首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wenzhe Fa  Mark A. Wieczorek 《Icarus》2012,218(2):771-787
The inversion of regolith thickness over the nearside hemisphere of the Moon from newly acquired Earth-based 70-cm Arecibo radar data is investigated using a quantitative radar scattering model. The radar scattering model takes into account scattering from both the lunar surface and buried rocks in the lunar regolith, and three parameters are critically important in predicting the radar backscattering coefficient: the dielectric constant of the lunar regolith, the surface roughness, and the size and abundance of subsurface rocks. The measured dielectric properties of the Apollo regolith samples at 450 MHz are re-analyzed, and an improved relation among the complex dielectric constant, bulk density and regolith composition is obtained. The complex dielectric constant of the lunar regolith is estimated globally from this relation using the regolith composition derived from Lunar Prospector gamma-ray spectrometer data. To constrain the lunar surface roughness and abundance of subsurface rocks from radar data, nine regions are selected as calibration sites where the regolith thickness has been estimated using independent analysis techniques. For these sites, scattering from the lunar surface and buried rocks cannot be perfectly distinguished, and a tradeoff relationship exists between the size and abundance of buried rocks and surface roughness. Using these tradeoff relations as guidelines for globally representative parameters, the regolith thickness of four regions over the lunar nearside is inverted, and the inversion uncertainties caused by calibration errors of the radar data and model input parameters are analyzed. The regolith thickness of the maria is generally smaller than that of highlands, and older surfaces have thicker regolith thicknesses. Our approach cannot be applied to regions where the surface roughness is very high, such as with young rocky craters and regions in the highly rugged highlands.  相似文献   

2.
The lunar surface reveals a sharp opposition effect, which is to be explained by the shadowing and coherent backscattering mechanisms. Generalizing the radiative transfer theory via Monte Carlo methods, we are carrying out studies of backscattering in regolith-like scattering media. We have also started systematic laboratory measurements of structural simulators of lunar regolith. The SMART-1 AMIE and D-CIXS/XSM experiments provide us a unique opportunity for a simultaneous multiwavelength study of the lunar regolith close to opposition, since the SMART-1 spacecraft will pass over several different types of lunar surface at zero phase angles. Results of our theoretical and laboratory investigations can be used as a basis to interpret the SMART-1 AMIE and D-CIXS/XSM experiments. In particular, it seems to be possible to estimate regional variations of regolith particle volume fraction and their size. A short review of observational, experimental and theoretical works is also presented here.  相似文献   

3.
Meteorites ejected from the surface of the Moon as a result of impact events are an important source of lunar material in addition to Apollo and Luna samples. Here, we report bulk element composition, mineral chemistry, age, and petrography of Miller Range (MIL) 090036 and 090070 lunar meteorites. MIL 090036 and 090070 are both anorthositic regolith breccias consisting of mineral fragments and lithic clasts in a glassy matrix. They are not paired and represent sampling of two distinct regions of the lunar crust that have protoliths similar to ferroan anorthosites. 40Ar‐39Ar chronology performed on two subsplits of MIL 090070,33 (a pale clast impact melt and a dark glassy melt component) shows that the sample underwent two main degassing events, one at ~3.88 Ga and another at ~3.65 Ga. The cosmic ray exposure data obtained from MIL 090070 are consistent with a short (~8–9 Ma) exposure close to the lunar surface. Bulk‐rock FeO, TiO2, and Th concentrations in both samples were compared with 2‐degree Lunar Prospector Gamma Ray Spectrometer (LP‐GRS) data sets to determine areas of the lunar surface where the regolith matches the abundances observed on the sample. We find that MIL 090036 bulk rock is compositionally most similar to regolith surrounding the Procellarum KREEP Terrane, whereas MIL 090070 best matches regolith in the feldspathic highlands terrane on the lunar farside. Our results suggest that some areas of the lunar farside crust are composed of ferroan anorthosite, and that the samples shed light on the evolution and impact bombardment history of the ancient lunar highlands.  相似文献   

4.
Nature of the photometric phase curves of the regolith like surfaces (like those of the asteroids) are believed to be dependent on the single particle characteristics like particle size, shape, composition etc. and physical characteristics of the surface like porosity and roughness. Most of the phase curves have a rapid surge of intensity at small phase angles (typically below 5°) known as opposition effect, followed by a linear less decreasing trend at larger phase angles. Average intensity of the linear region has been found to be mostly dependent on the average particle size and its composition, in many laboratory observations. Generally, it is difficult to explain the nature of light scattering by an ensemble of irregular shaped inhomogeneous particles with a theoretical model, just by studying the phase curves. In the present work, we have investigated whether the theoretically expected variation of the scattered light intensity (at a given phase angle) with the average particle size of the grains constituting regoliths, for a given material of the particle is in agreement with the experimental results or not? If yes, this can be a simpler but efficient way to study light scattering by regolith like surfaces. For theoretical analysis, Hapke formula has been used with Mie theory for single particle phase function, where we have neglected the influence of porosity and roughness presently. The data are also fitted with an empirical formula. It has been found that this empirical formula may also be used to estimate the unknown average particle size of a real regolith with known composition.  相似文献   

5.
Space weathering is an important surface process that occurs on the Moon and other airless bodies, especially those that have no magnetic field. The optical effects of the Moon's space weathering have largely been investigated in the laboratory for lunar samples and lunar analogues. However, duplication of pristine regolith on Earth is not possible. Here we report on space weathering from the unique perspective of the "Yutu" rover, which was part of the Chang'e-3(CE-3) mission, building on our previous work.Measurement of the visually undisturbed uppermost regolith as well as locations that have been affected by rocket exhaust from the spacecraft by the Visible-Near Infrared Spectrometer(VNIS) revealed that the returned samples provide biased information about the pristine lunar regolith. The uppermost surficial regolith is much more weathered than the regolith immediately below, and the finest fraction is rich in space weathered products. These materials are very dark and attenuated throughout the visible and near-infrared(VNIR) wavelengths, hence reducing the reflectance and masking the absorption features. The effects on the spectral slope caused by space weathering are wavelength-dependent: the visible and near-infrared continuum slope(VNCS) increases while the visible slope(VS) decreases. In the visible wavelengths, the optical effects of space weathering and Ti O_2 are identical: both reduce albedo and blue the spectra. This suggests that a new Ti O_2 abundance algorithm is needed. Optical maturity indices are related to composition and hence only locally meaningful. Since optical remote sensing can only sense the uppermost few microns of regolith and since this surface tends to be very weathered, the interpretation of surface composition using optical remote sensing data needs to be carefully evaluated. Sampling the uppermost surface is suggested.  相似文献   

6.
Photometric anomalies of the lunar surface studied with SMART-1 AMIE data   总被引:2,自引:1,他引:1  
We present new results from the mapping of lunar photometric function parameters using images acquired by the spacecraft SMART-1 (European Space Agency). The source data for selected lunar areas imaged by the AMIE camera of SMART-1 and the data processing are described. We interpret the behavior of photometric function in terms of lunar regolith properties. Our study reveals photometric anomalies on both small (sub-kilometer) and large (tens of kilometers) scales. We found the regolith mesoscale roughness of lunar swirls to be similar in Mare Marginis, Mare Ingenii, and the surrounding terrains. Unique photometric properties related to peculiarities of the millimeter-scale regolith structure for the Reiner Gamma swirl are confirmed. We identified several impact craters of subkilometer sizes as the source of photometric anomalies created by an increase in mesoscale roughness within the proximal crater ejecta zones. The extended ray systems reveal differences in the photometric properties between proximal and distant ejecta blankets. Basaltic lava flows within Mare Imbrium and Oceanus Procellarum indicate higher regolith porosity for the redder soils due to differences in the chemical composition of lavas.  相似文献   

7.
The lunar soil maturity is the most important parameter of the Moon's surface material. The degree of regolith processing should be taken into account in remote determinations of the chemical and mineralogical surface compositions. However, the possibilities for directly determining the lunar regolith maturity are limited to laboratory studies of the fine fraction and microparticles of samples returned to Earth. In these conditions, the urgency of developing methods for remotely determining the lunar soil maturity increases sharply. The suggested method of using spectropolarimetric data to quantitatively estimate the maturity of the surface material has an advantage that the derived maturity index is determined only by structural parameters of the reflecting layer and is completely free from the effects of chemical and mineralogical surface rock compositions. The reference catalog of spectropolarimetric indices contains values for 92 objects on the Moon's visible hemisphere and includes a wide range of structures with various degrees of maturity of the surface material. We obtained correlations with other maturity indices determined by laboratory and remote sensing techniques and the time scale that represents the correspondence between the spectropolarimetric maturity index and the soil exposure age.  相似文献   

8.
We present the first in situ measurements of the secondary electron emission efficiency of lunar regolith, utilizing Lunar Prospector measurements of secondary electrons emitted from the negatively charged night side and accelerated upward by surface electric fields. By comparing measurements of secondary currents emitted from the surface and incident primary electron currents, we find that the secondary yield of lunar regolith is a factor of ∼3 lower than that measured for samples in the laboratory. This lower yield significantly affects current balance at the lunar surface and the resulting equilibrium surface potentials. This information must be folded into models of the near-surface plasma sheath, in order to predict the effects on dust and other components of the lunar environment, and ultimately determine the importance for surface exploration and scientific investigations on the Moon.  相似文献   

9.
Results from particle-size distribution analyses of the lunar regolith (less than 1 mm) as sampled by Apollos 11, 12, 14, 15 and 16 have been tested to see if they conform to Rosin's law, which has been found to describe crushed products of many kinds and sizes. In all the lunar examples the law appears to be followed closely. It is concluded that the lunar regolith is probably the result of crushing forces, most likely impacts on the lunar surface.  相似文献   

10.
Bruce A. Campbell 《Icarus》2002,158(2):560-561
In a recent Icarus article, Shkuratov and Bondarenko (2001) propose a model for the depth of the lunar regolith based on 70-cm radar observations and near-infrared spectroscopy. This model treats the regolith as a single homogeneous layer of lossy dust, and ignores scattering by buried rocks. There is also an implicit assumption that the regolith substrate is everywhere of uniform morphology. Radar scattering from this substrate is treated using averaged Fresnel coefficients, with little explanation of how such a model might produce the observed lunar polarization properties. Taken together, these issues weaken the validity of the published regolith depth map.  相似文献   

11.
Abstract— Any permanent presence on the Moon will require use of materials from the lunar regolith, the surface soil layer on the Moon. Thus, knowledge of the thickness of the lunar regolith is essential. It has been proposed that crater counts obtained from high Sun angle photography give larger estimates of impact crater equilibrium diameters than for low Sun angle photography, and thus deeper estimates of lunar surface regolith than were previously made using crater morphology, size of blocky rimmed craters, and equilibrium diameters determined on low Sun angle images. The purpose of this comment is to evaluate this result as a means of resolving this important question before planning for future lunar missions is undertaken  相似文献   

12.
We present simulations of interferometers in Earth orbit and on the lunar surface to guide the design and optimization of space-based ultra-long wavelength missions, such as those pioneered by China’s Chang’e Program. We choose parameters and present simulations using simulated data to identify inter-dependencies and constraints on science and engineering parameters. A regolith model is created for the lunar surface array simulation, and the results show that the lunar regolith will have an undesirable effect on the observations. We estimate data transmission requirements,calculate sensitivities for both cases, and discuss the trade-off between brightness temperature sensitivity and angular resolution for the Earth orbit array case.  相似文献   

13.
J. Warell  B.J.R. Davidsson 《Icarus》2010,209(1):164-178
An implementation of Hapke’s radiative transfer-based photometric model for light scattering in semi-transparent porous media is presented with special emphasis on the analysis of reflectance spectra of Mercury. The model allows intimate mixing of an arbitrary number of regolith components with varying modal abundances, modal chemistries and grain sizes, matured by microphase iron. Reflectance spectra of suites of silicates of varying grain sizes and chemistries are used to calculate the imaginary coefficient of the complex index of refraction as a function of chemistry, thus limiting the modeling effects of chemically atypical laboratory samples, and allowing controlled modeling of minerals with varying chemical compositions. The performance of the model in the visual to near-infrared wavelength range is evaluated for a range of chemically characterized silicate mixtures of terrestrial powders, meteorite powders, matured lunar return samples, and remotely sensed lunar spectra.  相似文献   

14.
Abstract— The global high‐resolution imaging of asteroid 433 Eros by the Near‐Earth Asteroid Rendezvous (NEAR) Shoemaker spacecraft has made it possible to develop the first comprehensive picture of the geology of a small S‐type asteroid. Eros displays a variety of surface features, and evidence of a substantial regolith. Large scale facets, grooves, and ridges indicate the presence of at least one global planar structure. Directional and superposition relations of smaller structural features suggest that fracturing has occurred throughout the object. As with other small objects, impact craters dominate the overall shape as well as the small‐scale topography of Eros. Depth/diameter ratios of craters on Eros average ~0.13, but the freshest craters approach lunar values of ~0.2. Ejecta block production from craters is highly variable; the majority of large blocks appear to have originated from one 7.6 km crater (Shoemaker). The interior morphology of craters does not reveal the influence of discrete mechanical boundaries at depth in the manner of craters formed on lunar mare regolith and on some parts of Phobos. This lack of mechanical boundaries, and the abundant evidence of regolith in nearly every high‐resolution image, suggests a gradation in the porosity and fracturing with depth. The density of small craters is deficient at sizes below ~200 m relative to predicted slopes of empirical saturation. This characteristic, which is also found on parts of Phobos and lunar highland areas, probably results from the efficient obliteration of small craters on a body with significant topographic slopes and a thick regolith. Eros displays a variety of regolith features, such as debris aprons, fine‐grained “ponded” deposits, talus cones, and bright and dark streamers on steep slopes indicative of efficient downslope movement of regolith. These processes serve to mix materials in the upper loose fragmental portion of the asteroid (regolith). In the instance of “ponded” materials and crater wall deposits, there is evidence of processes that segregate finer materials into discrete deposits. The NEAR observations have shown us that surface processes on small asteroids can be very complex and result in a wide variety of morphologic features and landforms that today seem exotic. Future missions to comets and asteroids will surely reveal still as yet unseen processes as well as give context to those discovered by the NEAR Shoemaker spacecraft.  相似文献   

15.
We report results of telescope polarimetric imaging of the Moon with a CCD LineScan Camera at large phase angles, near 88°. This allows measurements of the polarization degree with an absolute accuracy better than 0.3% and detection of features with polarization contrast as small as 0.1%. The measurements are carried out in two spectral bands centered near 0.65 and 0.42 μm. We suggest characterizing the lunar regolith with the parameter a(Pmax)A, where Pmax,A, and a are the degree of maximum polarization, albedo, and the parameter describing the linear regression of the correlation Pmax-A. The parameter bears significant information on the particle characteristic size and packing density of the lunar regolith. We also suggest characterizing the lunar regolith with color-ratio images obtained with a polarization filter at large phase angles. We here consider the color-ratios C||(0.65/0.42 μm) and C(0.65/0.42 μm). Using light scattering model calculations we show that the color-ratio images obtained with a polarization filter at large phase angles suggest a new tool to study the lunar surface. In particular, it turns out that the color-ratios C||(0.65/0.42 μm) and C(0.65/0.42 μm) are sensitive to somewhat different thicknesses of the surfaces of regolith particles. We consider the applicability of the Hubble Space Telescope, the Very Large Telescope (ESO), and a spacecraft on a lunar polar orbit for polarimetric observations of the lunar surface.  相似文献   

16.
Physical conditions in the near-surface layer of the Moon are overviewed. This medium is formed in the course of the permanent micrometeoroid bombardment of the lunar regolith and due to the exposure of the regolith to solar radiation and high-energy charged particles of solar and galactic origin. During a considerable part of a lunar day (more than 20%), the Moon is passing through the Earth’s magnetosphere, where the conditions strongly differ from those in the interplanetary space. The external effects on the lunar regolith form the plasma-dusty medium above the lunar surface, the so-called lunar exosphere, whose characteristic altitude may reach several tens of kilometers. Observations of the near-surface dusty exosphere were carried out with the TV cameras onboard the landers Surveyor 5, 6, and 7 (1967–1968) and with the astrophotometer of Lunokhod-2 (1973). Their results showed that the near-surface layer glows above the sunlit surface of the Moon. This was interpreted as the scattering of solar light by dust particles. Direct detection of particles on the lunar surface was made by the Lunar Ejects and Meteorite (LEAM) instrument deployed by the Apollo 17 astronauts. Recently, the investigations of dust particles were performed by the Lunar Atmosphere and Dust Environment Explorer (LADEE) instrument at an altitude of several tens of kilometers. These observations urged forward the development of theoretical models for the lunar exosphere formation, and these models are being continuously improved. However, to date, many issues related to the dynamics of dust and the near-surface electric fields remain unresolved. Further investigations of the lunar exosphere are planned to be performed onboard the Russian landers Luna-Glob and Luna-Resurs.  相似文献   

17.
Abstract— We have analyzed a suite of lunar regolith breccias in order to assess how well space weathering products can be preserved through the lithification process and therefore whether or not it is appropriate to search for space weathering products in asteroidal regolith breccia meteorites. It was found that space weathering products, vapor/sputter deposited nanophase‐iron‐bearing rims in particular, are easily identified in even heavily shocked/compacted lunar regolith breccias. Such rims, if created on asteroids, should thus be preserved in asteroidal regolith breccia meteorites. Two additional rim types, glass rims and vesicular rims, identified in regolith breccias, are also described. These rims are common in lunar regolith breccias but rare to absent in lunar soils, which suggests that they are created in the breccia‐forming process itself. While not “space weathering products” in the strictest sense, these additional rims give us insight into the regolith breccia formation process. The presence or absence of glass and/or vesicular rims in asteroidal regolith breccias will likewise tell us about environmental conditions on the surface of the asteroid body on which the breccia was created.  相似文献   

18.
Regolith thickness distributions associated with crater populations observed on selected maria surfaces have been calculated using a Monte Carlo computer technique. The calculations assume that the crater type produced and the volume of debris ejected and added to the growing regolith depends on the ratio of crater diameter and regolith thickness present at the time and place of formation of each crater. Calculated thickness distributions obtained are in agreement with those estimated using a previously described statistical method based on the morphology of small lunar craters. Additionally, the Monte Carlo calculations accurately predict the size frequency distributions of the same types of small, fresh lunar craters used in the statistical method. The model employed is therefore realistic. Furthermore, the model calculations presented are shown to have value (a) in predicting the thickness of the regolith from crater populations at various lunar sites, (b) relative dating applications in which crater populations are compared, and (c) in interpreting the origin and history of regolith deposits at specific locations.  相似文献   

19.
We performed the first global survey of lunar regolith depths using Lunar Reconnaissance Orbiter Camera (LROC) data and the crater morphology method for determining regolith depth. We find that on both the lunar farside and in the nearside, non-mare regions, the regolith depth is twice as deep as it is within the lunar maria. Our data compare favorably with previous studies where such data exist. We also find that regolith depth correlates well with density of large craters (>20 km diameter). This result is consistent with the gradual formation of regolith by rock fracture during impact events.  相似文献   

20.
We have constructed an experiment to perform bidirectional reflectance distribution function (BRDF) measurements of laboratory samples, and have used the experiment to characterize a sample of JSC-1 lunar regolith simulant. Characterizations relied on in-plane BRDF measurements in visible and near-infrared (NIR) bandpasses. The optical properties of the simulant sample were found to be similar to those observed for bright, lunar highland regions. Reflectance models (Hapke 1981. Bidirectional reflectance spectroscopy 1. Theory. J. Geophys. Res. 86(B4), 3,039−3,054; 1984. Bidirectional reflectance spectroscopy 3. Correction for macroscopic roughness. Icarus 59, 41−59; 1986. Bidirectional reflectance spectroscopy 4. The extinction coefficient and the opposition effect. Icarus 67, 264−280; 2002. Bidirectional reflectance spectroscopy 5. The coherent backscatter opposition effect and anisotropic scattering. Icarus 157, 523−534) made excellent fits to fixed incidence angle, variable emission angle data sets. However, the models were not found to extrapolate well to fixed, near-zero phase angle data at varying incidence angles, and no solutions were found that provided simultaneous, high quality fits to the two types of data sets. Except for the single-scattering albedo, the best-fit parameters of the fixed incidence angle data were statistically the same in the visible and NIR. Correlations between the reflectance model parameters were systematically examined, and strong correlations were found between single-scattering albedo and the two two-stream Henyey-Greenstein scattering parameters and, to a lesser extent, the small-scale mean surface roughness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号