photoionization, loss by charge exchange and transport by diffusion, neutral wind and E × B drift. In this investigation only the neutral wind's meridional component and east-west E × B drift are included. It is found that an enhanced equatorward wind coupled with westward drift produces an enhancement in the peak electron density (NMAX(F2)) and in the electron content (up to 1000 km) in the afternoon sector and a subsequent greater-than-normal decay in ionization after 18:00 LT. These results agree in general with midlatitude F-region ionospheric storm observations of NMAX(F2) and electron content which show an afternoon enhancement over quiet-time values followed by an abrupt transition to lower-than-normal values. Westward drift appears to be a sufficient mechanism in bringing about this sharp transition.  相似文献   

11.
This paper reports the study concerning the latitudinal dispalacement of the auroral oval as a function of the northward orientation of the Bz-component IMF and the relation between southward Bz and the auroral dynamics in the night sector.  相似文献   

12.
A self-consistent, time-dependent numerical model of the aurora and high-latitude ionos-phere has been developed. It is used to study the response of ionospheric and atmospheric properties in regions subjected to electron bombardment. The time history of precipitation events is arbitrarily specified and computations are made for a variety of electron spectral energy distributions and flux magnitudes. These include soft electron precipitation, such as might occur on the poleward edge of the auroral oval and within the magnetospheric cleft, and harder spectra representative of particle precipitation commonly observed within and on the equatorward edge of the auroral oval. Both daytime and night-time aurorae are considered. The results of the calculations show that the response of various ionospheric and atmospheric parameters depends upon the spectral energy distribution and flux magnitudes of the precipitating electrons during the auroral event. Various properties respond with different time constants that are influenced by coupling processes described by the interactive model. The soft spectrum aurora affects mainly the ionospheric F region, where it causes increases in the electron density, electron temperature and the 6300 Å red line intensity from normal quiet background levels during both daytime and night-time aurora. The fractional variation is greater for the night-time aurora. The hard spectrum aurorae, in general, do not greatly affect the F-2 region of the ionosphere; however, in the F-1 and E regions, large increases from background conditions are shown to occur in the electron and ion temperatures, electron and ion densities, airglow emission rates and minor neutral constituent densities during the build-up phase of the auroral event. During the decay phase of the aurora, most of these properties decrease at nearly the same rate as the specified particle precipitation flux. However, some ionospheric and atmospheric species have a long memory of the auroral event. The odd nitrogen species N(4S) and NO probably do not ever reach steady-state densities between auroral storms.  相似文献   

13.
Images of the instantaneous nightside auroral distribution reveal that at times the orientation of auroral oval arcs changes to become characteristic of polar cap arcs. These connecting arcs all terminate in the diffuse aurora in the midnight sector, and their separation from the equatorward boundary of the diffuse aurora generally increases away from the midnight termination. The occurrence of these features requires a northward interplanetary magnetic field (positive Bz) as well as low magnetic activity. The existence of connecting arcs and the observation that they are at times the poleward boundary of weak diffuse emission indicate that the poleward boundary of auroral emissions can be significantly modified during non-substorm periods. Such a distortion implies that there can be a modification of the standard convection pattern in the magnetosphere during periods of positive Bz to produce expanded regions of sunward convection in the high latitude ionosphere.  相似文献   

14.
A survey of metallic ions detected by the Bennett Ion Mass Spectrometers flown on the Atmosphere Explorer satellites, including both circular and eccentric orbital configurations, shows that patches of these ions of meteoric origin are frequently present during magnetically active periods on the bottomside of the F-layer at middle and high latitudes. In particular the F-region metals statistically tend to appear at night in the vicinity of the main ionospheric trough (in a band of invariant latitudes approx. 10 degrees wide) and on the day side of the polar cap. These distributions were previously associated with the expected dynamics of ions in the F-region above 140 km where meridional neutral wind drag and convection electric fields are the dominant ion transport mechanisms. However, the main meteor deposition layer—the presumed source region of the metals—is located below 100 km where these transport mechanisms do not prevail. It is demonstrated that the Pedersen ion drifts driven by intense electric fields such as those associated with sub-auroral ion drifts (SAID) are sufficient to transport the long-lived metallic ions upward from the main meteor layer to altitudes where the drag of equatorial directed neutral winds and electric field convection can support them against the downward pull of gravity and transport them to other locations. The spatial and temporal distribution of the middle and high latitude F-region metals are consistent with the known characteristics of the electric fields and with the expected F-region ion dynamics.  相似文献   

15.
Experimental results from Arecibo indicate that on the average the height integrated F-region Pedersen conductivity is slightly greater than the height integrated E-region Pedersen conductivity, while the height integrated Hall conductivity exceeds either of the Pedersen conductivities by a factor of about 2. However, the conductivities can differ substantially from the average values on any given night.  相似文献   

16.
This is a report upon further data obtained from the auroral OI 5577 Å emission with a Wide Angle Michelson Interferometer (WAMI), and upon our first observations made with it on the 6300 Å emission. The method used for converting emission intensities and temperatures to auroral electron fluxes and energy spectra is described. Data for the 5577 Å emission are presented for the (lack of) heating in auroral forms, vertical temperature profiles in aurora, electron flux and energy spectrum variations in pulsating aurora, and a ‘cold’ subvisual auroral arc. Data from the OI 6300 Å emission are presented for the diurnal variation of exospheric temperature and for the thermalization of O(1D) in the F-region.  相似文献   

17.
The magnetic fields produced by a three-dimensional current system, consisting of a flow into the morning part of the auroral oval along tail-like field lines, along the auroral oval and out from the evening part of the oval along tail-like field lines, are computed. It is demonstrated that the major parts of the well-known ‘positive bay’ in low latitudes on the Earth's surface, the positive H variation at the synchronous distance and the positive Bs variation along the magnetotail during magnetospheric substorms can be caused by the proposed current system.  相似文献   

18.
Computerized spherical harmonic analysis is applied to the morphology of the southern auroral oval. Records from 23 All Sky Camera stations together with visual observation reports for the period 1957–1959 constitute the raw data set. The mode of the derived auroral occurrence distribution function F(Kp, θ, φ) is regarded as the maximum probability contour and yields a set of auroral ovals. These 10 contours, one for each Kp level, are expressed in the invariant magnetic co-ordinates of Bond (1968).  相似文献   

19.
The relationship between substorm ionospheric currents and the corresponding ground magnetic perturbations is examined, by using the height-integrated ionospheric current density deduced from the Chatanika incoherent scatter radar and the simultaneous magnetic variations along the Alaska meridian chain of stations. Although time variations of the H component near the radar site on the Earth's surface are in good agreement with those of the east-west ionospheric current, there is a substantial disagreement between the current deduced from the D perturbations and the observed north-south current in the evening sector. It is shown that the disagreement can be removed by introducing a new finding by Yasuhara et al. (1975) that the upward field-aligned current on the poleward side of the auroral oval in the evening sector is more intense than its counterpart fieldaligned current and that it contributes greatly to the ground D perturbations.  相似文献   

20.
We consider in this paper the motion of small meteoroids near to the Earth taking into account gravitation, acceleration and heating of particles in the upper atmosphere, and also the processes of thermal radiation, sputtering and evaporation.It is concluded that during an encounter of the Earth with a meteor stream a dust cloud can be formed only at very small geocentric velocities of the particles.We also carry out calculation of the ion-formation rate in the atmosphere due to the collision of ablated meteor atoms and air molecules reflected from a meteoroid with air molecules encountered. Meteor ionization makes the contribution necessary to the maintenance of the high E-region ionization. During annual meteor showers the rate of meteor ion-formation increases by not more than four times. Additional night sources of ionization of air molecules influence the relative number of atmospheric and meteor ions in the E-region. The contribution of the kinetic energy of meteor matter to the heating of the upper atmosphere is evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号