首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The exchange of ions between the ionosphere of a planet with negligible intrinsic magnetic field, and the solar wind is examined. It is suggested that a balance exists between the outflow of ionospheric ions at the plasmapause and ions from the solar wind in a restricted region close to the subsolar point. This results in a current system towards the subsolar point on the surface of the ionopause and a toroidal magnetic field. Simple calculations are made of the current and field configuration that might result from the system for conditions similar to those encountered on the Viking 1 and 2 transits of the Mars ionosphere.  相似文献   

2.
We present simulated images of energetic neutral atoms (ENAs) produced in charge exchange collisions between solar wind protons and neutral atoms in the exosphere of Venus, and make a comparison with earlier results for Mars. The images are found to be dominated by two local maxima. One produced by charge exchange collisions in the solar wind, upstream of the bow shock, and the other close to the dayside ionopause. The simulated ENA fluxes at Venus are lower than those obtained in similar simulations of ENA images at Mars at solar minimum conditions, and close to the fluxes at Mars at solar maximum. Our numerical study shows that the ENA flux decreases with an increasing ionopause altitude. The influence of the Venus nighttime hydrogen bulge on the ENA emission is small.  相似文献   

3.
Although there is no intrinsic magnetic field at Venus, the convected interplanetary magnetic field piles up to form a magnetic barrier in the dayside inner magnetosheath. In analogy to the Earth's magnetosphere, the magnetic barrier acts as an induced magnetosphere on the dayside and hence as the obstacle to the solar wind. It consists of regions near the planet and its wake for which the magnetic pressure dominates all other pressure contributions. The initial survey performed with the Venus Express magnetic field data indicates a well-defined boundary at the top of the magnetic barrier region. It is clearly identified by a sudden drop in magnetosheath wave activity, and an abrupt and pronounced field draping. It marks the outer boundary of the induced magnetosphere at Venus, and we adopt the name “magnetopause” to address it. The magnitude of the draped field in the inner magnetosheath gradually increases and the magnetopause appears to show no signature in the field strength. This is consistent with PVO observations at solar maximum. A preliminary survey of the 2006 magnetic field data confirms the early PVO radio occultation observations that the ionopause stands at ∼250 km altitude across the entire dayside at solar minimum. The altitude of the magnetopause is much lower than at solar maximum, due to the reduced altitude of the ionopause at large solar zenith angles and the magnetization of the ionosphere. The position of the magnetopause at solar minimum is coincident with the ionopause in the subsolar region. This indicates a sinking of the magnetic barrier into the ionosphere. Nevertheless, it appears that the thickness of the magnetic barrier remains the same at both solar minimum and maximum. We have found that the ionosphere is magnetized ∼95% of the time at solar minimum, compared with 15% at solar maximum. For the 5% when the ionosphere is un-magnetized at solar minimum, the ionopause occurs at a higher location typically only seen during solar maximum conditions. These have all occurred during extreme solar conditions.  相似文献   

4.
Strong ultraviolet radiation from the Sun ionizes the upper atmosphere of Venus, creating a dense ionosphere on the dayside of the planet. In contrast to Earth, the ionosphere of Venus is not protected against the solar wind by a magnetic field. However, the interaction between charged ionospheric particles and the solar wind dynamic and magnetic pressure creates a pseudo-magnetosphere which deflects the solar wind flow around the planet (Schunk and Nagy, 1980). The combination of changing solar radiation and solar wind intensities leads to a highly variable structure and plasma composition of the ionosphere. The instrumentation of the Venus Express spacecraft allows to measure the magnetic field (MAG experiment) as well as the electron energy spectrum and the ion composition (ASPERA-4 experiment) of the upper ionosphere and ionopause. In contrast to the earlier Pioneer Venus Orbiter (PVO) measurements which were conducted during solar maximum, the solar activity was very low in the period 2006-2009. A comparison with PVO allows for an investigation of ionospheric properties under different solar wind and EUV radiation conditions. Observations of MAG and ASPERA have been analyzed to determine the positions of the photoelectron boundary (PEB) and the “magnetopause” and their dependence on the solar zenith angle (SZA). The PEB was determined using the ELS observations of ionospheric photoelectrons, which can be identified by their specific energy range. It is of particular interest to explore the different magnetic states of the ionosphere, since these influence the local plasma conductivity, currents and probably the escape of electrons and ions. The penetration of magnetic fields into the ionosphere depends on the external conditions as well as on the ionospheric properties. By analyzing a large number of orbits, using a combination of two different methods, we define criteria to distinguish between the so-called magnetized and unmagnetized ionospheric states. Furthermore, we confirm that the average magnetic field inside the ionosphere shows a linear dependence on the magnetic field in the region directly above the PEB.  相似文献   

5.
Recent U.S.S.R. studies of the magnetic field and solar wind flow in the vicinity of Mars and Venus confirm earlier U.S.A. reports of a bow shock wave developed as the solar wind interacts with these planets. Mars 2 and 3 magnetometer experiments report the existence of an intrinsic planetary magnetic field, sufficiently strong to form a magnetopause, deflecting the solar wind around the planet and its ionosphere. This is in contrast to the case for Venus, where it is assumed to be the ionosphere and processes therein which are responsible for the solar wind deflection. An empirical relationship appears to exist between planetary dipole magnetic moments and their angular momentum for Moon, Mars, Venus, Earth and Jupiter. Implications for the magnetic fields of Mercury and Saturn are discussed.Paper presented at the Lunar Science Institute Conference on Geophysical and Geochemical Exploration of the Moon and Planets, January 10–12, 1973  相似文献   

6.
《Planetary and Space Science》2006,54(13-14):1482-1495
Venus has no internal magnetic dynamo and thus its ionosphere and hot oxygen exosphere dominate the interaction with the solar wind. The solar wind at 0.72 AU has a dynamic pressure that ranges from 4.5 nPa (at solar max) to 6.6 nPa (at solar min), and its flow past the planet produces a shock of typical magnetosonic Mach number 5 at the subsolar point. At solar maximum the pressure in the ionospheric plasma is sufficient to hold off the solar wind at an altitude of 400 km above the surface at the subsolar point, and 1000 km above the terminators. The deflection of the solar wind occurs through the formation of a magnetic barrier on the inner edge of the magnetosheath, or shocked solar wind. Under typical solar wind conditions the time scale for diffusion of the magnetic field into the ionosphere is so long that the ionosphere remains field free and the barrier deflects almost all the incoming solar wind. Any neutral atoms of the hot oxygen exosphere that reach the altitude of the magnetosheath are accelerated by the electric field of the flowing magnetized plasma and swept along cycloidal paths in the antisolar direction. This pickup process, while important for the loss of the Venus atmosphere, plays a minor role in the deceleration and deflection of the solar wind. Like at magnetized planets, the Venus shock and magnetosheath generate hot electrons and ions that flow back along magnetic field lines into the solar wind to form a foreshock. A magnetic tail is created by the magnetic flux that is slowed in the interaction and becomes mass-loaded with thermal ions.The structure of the ionosphere is very much dependent on solar activity and the dynamic pressure of the solar wind. At solar maximum under typical solar wind conditions, the ionosphere is unmagnetized except for the presence of thin magnetic flux ropes. The ionospheric plasma flows freely to the nightside forming a well-developed night ionosphere. When the solar wind pressure dominates over the ionospheric pressure the ionosphere becomes completely magnetized, the flow to the nightside diminishes, and the night ionosphere weakens. Even at solar maximum the night ionosphere has a very irregular density structure. The electromagnetic environment of Venus has not been well surveyed. At ELF and VLF frequencies there is noise generated in the foreshock and shock. At low altitude in the night ionosphere noise, presumably generated by lightning, can be detected. This paper reviews the plasma environment at Venus and the physics of the solar wind interaction on the threshold of a new series of Venus exploration missions.  相似文献   

7.
The electric currents induced in the atmosphere of a non-magnetic planet such as Venus by the interaction of the solar wind satisfy a generalized Ohm's Law relationship with tensor conductivity. The distribution of these currents within the planetary ionosphere may be calculated by a variational technique which minimizes the Joule heating over the ionospheric volume. In this paper, we present the development of the variational technique, and apply it to a model of the solar wind interaction with Venus.Potential and current distributions are shown, and the use of these distributions in determining convective transport patterns of planetary ions is discussed.  相似文献   

8.
The electrodynamic model for the solar wind interaction with non-magnetic planets. (Cloutier and Daniell, Planet. Space Sci.21, 463, 1973; Daniell and Cloutier, Planet. Space Sci.25, 621, 1977) is modified to include the effects of non-ohmic currents in the upper ionosphere. The model is then used to calculate convection patterns induced by the solar wind in the ionospheres of Mars and Venus. For Mars the observations of the neutral mass spectrometer or Vikings 1 and 2 provided the neutral atmosphere. Model calculations reproduced the retarding potential analyzer data and indicate that the ionosphere above about 200 km is probably controlled by convection rather than chemistry or diffusion. For Venus a model atmosphere based on Dickenson and Ridley, J. Atmos. Sci.32, 1219 (1975) and Mayr et al., J. geophys. Res.83, 4411 (1978) was used. The resulting model calculations were compared to radio occultation data from Mariners 5 and 10 and Venera 9 which represent extremes in the variability of the upper Cytherean ionosphere. The model calculations are shown to fall within this variation. These results represent the state of the theory immediately prior to the Pioneer-Venus encounter.  相似文献   

9.
Magnetic flux ropes are created in the ionosphere of Venus and Mars during the interaction of the solar wind with their ionospheres and also at Titan during the interaction of the Saturnian magnetospheric plasma flow with Titan’s ionosphere. The flux ropes at Venus and Mars were extensively studied from Pioneer Venus Orbiter and Mars Global Surveyor observations respectively during solar maximum. Based on the statistical properties of the observed flux ropes at Venus and Mars, the formation of a flux rope in the ionosphere is thought first to arise near the boundary between the magnetic barrier and the ionosphere and later to sink into the lower ionosphere. Venus flux ropes are also observed during solar minimum by Venus Express and the observations of developing and mature flux ropes are consistent with the proposed mechanism. With the knowledge of flux rope structure in the Venus ionosphere, the twisted fields in the lower ionosphere of Titan from Cassini observations are studied and are found to resemble the Venus flux ropes.  相似文献   

10.
R.F. Stein  R.S. Wolff 《Icarus》1982,51(2):296-301
The effects on the upper dayside Venus ionosphere of a slow increase in solar wind dynamic pressure are simulated numerically with a 1-dimensional (spherically symmetric) Lagrangian hydrodynamical code. The simulation is started with an extended ionosphere in pressure equilibrium with the solar wind at the ionopause. The pressure at the ionopause is gradually increased to five times the initial pressure with rise times of 5, 15, and 30 min. It is found that, for rise times greater than about 10 min, the compression of the ionopause is nearly adiabatic, with the ionopause moving downward at velocities of ~1?2 km/sec until it reaches a maximally compressed states, at which time the motion reverses. For short rise times the compression produces a shock wave similar to that occuring in the case of a sudden increase in pressure. The global implications of these processes are discussed within the context of Pioneer Venus observations and future theoretical work on this problem is outlined.  相似文献   

11.
《Icarus》1986,67(2):325-335
A two-dimensional spectral model of energetics in the ionosphere of Venus has been constructed. The effects of horizontal bulk transport of heat and the heat flux saturation have been taken into account. The model is capable of explaining the observed high ion temperatures for solar zenith angles greater than 140°. An external heat input to ions of 1–2 × 10−4ergs cm−2sec−1 almost uniformly distributed over the entire planet gives good agreement with the average ion temperature data from the PVO retarding potential analyzer. The effects of varying the magnitude of the horizontal plasma velocity, including the vertical component of bulk velocity, changing the altitude dependence of the velocity profile, and making the ionopause height a function of solar zenith angle have been discussed.  相似文献   

12.
Long-exposure spectroscopy of Mars and Venus with the Extreme Ultraviolet Explorer (EUVE) has revealed emissions of He 584 Å on both planets and He 537 Å/O+ 539 Å and He+ 304 Å on Venus. Our knowledge of the solar emission at 584 Å, eddy diffusion in Mars' upper atmosphere, electron energy distributions above Mars' ionopause, and hot oxygen densities in Mars' exosphere has been significantly improved since our analysis of the first EUVE observation of Mars [Krasnopolsky, Gladstone, 1996, Helium on Mars: EUVE and Phobos data and implications for Mars' evolution, J. Geophys. Res. 101, 15,765-15,772]. These new results and a more recent EUVE observation of Mars are the motivation for us to revisit the problem in this paper. We find that the abundance of helium in the upper atmosphere, where the main loss processes occur, is similar to that in the previous paper, though the mixing ratio in the lower and middle atmosphere is now better estimated at 10±6 ppm. Our estimate of the total loss of helium is almost unchanged at 8×1023 s−1, because a significant decrease in the loss by electron impact ionization above the ionopause is compensated by a higher loss in collisions with hot oxygen. We neglect the outgassing of helium produced by radioactive decay of U and Th because of the absence of current volcanism and a very low upper limit to the seepage of volcanic gases. The capture of solar wind α-particles is currently the only substantial source of helium on Mars, and its efficiency remains at 0.3. A similar analysis of EUV emissions from Venus results in a helium abundance in the upper atmosphere which is equal to the mean of the abundances measured previously with two optical and two mass spectrometers, and a derived helium mixing ratio in the middle and lower atmosphere of 9±6 ppm. Helium escape by ionization and sweeping out of helium ions by the solar wind above the ionopause is smaller than that calculated by Prather and McElroy [1983, Helium on Venus: implications for uranium and thorium, Science 220, 410-411] by a factor of 3. However, charge exchange of He+ ions with CO2 and N2 between the exobase and ionopause and collisions with hot oxygen ignored previously add to the total loss which appears to be at the level of 106 cm−2 s−1 predicted by Prather and McElroy [1983, Science 220, 410-411]. The loss of helium is compensated by outgassing of helium produced by radioactive decay of U and Th and by the capture of the solar wind α-particles with an efficiency of 0.1. We also compare our derived α-particle capture efficiencies for Mars and Venus with observed X-ray emissions resulting from the charge exchange of solar wind heavy ions with the extended atmospheres on both planets [Dennerl et al., 2002, Discovery of X-rays from Venus with Chandra, Astron. Astrophys. 386, 319-330; Dennerl, 2002, Discovery of X-rays from Mars with Chandra, Astron. Astrophys. 394, 1119-1128]. The emissions from both disk and halo on Mars agree with our calculated values; however, we do not see a reasonable explanation for the X-ray halo emission on Venus. The ratio of the charge exchange efficiencies derived from the disk X-ray emissions of Mars and Venus is similar to the ratio of the capture efficiencies for these planets. The surprisingly bright emission of He+ at 304 Å observed by EUVE and Venera 11 and 12 suggests that charge exchange in the flow of the solar wind α-particles around the ionopause is much stronger than in the flow of α-particles into the ionosphere.  相似文献   

13.
The upper ionospheres of Mars and Venus are permeated by the magnetic fields induced by the solar wind. It is a long-standing question whether these fields can put the dense ionospheric plasma into motion. If so, the transterminator flow of the upper ionosphere could explain a significant part of the ion escape from the planets atmospheres. But it has been technically very challenging to measure the ion flow at energies below 20 eV. The only such measurements have been made by the ORPA instrument of the Pioneer Venus Orbiter reporting speeds of 1-5 km/s for O+ ions at Venus above 300 km altitude at the terminator ( [Knudsen et al., 1980] and [Knudsen et al., 1982]). At Venus the transterminator flow is sufficient to sustain a permanent nightside ionosphere, at Mars a nightside ionosphere is observed only sporadically. We here report on new measurements of the transterminator ion flow at Mars by the ASPERA-3 experiment on board Mars Express with support from the MARSIS radar experiment for some orbits with fortunate observation geometry. We observe a transterminator flow of O+ and O2+ ions with a super-sonic velocity of around 5 km/s and fluxes of 0.8×109/cm2 s. If we assume a symmetric flux around the terminator this corresponds to an ion flow of 3.1±0.5×1025/s half of which is expected to escape from the planet. This escape flux is significantly higher than previously observed on the tailside of Mars. A possible mechanism to generate this flux can be the ionospheric pressure gradient between dayside and nightside or momentum transfer from the solar wind via the induced magnetic field since the flow velocity is in the Alfvénic regime. We discuss the implication of these new observations for ion escape and possible extensions of the analysis to dayside observations which may allow us to infer the flow structure imposed by the induced magnetic field.  相似文献   

14.
We present estimates of the day-side ionospheric conductivities at Mars based on magnetic field measurements by Mars Global Surveyor (MGS) at altitudes down to ∼100 km during aerobraking orbits early in the mission. At Mars, the so-called ionospheric dynamo region, where plasma/neutral collisions permit electric currents perpendicular to the magnetic field, lies between 100 and 250 km altitude. We find that the ionosphere is highly conductive in this region, as expected, with peak Pedersen and Hall conductivities of 0.1-1.5 S/m depending on the solar illumination and induced magnetospheric conditions. Furthermore, we find a consistent double peak pattern in the altitude profile of the day-side Pedersen conductivity, similar to that on Titan found by Rosenqvist et al. (2009). A high altitude peak, located between 180 and 200 km, is equivalent to the terrestrial peak in the lower F-layer. A second and typically much stronger layer of Pedersen conductivity is observed between 120 and 130 km, which is below the Hall conductivity peak at about 130-140 km. In this altitude region, MGS finds a sharp decrease in induced magnetic field strength at the inner magnetospheric boundary, while the day-side electron density is known to remain high as far down as 100 km. We find that such Titan-like behaviour of the Pedersen conductivity is only observed under regions of strongly draped magnetospheric field-lines, and negligible crustal magnetic anomalies below the spacecraft. Above regions of strong crustal magnetic anomalies, the Pedersen conductivity profile becomes more Earth-like with one strong Pedersen peak above the Hall conductivity peak. Here, both conductivities are 1-2 orders of magnitude smaller than the above only weakly magnetised crustal regions, depending on the strength of the crustal anomaly field at ionospheric altitudes. This nature of the Pedersen conductivity together with the structured distribution of crustal anomalies all over the planet should give rise to strong conductivity gradients around such anomalies. Day-side ionospheric conductivities on Mars (in regions away from the crustal magnetic anomalies) and Titan seem to behave in a very similar manner when horizontally draped magnetic field-lines partially magnetise a sunlit ionosphere. Therefore, it appears that a similar double peak structure of strong Pedersen conductivity could be a more general feature of non-magnetised bodies with ionised upper atmospheres, and thus should be expected to occur also at other non-magnetised terrestrial planets like Venus or other planetary bodies within the host planet magnetospheres.  相似文献   

15.
A two-dimensional model of the ionosphere of Venus which simulates ionospheric dynamics by self-consistently solving the plasma equations of motion, including the inertial term, in finite difference form has been constructed. The model, which is applied over the solar zenith angle range extending from 60 to 140° and the altitude range 100 to 480 km, simulates the measured horizontal velocity field quite satisfactorily. The ion density field is somewhat overestimated on the dayside because of the choice model neutral atmosphere and underestimated on the nightside because of setting the ionopause height at too low an altitude. It is concluded that solar photoionization on the dayside and ion recombination on the nightside are the processes mainly responsible for accelerating the plasma to the observed velocities. The plasma flow appears to be sufficient to maintain the nightside ionosphere at or near the observed median level of ion densities.  相似文献   

16.
Data from the magnetometer MAG aboard the Venus Express S/C are investigated for the occurrence of cyclotron wave phenomena upstream of the Venus bow shock. For an unmagnetized planet such as Venus and Mars the neutral exosphere extends into the on-flowing solar wind and pick-up processes can play an important role in the removal of particles from the atmosphere. At Mars upstream proton cyclotron waves were observed but at Venus they were not yet detected. From the MAG data of the first 4 months in orbit we report the occurrence of proton cyclotron waves well upstream from the planet, both outside and inside of the planetary foreshock region; pick-up protons generate specific cyclotron waves already far from the bow shock. This provides direct evidence that the solar wind is removing hydrogen from the Venus exosphere. Determining the role the solar wind plays in the escape of particles from the total planetary atmosphere is an important step towards understanding the evolution of the environmental conditions on Venus. The continual observations of the Venus Express mission will allow mapping the volume of escape more accurately, and determine better the present rate of hydrogen loss.  相似文献   

17.
Numerical calculations for the electric current in the polar ionosphere have been made by assuming some realistic distributions of the electric field and conductivity. Two dynamo actions are taken into account; one of which is induced by ionospheric winds and the other by the solar wind. For the solar wind dynamo action, it is found that the secondary polarization field caused by non-uniform distribution of ionospheric conductivity is much larger than the primary field induced by the solar wind, suggesting its important effect on charged particles in the magnetosphere, and that the irrotational current having a source and sink is of the same order of magnitude as the solenoidal current closing its circuit in the ionosphere. It is also found that the solar wind is, in general, more effective than the ionospheric winds in producing polar current systems such as DP 1 and 2, but in some cases the ionospheric winds have a significant effect on the current distribution.  相似文献   

18.
A model has been developed for the currents induced in the ionospheres of Venus and Mars by the flowing magnetized solar wind in a previous paper (Cloutier and Daniell, 1973). The altitudes of the ionopauses on both planets, determined from the electrodynamical models of the previous paper, are used here to calculate the total rates of atmospheric mass loss to the solar wind for Venus and Mars. These loss rates are compared to the rates calculated by Michel (1971) based upon the limit of mass loading of the solar wind flow determined from hydrodynamic constraints. The distributions of planetary ions in the downstream wakes of Venus and Mars are calculated, and the interpretation of ion spectrometer measurements from close planetary encounters is discussed.  相似文献   

19.
The electric current configuration induced in the ionosphere of Venus by the interaction of the solar wind has been calculated in previous papers (Cloutier and Daniell, Planet. Space Sci. 21, 463, 1973; Daniell and Cloutier. Planet. Space Sci.25, 621, 1977; Cloutier and Daniell, Planet. Space Sci.27, 1111, 1979) for average steady-state solar wind conditions and interplanetary magnetic field. This model is generalized to include the effects of (a) plasma depletion and magnetic field enhancement near the ionopause, (b) velocity-shear-induced MHD instabilities of the Kelvin-Helmholtz type within the ionosphere, and (c) variations in solar wind parameters and interplanetary magnetic field. It is shown that the magnetic field configuration resulting from the model varies in response to changes in solar wind and interplanetary field conditions, and that these variations produce magnetic field profiles in excellent agreement with those seen by the PIONEER-VENUS Orbiter. The formation of “flux-ropes” by the Kelvin-Helmholtz instability is shown to be a natural consequence of the model, with the spatial distribution and size of the flux-ropes determined by the magnetic Reynolds number.  相似文献   

20.
《Planetary and Space Science》2007,55(12):1793-1803
In this paper, the solar wind flow around Venus is modeled as a nondissipative fluid which obeys the ideal magnetohydrodynamic equations extended for mass loading processes. The mass loading parameter is calculated for four different cases, corresponding to solar minimum and maximum XUV flux and to nominal and low solar wind velocity. We get smooth profiles of the field and plasma parameters in the magnetosheath. Based on the results of this flow model, we investigate the occurrence of the Kelvin–Helmholtz (K–H) instability at the equatorial flanks of the ionopause of Venus. By comparing the instability growth time with the propagation time of the K–H wave, we find that the K–H instability can evolve at the ionopause for all four solar wind conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号