首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the H+ velocity distribution function at Mars and Venus near the bow shock both in the solar wind and in the magnetosheath by a simple analytical one-dimensional model. We found that over half of the ions in the ring velocity distribution which moved towards the magnetosheath were scattered back into the bow shock. The original ring distribution is destroyed in less than an ion gyro period. Ions contained in the magnetosphere which hit the bow shock bounce back into the solar wind with a maximum energy exceeding twice the energy of solar wind protons. The ions finite gyroradius causes an asymmetric flow in the magnetosheath with respect to the direction of the convective electric field, which can be observed already a few ion gyroradius downstream of the bow shock.  相似文献   

2.
The generation of low-frequency waves in the solar wind by the flux of protons accelerated in the magnetosheath is considered. It is shown that pulsations are produced in two partly overlapping frequency ranges. The growth rate of waves is maximal when the angle θ between the direction of the interplanetary magnetic field and the front of the bow shock is not equal π2. The dependence of the increment of perturbation on the solar wind velocity is analysed. A satisfactory agreement between theory and experimental results on the connection of Pc3–4 properties and parameters of the solar wind is obtained.  相似文献   

3.
The MARSIS (Mars Advanced Radar for Subsurface and Ionosphere Sounding) instrument on the Mars Express spacecraft provides both local and remote measurements of electron densities and measurements of magnetic fields in the martian ionosphere. The density measurements show a persistent level of large fluctuations, sometimes as much as a factor of three or more at high altitudes. Large magnetic field fluctuations are also observed in the same region. The power spectrums of both the density and magnetic field fluctuations have slopes on a log-log plot that are consistent with the Kolmogorov spectrum for isotropic fluid turbulence. The fractional density fluctuation, Δne/ne, of the turbulence increases with altitude, and reaches saturation, Δne/ne ∼ 1, at an altitude of about 400 km, near the nominal boundary between the ionosphere and the magnetosheath. The fluctuations are usually so large that a well-defined ionopause-like boundary between the ionosphere and the solar wind is seldom observed. Of mechanisms that could be generating this turbulence, we believe that the most likely are (1) solar wind pressure perturbations, (2) an instability in the magnetosheath plasma, such as the mirror-mode instability, or (3) the Kelvin-Helmholtz instability driven by velocity shear between the rapidly flowing magnetosheath and the ionosphere.  相似文献   

4.
The Suprathermal Plasma Analysers on GEOS-2 are able to make differential energy measurements of plasma particles down to sub-eV energies because the entire sensor package can be biased relative to the spacecraft. When the package is biased negatively with respect to space potential, low energy positive ions are sucked in and are more easily detected against the background. Large fluxes of ions with temperatures of the order of 1 eV or less were consistently detected at space potential when the spacecraft was in the magnetosheath though not when it was in the nearby magnetosphere. This apparent geophysical correlation, suggesting that the ions were part of the magnetosheath ion population, was contradicted by the fact that the ions showed no signs of the large drift velocity associated with the electric field in the magnetosheath. We conclude, after further investigation, that the observed ions were probably sputtered as neutrals from the spacecraft surface by the impact of solar wind ions and subsequently ionized by sunlight or electron impact. The effect of sputtering by solar wind ions has not been previously observed, although it could have consequences for the long-term stability of spacecraft surfaces.  相似文献   

5.
《Planetary and Space Science》2006,54(13-14):1482-1495
Venus has no internal magnetic dynamo and thus its ionosphere and hot oxygen exosphere dominate the interaction with the solar wind. The solar wind at 0.72 AU has a dynamic pressure that ranges from 4.5 nPa (at solar max) to 6.6 nPa (at solar min), and its flow past the planet produces a shock of typical magnetosonic Mach number 5 at the subsolar point. At solar maximum the pressure in the ionospheric plasma is sufficient to hold off the solar wind at an altitude of 400 km above the surface at the subsolar point, and 1000 km above the terminators. The deflection of the solar wind occurs through the formation of a magnetic barrier on the inner edge of the magnetosheath, or shocked solar wind. Under typical solar wind conditions the time scale for diffusion of the magnetic field into the ionosphere is so long that the ionosphere remains field free and the barrier deflects almost all the incoming solar wind. Any neutral atoms of the hot oxygen exosphere that reach the altitude of the magnetosheath are accelerated by the electric field of the flowing magnetized plasma and swept along cycloidal paths in the antisolar direction. This pickup process, while important for the loss of the Venus atmosphere, plays a minor role in the deceleration and deflection of the solar wind. Like at magnetized planets, the Venus shock and magnetosheath generate hot electrons and ions that flow back along magnetic field lines into the solar wind to form a foreshock. A magnetic tail is created by the magnetic flux that is slowed in the interaction and becomes mass-loaded with thermal ions.The structure of the ionosphere is very much dependent on solar activity and the dynamic pressure of the solar wind. At solar maximum under typical solar wind conditions, the ionosphere is unmagnetized except for the presence of thin magnetic flux ropes. The ionospheric plasma flows freely to the nightside forming a well-developed night ionosphere. When the solar wind pressure dominates over the ionospheric pressure the ionosphere becomes completely magnetized, the flow to the nightside diminishes, and the night ionosphere weakens. Even at solar maximum the night ionosphere has a very irregular density structure. The electromagnetic environment of Venus has not been well surveyed. At ELF and VLF frequencies there is noise generated in the foreshock and shock. At low altitude in the night ionosphere noise, presumably generated by lightning, can be detected. This paper reviews the plasma environment at Venus and the physics of the solar wind interaction on the threshold of a new series of Venus exploration missions.  相似文献   

6.
A possible mechanism for the generation of a reverse fast shock in the magnetosheath in the solar wind flow around the Earth’s magnetosphere is considered. It is shown that such a shock can emerge through the breaking of a nonlinear fast magnetosonic compression wave reflected from the magnetopause toward the bow shock rear. In this case, the magnetopause is represented as a tangential discontinuity with a zero normal magnetic field component at it and the mechanism under consideration is assumed to be secondary with respect to the sudden disturbance of the bow shock-Earth’s magnetosphere system by a nonstationary solar wind shock. A possible confirmation of the process under study by in-situ SC3 experimental observations of the bow shock front motion on the Cluster spacecraft is pointed out.  相似文献   

7.
The distance to the dayside magnetopause is statistically analyzed in order to detect the possible dependence of the dayside magnetic flux on the polarity of the interplanetary magnetic field. The effect of changing solar wind pressure is eliminated by normalizing the observed magnetopause distances by the simultaneous solar wind pressure data. It is confirmed that the normalized size of the dayside magnetosphere at the time of southward interplanetary magnetic field is smaller than that at the time of northward interplanetary magnetic field. The difference in the magnetopause position between the two interplanetary field polarity conditions ranges from 0 to 2RE. Statistics of the relation between the magnetopause distance and the magnetic field intensity just inside the magnetopause testifies that the difference in the magnetopause position is not due to a difference in the magnetosheath plasma pressure. The effect of the southward interplanetary magnetic field is seen for all longitudes and latitudes investigated (|λGM|? 45°, |φSM|? 90°). These results strongly suggest that a part of the dayside magnetic flux is removed from the dayside at the time of southward interplanetary magnetic field.  相似文献   

8.
From the analysis of 119 low-frequency (LF) burst spectra observed onboard the Wind spacecraft, we propose an interpretation of the frequency-time characteristics including the low frequency cutoff of the LF burst spectra, and we use these characteristics to sound the bow shock structure at large tailward distances from Earth. When observed from within the solar wind, LF bursts appear to be made of two spectral components. The high frequency one is bursty and observed above twice the solar wind plasma frequency fpsw. The low frequency one is diffuse (ITKR) and its spectrum extends from about 2fpsw to a cutoff frequency fc not much higher than fpsw; its onset time δt(f) increases as the frequency f decreases. For each of the 119 events observed from near the Lagrange point L1, the solar wind density variations were measured and the variations of the density jump across the shock calculated from plasma data all along a shock model over more than 2000RE. But, except for a few events, neither the solar wind overdensities nor the shock density barrier can prevent waves with frequencies below fc from reaching the spacecraft. Scattering on plasma density inhomogeneities was then introduced to account for the propagation of the LF burst waves in the magnetosheath, from near Earth to their escape point through the bow shock at a frequency-dependent distance |Xesc(f)| (GSE), and then in the solar wind to the spacecraft. In such media, at frequencies between 2fpsw and fpsw, the bulk speed of the scattered waves decreases rapidly as f decreases, and this accounts for the observed variations of the onset time δt(f). Angular scattering can also account for the observed cutoff at fc if the distance |Xesc(f)| increases exponentially when f/fpsw decreases. As the shock model we used meets that requirement, we consider that this model is valid, which implies that the bow shock still exists beyond 1000RE from the Earth. The observed decrease of the average spectral intensity of the LF burst between about 1.5fpsw and 2fpsw can also be explained by the scattering in the solar wind if we take into account the angular distribution of the rays when they leave the bow shock.  相似文献   

9.
Hydrodynamic and electrodynamic problems of solar wind interaction with the Earth's magnetosphere on the day-side are investigated.The initial fact, well established, is that the density of the magnetic field energy in the solar wind is rather small. Magnetic field intensity and orientation are shown to determine the character of the solar wind flow around the magnetosphere. For mean parameters of the wind, if the tangential component of the magnetic field is more or equal 5γ, the flow in the magneto-sheath will be laminar. For other cases the flow is of a turbulent type.For turbulent flow, typical plasma parameters are estimated: mean free path, internal scale of inhomogeneities and dissipated energy. The results obtained are compared with experimental data.For the case of laminar flow, special attention is paid to the situation when magnetic fields of the solar wind and Earth are antiparallel. It is suggested, on the basis of solid arguments, that the southward interplanetary field diffuses from the magnetosheath into the Earth's magnetosphere. These ideas are used for the estimation of the distance to the magnetopause subsolar point. A detailed comparison with results of observation is made. The coincidence is satisfactory. Theoretical investigation has been made to a great extent for thin magnetopause with thickness δRHe-gyroradius of an electron.It is shown that during magnetospheric substorms relaxation oscillations with the period τ = 100–300 sec must appear. A theorem is proved about the appearance of a westward electrical field during the substorm development, when the magnetosphere's day-side boundary moves Earthward and about the recovery phase, when the magnetopause motion is away from the Earth, when there is an eastward electrical field.In the Appendix, plasma wave exitation in the magnetopause is considered and conductivity magnitudes are calculated, including the reduction due to the scattering by plasma turbulence.  相似文献   

10.
Bursts of energetic electrons (from >40keV up to 2MeV) as distinct from the magnetopause electron layer observed by Domingo et al. (1977) have been observed in the magnetosheath and in the solar wind by HEOS-2 at high-latitudes. Although these electrons are occasionally found close to the bow shock and simultaneously with low frequency (magnetosonic) upstream waves our observations strongly indicate that these electrons are of exterior cusp origin. Indeed, the flux intensity is highest in the exterior cusp region and decreases as the spacecraft moves away from it both tailward or upward. The energy spectrum becomes harder with increasing radial distance from the exterior cusp. The measured anisotropy indicates that the particles are propagating away from the exterior cusp. The magnetic field points to the exterior cusp region when these electrons are observed, being, for solar wind observations, centred at longitude 0° or 180° rather than along the spiral and in the magnetosheath, being usually different from the 90° or 270° orientation typical of that region. We exclude, therefore, that acceleration in the bow shock is the source of these particles because B is not tangent to the shock when bursts are observed. We have also found a one to one correlation between geomagnetic storms' recovery phases and intense, continuous observations of >40 keV electrons in the magnetosheath, while, on the other hand, during geomagnetically quiet (Dst) periods bursts are observed only if AE is much larger than average.  相似文献   

11.
Low-energy particle trajectories in an idealized magnetotail magnetic field are investigated to determine the accessibility of magnetosheath protons and electrons to the plasma sheet along the flanks of the tail magnetopause. The drift motion of the positively (negatively) charged particles incident on the dawn (dusk) magnetotail flank causes such particles to penetrate deeper into the magnetotail. For certain combinations of particle energy, incident velocity vector and initial penetration point on the tail magnetopause, the incident particles can become trapped in the plasma sheet, after which their net drift motion then provides a current capable of supporting the entire observed magnetotail field. The results further indicate that the bulk of the solar wind plasma just outside the distant tail boundary, which streams preferentially in a direction along the magnetopause away from the Earth at velocities around 400 km s?1, can be caught up in the tail if the initial penetration point is within about 2RE, of the quasi-neutral sheet. It is suggested that a large fraction of the magnetotail plasma is composed of former solar wind particles which have penetrated the magnetospheric boundary at the tail flanks.  相似文献   

12.
In this paper a quantitative analysis of magnetosheath injection regions observed by PROGNOZ-7 in the dayside high latitude boundary layer is performed. Particular emphasis is laid on describing the consequences of the observed excess transverse momentum of solar wind ions (H+ and He2+) as compared to the magnetospheric ions (e.g. He+ and O+) in the magnetosheath injection regions, hereafter referred to as energy transfer regions.An important result of this study is that the observed excess drift velocity of the solar wind ions as compared to the magnetospheric ions can be interpreted as a negative inertia current being present in the boundary layer. This means that the inertia current goes against the local electric field and that particle kinetic energy is converted into electric energy there. The dayside high-latitude boundary layer therefore constitutes a voltage generator (at least with respect to the injected magnetosheath plasma).The MHD-theory predicts a strong coupling of the energy transfer process in the boundary layer and the ionosphere, both regions being connected by field aligned currents. The rate of decay of the inertia current in the injected plasma element is in the range of a few minutes, a value which is directly proportional to the ionospheric resistance. By taking into account both the Hall and the Pedersen conductivities in the ionosphere, the theory also predicts a strong coupling between ionospheric East/West and North/South currents. A considerable part of the inertia current may actually flow in the tangential (East/West) direction due to this coupling. Thus, a consequence of the boundary layer energy transfer process is that it may generate currents, powering other magnetospheric plasma processes, down to ionospheric heights.  相似文献   

13.
In June 2006 Venus Express crossed several times the outer boundary of Venus induced magnetosphere, its magnetosheath and its bow shock. During the same interval the Cluster spacecraft surveyed the dawn flank of the terrestrial magnetosphere, intersected the Earth's magnetopause and spent long time intervals in the magnetosheath. This configuration offers the opportunity to perform a joint investigation of the interface between Venus and Earth's outer plasma layers and the shocked solar wind. We discuss the kinetic structure of the magnetopause of both planets, its global characteristics and the effects on the interaction between the planetary plasma and the solar wind. A Vlasov equilibrium model is constructed for both planetary magnetopauses and provides good estimates of the magnetic field profile across the interface. The model is also in agreement with plasma data and evidence the role of planetary and solar wind ions on the spatial scale of the equilibrium magnetopause of the two planets. The main characteristics of the two magnetopauses are discussed and compared.  相似文献   

14.
15.
A mechanism of the Earth's magnetospheric substorm is proposed. It is suggested that the MHD waves may propagate across the magnetopause from the magnetosheath into the magnetotail and will be dissipated in the plasma sheet, heating the plasma and accelerating the particles. When the solar wind parameters change, the Poynting flux of the waves transferred from the magnetosheath into the tail, may be greater than 1018 erg s?1. The heated plasma and accelerated particles in the plasma sheet will be injected into the inner magnetosphere, and this may explain the process of the ring current formation and auroral substorm.The Alfvén wave can only propagate along the magnetic force line into the magnetosphere in the open magnetosphere, but the magnetosonic wave can propagate in both the open and closed magnetosphere. When the IMF turns southward, the configuration of the magnetosphere will change from a nearly closed model into some kind of open one. The energy flux of Alfvén waves is generally larger than that of the magnetosonic wave. This implies that it is easy to produce substorms when the interplanetary magnetic field (IMF) has a large southward component, but the substorm can also be produced even if the IMF is directed northward.  相似文献   

16.
PROGNOZ-7 observations of intense “magnetosheath-like” plasma deep inside the high latitude boundary layer, the plasma mantle, indicates that solar wind plasma elements may occasionally penetrate the magnetopause and form high density regions in the plasma mantle. These “magnetosheath-like” regions are usually associated with strong flow of solar wind ions (e.g. H+ and He2+) and the presence of terrestrial ions (e.g. O+). The magnetosheath-like structures may roughly be classified as “newly injected” or “stagnant”. The newly injected structures have characteristics very similar to those found in the magnetosheath, i.e. strong antisunward flow and magnetosheath ion composition and density. The magnetic field characteristics may, however, differ considerably from those found further out in the magnetosheath. The “stagnant” structures are characterized by a reduced plasma flow, a lower density and a different ion composition as compared to that in the magnetosheath. In a few cases newly injected structures were even found in the innermost part of the mantle (i.e. forming a “boundary region” adjacent to the lobe). These cases were also associated with fairly strong fluxes of O+ ions in the outer mantle. Whilst the newly injected type of magnetosheath-like structure contained almost no O+ ions, the stagnant regions were intermixed by an appreciable amount of ionospheric ions. The newly injected and stagnant penetration regions had both in common a diamagnetic decrease of the ambient magnetic field. The newly injected structures, however, were also associated with a considerable reorientation of the magnetic field vector. A common feature for penetration regions well separated from the magnetopause is that they are mainly observed for a southward IMF. A third category of plasma mantle penetrated events, denoted “open magnetopause” events, usually occurred when the IMF was away and northward. Characteristics for these events were a smooth transition/rotation of the magnetic field vector near the magnetopause, and fairly high ion densities in the mantle and the transition region.  相似文献   

17.
Fast forward interplanetary (IP) shocks have been identified as a source of large geomagnetic disturbances. However, the shocks can evolve in the solar wind, they are modified by interaction with the bow shock and during their propagation through the magnetosheath. A few previous papers refer the inclination and deceleration of the IP shock front in this region. Our contribution continues this effort and presents the study of an IP shock interaction with the bow shock. Since the bow shock is a reversed fast shock, the interaction of the IP shock and bow shock is a problem of interaction of two fast MHD shocks.

We compare profiles of magnetic field and plasma parameters observed by several spacecraft in the solar wind and magnetosheath with the profiles of the same parameters resulting from the MHD numerical model. The MHD model suggests that the interaction of an IP shock with the bow shock results in an inward bow shock displacement that is followed by its outward motion. Such motion will result in an indentation propagating along the bow shock surface. This scenario is confirmed by multipoint observations. Moreover, the model confirms also previous suggestions on the IP shock deceleration in the magnetosheath.  相似文献   


18.
The solar wind provides a source of solar abundance data that only recently is being fully exploited. The Ion Composition Instrument (ICI) aboard the ISEE-3/ICE spacecraft was in the solar wind continuously from August 1978 to December 1982. The results have allowed us to establish long-term average solar wind abundance values for helium, oxygen, neon, silicon, and iron. The Charge-Energy-Mass (CHEM) instrument aboard the CCE spacecraft of the AMPTE mission has measured the abundance of these elements in the magnetosheath and has also added carbon, nitrogen, magnesium, and sulfur to the list. There is strong evidence that these magnetosheath abundances are representative of the solar wind. Other sources of solar wind abundances are Solar Energetic Particle (SEP) experiments and Apollo lunar foils. When comparing the abundances from all of these sources with photospheric abundances, it is clear that helium is depleted in the solar wind while silicon and iron are enhanced. Solar wind abundances for carbon, nitrogen, oxygen, and neon correlate well with the photospheric values. The incorporation of minor ions into the solar wind appears to depend upon both the ionization times for the elements and the Coulomb drag exerted by the outflowing proton flux.  相似文献   

19.
Using a dipole plus tail magnetic field model, H+, He++ and O 16 +6 ions are followed numerically, backward in time, from an output plane perpendicular to the axis of the geomagnetic tail, to their point of entrace to the magnetosphere as solar wind particles in the magnetosheath. An adiabatic or guiding center approximation is used in regions where the particles do not interact directly with the current sheet. A Maxwellian distribution with bulk flow is assumed for solar wind particles in the magnetosheath. Bulk velocity, density, and temperature along the magnetopause are taken from the fluid calculations of Spreiter. Using Liouville's theorem, and varying initial conditions at the output plane, the distribution function is found as a function of energy and pitch angle at the output plane. These results are then mapped to the auroral ionosphere using guiding center theory. Results show that the total precipitation rate is sufficient only for particles which enter the magnetosphere near the edges of the current sheet. Small pitch angles are favored at the output plane, but mappings to the auroral ionosphere indicate isotropic pitch angle distributions are favored with some peaking of the fluxes parallel or at other angles to the field lines. Perpendicular auroral pitch angle anisotropies are at times produced by the current sheet acceleration mechanism. Therefore, caution must be used in interpreting all such observations as ‘loss cone-trapping’ distributions. Energy spectra appear to be quite narrow for small cross-tail electric fields, and a little broader as the electric field increases. Comparisons of these results with experimental observations are presented.  相似文献   

20.
The theoretical work on rotational discontinuities in an anisotropic plasma is extended and the results are presented in a form more convenient for comparison with observations in the solar wind. Diagrams are presented to help observers identify rotational discontinuities using the values of ρ, B and β on either side. Under average solar wind conditions at 1 AU it is found that B and ρ change by at most a factor of ~1·7, and in a β ? 0·4 plasma ρ changes by at most a factor of 1·1 and B is virtually constant. The changes in physical parameters across a typical rotational discontinuity are illustrated, and the special cases of downstream isotropy and of p⊥ = constant are considered in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号