首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The motion of charged particles is examined in the case of a homogeneous magnetic field B together with an orthogonal electric field E, which has a gradient ▽E parallel to E. If
B2q2m2 ? q▽Em > 0
, the particles drift at right angles to E and B with a modified gyrofrequency and produce a current in that direction. If
B2q2m2 ? q▽Em < 0
, the particles not only drift in the direction of E × B but are also accelerated in the direction of E, in which direction they also produce a current.  相似文献   

2.
The change of energy of a collisionless, two-fluid plasma consists of the adiabatic gain or loss of energy, which is due to the work done by the electromagnetic forces, and of the non-adiabatic change associated with the presence of the “rest” field E1 = E + (1c)V×B. The non-adiabatic gain or loss of energy per unit ti may be expressed by the relation
Q=E·i+ceNB2f?×f
where i is the density of conductive current, N the ion number-density, and f (f?) the sum of inertia and pressure divergence of ions (electrons). Symbols of parallelism refer to the direction of B.A special case of non-adiabatic energization of a slowly convecting plasma sheet plasma is discussed in some detail. Regardless of the value of V, the non-adiabatic energization may significantly exceed any conceivable energization associated with the electric field ?(1c) V × B.  相似文献   

3.
It is pointed out that, in addition to previously considered microscopic aspects of ion perpendicular heating in the auroral region, the effect of mass-dependent resident times in a finite-length perpendicular heating region may be important. In a simple illustrative model, particles are assumed to enter upward into an auroral acceleration region of finite extent along B, in which both parallel electric fields and perpendicular heating exist. In this situation, the particle residence times vary with particle mass as M12, so that, in addition to effects associated with species-dependent heating rates, the resultant perpendicular energization associated with residence time also varies as M12. The residence time effect thus favors heating of heavier particles, and may therefore be of some importance in understanding the greater energization of oxygen over hydrogen that has been observed, and also why no electron conics have been observed.  相似文献   

4.
An attempt to observe radar echoes from the comet Kohoutek was made at a radio frequency of 7840 MHz (λ ~- 3.8 cm) on 12 January 1974 using the Haystack Observatory radar in Massachusetts. A search for an echo over a range of band-widths covering 2Hz to 66kHz yielded no positive result. The upper limit on the radar cross section is therefore approximately 104B12km2, where B is the (unknown) bandwidth of the echo in Hertz. For B ? 100 Hz, it follows that (i) the nucleus, if a perfect spherical reflector, must be less than 250 km in diameter, and (ii) the density of any millimeter-sized particles must be less than 1m?3 for a coma of diameter 104km.  相似文献   

5.
We analyze linear resonance oscillations in a non-uniform one-fluid finite-β plasma, which is oversimplified to understand easily fundamental characteristics of the resonance oscillations. A linear resonance oscillation of localized slow magnetosonic mode 2s = ω2A(1 + V2AV2s)], which has the diamagnetic property in a uniform plasma, is newly found to be excited in the radially non-uniform plasma. The localized slow resonance indicates a radially polarized compressional oscillation (δB ? δBH ? δBD). The sense of the Alfvénic polarizations in the H-D plane near the resonant point is a function of both the propagation in the azimuthal direction and the slope of wave amplitude in the radial direction, whereas the sense of the resonant slow magnetosonic polarizations changes in accordance only with the switch in the azimuthal propagation direction. Further multi-satellite studies are necessary to establish the resonant structures of the slow magnetosonic waves in the magnetosphere.  相似文献   

6.
An astrophysical electron acceleration process is described which involves turbulent plasma effects: the acceleration mechanism will operate in ‘collision free’ magnetoactive astrophysical plasmas when ion-acoustic turbulence is generated by an electric field which acts parallel to the ambient magnetic lines of force. The role of ‘anomalous’ (ion-sound) resistivity is crucial in maintaining the parallel electric field. It is shown that, in spite of the turbulence, a small fraction of the electron population can accelerate freely, i.e. runaway, in the high parallel electric potential. The number density n(B) of the runaway electron component is of order n(B)?n2(csU?)2, where n = background electron number density, cs = ion-sound speed and U? = relative drift velocity between the electron and ion populations. The runaway mechanism and the number density n(B) do not depend critically on the details of the non-linear saturation of the ion-sound instability.  相似文献   

7.
In order to analyse the convective instability of the force-free magnetic field, an exact solution of the MHD equation for the magnetic field (1) together with the flow field (2) of constant speed V0 making an angle θ with the magnetic field, was chosen as the unperturbed state. The stability of the fields between two parallel conducting walls of seperation d was studied by a linear perturbation method, which led to the eigenvalue problem (12), X being given by (13). It was shown by an approximate variational method that instability will set in by the flow field if V0 is greater than 1/ 3 times Alfven velocity VA. For β=V2oV2A < 13, the stability of the force-free field (1) is not influenced by the flow field, which may still be significant in other respects. Perturbations transverse to the magnetic field were found to be the most unstable modes.  相似文献   

8.
On 27 January 1979, three rocket payloads were launched from Kiruna, Sweden into different phases of two successive auroral substorrns. Among other experiments, the payloads carried the RIT double probe electric field experiments providing electric field, electron density and temperature data which are presented here. These data supported by rocket particle observations are discussed mainly in association with ground-based observations (magnetometer, TV) and very briefly with GEOS electric field data. The motions of the auroral forms as obtained from auroral pictures are compared with E × B/B2 drifts and the currents calculated from the rocket electric field and density measurements with the equivalent current system deduced from ground-based magnetometer data (Scandinavian Magnetometer Array).  相似文献   

9.
T.E. Cravens  A.E.S. Green 《Icarus》1978,33(3):612-623
The intensities of radiation from the inner comas of comets which are composed primarily of water and carbon monoxide have been calculated. Only “airglow” emissions initiated by the absorption of extreme ultraviolet radiation have been considered. The photoionizations of H2O, CO, CO2, and N2 are the most important emission sources, although photoelectron excitation is also considered. Among the emission features for which intensities were calculated are H2O+ (A?2A1?X?2B1), CO+ (first negative), CO (fourth positive), CO (Cameron), CO2+ (B?2?u?X?2IIg), N2 (Vegard-Kaplan), N2+ (first negative), and OI (1304 Å). In the inner coma (collision region) these airglow mechanisms are shown to be possible competitors with the usually assumed resonance scattering and flourescence excitation mechanisms which are appropriate for the outer coma and tail.  相似文献   

10.
The orbit of the satellite 1967-104B has been analysed as it passed through 29:2 resonance with the Earth's gravitational field between January 1977 and September 1978. From the changes in inclination and eccentricity the following lumped 29th-order geopotential harmonic coefficients were obtained: 109C?290.2 = 4.1 ± 0.8, 109S?290.2 = 10.3 ± 2.4, 109C?291.1 = ? 160 ± 19, 109S?291.1 = 79 ± 10, 109C?29?1.3 = 38 ± 14, 109S?29?1.3 = 19 ± 5. These values have been compared with existing comprehensive geopotential models: the best agreement is with the model of Rapp (1981).  相似文献   

11.
Impulsive penetration of a solar wind filament into the magnetosphere is possible when the plasma element has an excess momentum density with respect to the background medium. This first condition is satisfied when the density is larger inside than outside the plasma inhomogeneity. In this paper we discuss the second condition which must be satisfied for such a plasma element to be captured by the magnetosphere: the magnetization vector (M) carried by this plasma must have a positive component along the direction of B0, the magnetic field where the element penetrates through the magnetopause. On the contrary, when M · B0 < 0, the filament is stopped at the surface of the magnetopause. Thus the outcome of the interaction of the filament with the magnetosphere depends upon the orientation of the Interplanetary Magnetic Field. For instance, penetration and capture in the frontside magnetosphere implies that Bsw, the Interplanetary Magnetic Field, has a southward, or a small northward, component. Penetration and capture in the northern lobe of the magnetotail is favoured for an IMF pointing away from the Sun; in the southern lobe Bsw must be directed towards the Sun for capture. Finally, for capture in the vicinity of the polar cusps the magnetospheric field (B0) assumes a wider range of orientations. Therefore, near the neutral points, it is easier to find a place where the condition M · B0 > 0 is satisfied than elsewhere. As a consequence, the penetration and capture of solar wind irregularities in the cleft regions is possible for almost any orientation of the interplanetary magnetic field direction. All observations made to date support these theoretical conclusions.  相似文献   

12.
The influence of aerodynamic drag and the geopotential on the motion of the satellite 1964-52B is considered. A model of the atmosphere is adopted that allows for oblateness, and in which the density behaviour approximates to the observed diurnal variation. A differential equation governing the variation of the eccentricity, e, combining the effects of air drag with those of the Earth's gravitational field is given. This is solved numerically using as initial conditions 310 computed orbits of 1964-52B.The observed values of eccentricity are modified by the removal of perturbations due to luni-solar attraction, solid Earth and ocean tides, solar radiation pressure and low-order long-periodic tesseral harmonic perturbations. The method of removal of these effects is given in some detail. The behaviour of the orbital eccentricity predicted by the numerical solution is compared with the modified observed eccentricity to obtain values of atmospheric parameters at heights between 310 and 430 km. The daytime maximum of air density is found to be at 14.5 hours local time. Analysis of the eccentricity near 15th order resonance with the geopotential yielded values of four lumped geopotential harmonics of order 15, namely: 109C1,015 = ?78.8 ± 7.0, 109S1,015 = ?69.4 ± 5.3, 109C?1,215 = ?41.6 ± 3.5109S?1,215 = ?26.1 ± 8.9, at inclination 98.68°.  相似文献   

13.
Recent laboratory studies show that the O(1S) quantum yield, f(1S), from O2+ dissociative recombination varies considerably with the degree r of vibrational excitation. However, the suggestion that the high values for f(1S) deduced from airglow and auroral observations can be explained by invoking vibrational excitation, creates a number of problems. Firstly, the rapid vibrational deactivation of O2+ ions by collisions with O atoms will keep r too low to account for the magnitude of f(1S); secondly, r varies considerably from one atmospheric source to another but its relative values (which should be reliable) do not co-vary with those of f(1S); thirdly, because r increases markedly above the peak of the X5577 A? dissociative recombination layer, the fits which theorists have obtained to the observed volume emission rate profiles would have to be regarded as fortuitious. It is tentatively suggested that f(1S) is higher in the airglow and aurora than in the laboratory plasma studied by Zipf (1980) because of the electron temperature dependence of the O(1S) specific recombination coefficient for O2+(v' ? 3) ions.The repulsive 1Σu[1D + 1s] state of O2 does not provide a suitable channel for the dissociative recombination. A possible alternative is the bound 3Πu[5S + 3s] state with predissociation to the repulsive 3Πu[3P + 1s] state.  相似文献   

14.
It is shown that the interplanetary quantity ε(t), obtained by Perreault and Akasofu (1978), for intense geomagnetic storms, also correlates well with individual magnetospheric substonns. This quantity is given by ε(t) = VB2sin4 (θ2)lo2, where V and B denote the solar wind speed and the magnitude of the interplanetary magnetic field (IMF), respectively, and θ denotes the polar angle of the IMF; lo is a constant ? 7 Earth radii. The AE index is used in this correlation study. The correlation is good enough to predict both the occurrence and intensity of magnetospheric substonns observed in the auroral zone, by monitoring the quantity ε(t) upstream of the solar wind.  相似文献   

15.
Results are given of the calculations of the group delay time propagating τ(ω, φ0) of hydromagnetic whistlers, using outer ionospheric models closely resembling actual conditions. The τ(ω, φ0) dependencies were compared with the experimental data of τexp(ω, φ0) obtained from sonagrams. The sonagrams were recorded in the frequency range ? ? (0.5?2.5) Hz at observation points located at geomagnetic latitudes φ0 = (53?66)° and in the vicinity of the geomagnetic poles. This investigation has led us to new and important conclusions.The wave packets (W.P.) forming hydromagnetic whistlers (H.W.) are mainly generated in the plasma regions at L = 3.5?4.0. This is not consistent with ideas already expressed in the literature that their generation region is L ? 3?10. The overwhelming majority of the τexp values differ considerably from the times at which wave packets would, in theory, propagate along the magnetic field lines corresponding to those of the geomagnetic latitudes φ0 of the observation points. The second important fact is that the W.P. frequency ω is less than ΩH everywhere along its propagation trajectory, including the apogee of the magnetic force line (ΩH is the proton gyrofrequency). Proton flux spectra E ? (30?120) keV, responsible for H.W. generation, were determined. Comparison of the Explorer-45 and OGO-3 measurements published in the literature, with our data, showed that the proton flux density energy responsible for the H.W. excitation Np(MV622) ? (5 × 10?3?10?1) Ha2 where Ha is the magnetic field force in the generation region of these W.P. The electron concentration is Na ? (102?103) cm?3. The values given in the literature are Na ? (10?10?103) cm?3. The e data considered also leads to the conclusion that the generating mechanism of the W.P. studied probably always co-exists with the mechanism of their amplification.  相似文献   

16.
The photoionization of optically thin barium clouds is analyzed and shown to occur primarily by a two-step process involving the 3D metastable term as the ntermediate state. The equilibrium populations of the 1D and 3D metastable levels are calculated and found to differ significantly from the values now in the literature. These populations are combined with our newly available photoionization data to calculate the resulting photoionization rate in the upper atmosphere.  相似文献   

17.
Special line shapes are derived fro the λ 1356 Å (5S0-3P) transition of atomic oxygen from metastable (5S0-3P) time-of-flight spectra produced by electron impact dissociative excitation of O2, CO2, CO, and NO, and they are compared with the broadened λ 1304 A resonance line shapes deduced by Poland and Lawrence (1973) from atomic oxygen absorption studies. The non-thermal line shapes for both airglow emission features are shown to have an effective width comparable to a 60,000 K thermal doppler line shape for an electron impact energy of 100eV. The variation of the effective line width with electron-impact energy from threshold to 300 eV is given. Since the effective line width of the resonance radiation produced by dissociative excitation is very large compared with the doppler absorption widths of the ambient O atoms at normal exospheric temperatures, the anomalously broadened resonance lines will propagate through a planetary atmosphere as though they were optically thin. Thus, electron-impact dissociation of CO and CO2 will contribute to the observed optically thin component of the λ 1304 Å emission in the upper atmospheres of Venus and Mars. However, the process cannot account for more than 10% of the observed optically thin emission because of the small magnitude of the excitation cross-section and the comparatively high-energy threshold for the process. The possibility that the source of the kinetically energetic O(3S) atoms is the dissociative recombination of vibrationally excited CO2+ ions is discussed.  相似文献   

18.
New ion cyclotron whistlers which have the asymptotic frequency of one half the local proton gyrofrequency, Gp2, and the minimum (or equatorial) proton gyrofrequency, Gpm, along the geomagnetic field line passing through the satellite have been found in the low-latitude topside ionosphere from the spectrum analysis of ISIS VLF electric field data received at Kashima, Japan. Ion cyclotron whistlers with asymptotic frequency of Gpm or Gpm2 are observed only in the region of Bm >B2 or rarely Bm >B4, where B is the local magnetic field and Bm is the mini magnetic field along the geomagnetic field line passing through the satellite.The particles with one half the proton gyrofrequency may be the deuteron or alpha particle. Theoretical spectrograms of the electron whistlers (R-mode) and the ion cyclotron whistlers (L-mode) propagating along the geomagnetic field lines are computed for the appropriate distributions of the electron density and the ionic composition, and compared with the observed spectrograms.The result shows that the ion cyclotron whistler with the asymptotic frequency of Gp2 is the deuteron whistler, and that the ion cyclotron whistlers with the asymptotic frequency of Gpm or Gpm2 are caused by the trans-equatorial propagation of the proton or deuteron whistler from the other hemisphere.  相似文献   

19.
We propose a new heating mechanism of faculae. We think that the formation of faculae is a result of the Joule dissipation of the Hall current generated by the interaction of the convection field of granules in an active region and the inter-granular magnetic field. For a region to generate effectively Hall current, its characteristic length must be such that the magnetic Reynolds number is less than 1. The equation of energy balance in the facula region is
16σT3p(Tl ? Tp)nHPsaH? = Qnsmiux22inωi)
.For five observational models of faculae, we calculated the corresponding velocity fields, and the results are in basic agreement with the observed fields. The present mechanism explains the dependence of the facula brightness on the magnetic and velocity fields, the apparent distribution of the faculae on the solar disk and suggest a possible interpretation of the five structures of faculae.  相似文献   

20.
Branching ratios σ(O03PO+2D0)σ(O03PO+4S0) and σ(O03PO+2P0)σ (O03P4S0) are calculated at 584 Å and 304 A employing the close-coupling approximation to compute the photoionization cross section values. The coupled channels include the states dominated by the ground configuration 1s22s2p3 of O+and the next excited configuration ls22s2p4. It is found that the partial c section σ(2D0) decreases more rapidly than σ(2P0), and at the lower wavelength 304 Å, the ratio σ(2D0)σ(4S0) < σ(2P0)σ(4S0). Present results at 304 Å differ considerably from previous work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号