首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Jacques Gustin  Ian Stewart 《Icarus》2010,210(1):270-283
This study reports the analysis of far ultraviolet (FUV) limb spectra of the airglow of Saturn in the 1150-1850 Å spectral window, obtained with the Ultraviolet Imaging Spectrograph (UVIS) onboard Cassini, spanning altitudes from −1200 to 4000 km. The FUV limb emission consists of three main contributions: (1) H Ly-α peaking at 1100 km with a brightness of 0.8 kilo-Rayleighs (kR), (2) reflected sunlight longward of 1550 Å which maximizes at −950 km with 16.5 kR and (3) H2 bands in the 1150-1650 Å bandwidth, peaking at 1050 km reaching a maximum of 3.9 kR.A vertical profile of the local H2 volume emission rate has been derived using the hydrocarbon density profiles from a model of the Saturn equatorial atmosphere. It is well matched by a Chapman function, characterized by a maximum value of 3.5 photons cm−3 s−1 in the 800-1650 Å UV bandwidth, peaking at 1020 km.Comparisons between the observed spectra and a first-order synthetic airglow H2 model in the 1150-1650 Å bandwidth show that the spectral shape of the H2 bands is accounted for by solar fluorescence and photoelectron excitation. The best fits are obtained with a combination of H2 fluorescence lines and 20 eV electron impact spectra, the latter contributing ∼68% of the total H2 airglow emission.  相似文献   

2.
Venus nightglow was observed at NASA IRTF using a high-resolution long-slit spectrograph CSHELL at LT = 21:30 and 4:00 on Venus. Variations of the O2 airglow at 1.27 μm and its rotational temperature are extracted from the observed spectra. The mean O2 nightglow is 0.57 MR at 21:30 at 35°S-35°N, and the temperature increases from 171 K near the equator to ∼200 K at ±35°. We have found a narrow window that covers the OH (1-0) P1(4.5) and (2-1) Q1(1.5) airglow lines. The detected line intensities are converted into the (1-0) and (2-1) band intensities of 7.2 ± 1.8 kR and <1.4 kR at 21:30 and 15.5 ± 2 kR and 4.7 ± 1 kR at 4:00. The f-component of the (1-0) P1(4.5) line has not been detected in either observation, possibly because of resonance quenching in CO2. The observed Earth’s OH (1-0) and (2-1) bands were 400 and 90 kR at 19:30 and 250 and 65 kR at 9:40, respectively. A photochemical model for the nighttime atmosphere at 80-130 km has been made. The model involves 61 reactions of 24 species, including odd hydrogen and chlorine chemistries, with fluxes of O, N, and H at 130 km as input parameters. To fit the OH vibrational distribution observed by VEX, quenching of OH (v > 3) in CO2 only to v ? 2 is assumed. According to the model, the nightside-mean O2 emission of 0.52 MR from the VEX and our observations requires an O flux of 2.9 × 1012 cm−2 s−1 which is 45% of the dayside production above 80 km. This makes questionable the nightside-mean O2 intensities of ∼1 MR from some observations. Bright nightglow patches are not ruled out; however, the mean nightglow is ∼0.5 MR as observed by VEX and supported by the model. The NO nightglow of 425 R needs an N flux of 1.2 × 109 cm−2 s−1, which is close to that from VTGCM at solar minimum. However, the dayside supply of N at solar maximum is half that required to explain the NO nightglow in the PV observations. The limited data on the OH nightglow variations from the VEX and our observations are in reasonable agreement with the model. The calculated intensities and peak altitudes of the O2, NO, and OH nightglow agree with the observations. Relationships for the nightglow intensities as functions of the O, N, and H fluxes are derived.  相似文献   

3.
A rocket experiment was conducted which measured the infrared bands of the excited hydroxyl radical in the night airglow. The OH emission was found in a layer centered at 87 km having a half-width of 6 km and a total emission of 1.1 MR. The atomic oxygen altitude profile, ranging from 1.3 × 1010 atoms/cm3 at 83 km to 3 × 1011 atoms/cm3 at 90 km is determined from the hydroxyl airglow measurements. This derivation is based on the steady state balance between ozone formation from atomic oxygen and its destruction by hydrogen which produces the OH infrared emission.  相似文献   

4.
Measurements of the O2(A3Σ − X3Σ) Herzberg system in the night airglow have been made with the ESRO TD-1 satellite in the wavelength range 2400–3100 A. The slant emission rate varies from 3.5 to 15 kR, indicating an irregular structure of the atomic oxygen near the turbopause. A statistical maximum intensity is found near the tropic in the winter hemisphere. The intensity profile is consistent with excitation by three-body recombination of oxygen atoms. The observed total emission rate can be accounted for by reasonable atomic oxygen densities and an O2(A3Σ) production efficiency of about 20% if quenching by N2 occurs at the rate deduced from laboratory and other airglow measurements.  相似文献   

5.
A sounding rocket was flown during the predawn on 17 January, 1976 from Uchinoura, Japan, to measure directly the behaviour of the conjugate photoelectrons at magnetically low latitudes. On board the rocket were an electron energy analyzer, 630 nm airglow photometer, and plasma probes to measure electron density and temperature. The incoming flux of the photoelectrons was measured in the altitude range between 210 and 340 km. The differential flux at the top of the atmosphere was determined to be F = (1.3 ± 0.4) × 1011exp[?E(eV)12] electron · m?2 · sr?1 · s?1 in the energy range 10 ? E ? 50 eV. The emission rate of the 630 nm airglow was observed in the altitude range between 90 and 360 km. The apparent emission rate observed at 80 km was 32 ± 5 R. From a theoretical calculation of the optical excitation rate using the observed electron flux data along with a model distribution of atomic oxygen, it was estimated that more than 65% of the emission could be produced by direct impact of the photoelectrons with atomic oxygen in the thermosphere between 200 and 360 km. Using the observed electron density and the model distribution of oxygen molecules the residual of the emission was ascribed to the excitation of O(1D) through dissociative recombination, O2++eO1 + O7. The direct collisional excitation by ambient electrons is estimated to be negligibly small at the level of observed electron temperature.  相似文献   

6.
Mariner 9 ultraviolet spectrometer observations show the Mars airglow consists principally of emissions that arise from the interaction of solar ultraviolet radiation with carbon dioxide, the principal constituent of the Mars atmosphere. Two minor constituents, atomic hydrogen and atomic oxygen, also produce airglow emissions. The airglow measurements show that ionized carbon dioxide is only a minor constituent of the ionosphere. Using the airglow measurements of atomic oxygen, it is possible to infer that the major ion is ionized molecular oxygen. The escape rate of atomic hydrogen measured by Mariner 9 is approximately the same as that measured two years earlier by Mariner 6 and 7. If the current escape rate has been operating for 4.5 billion years and if water vapor is the ultimate source, an amount of oxygen has been generated that is far in excess of that observed at present. Mariner 9 observations of Mars Lyman alpha emission over a period of 120 days show variations of 20%.  相似文献   

7.
Simultaneous optical and particle data from the ISIS-2 satellite are used to characterize polar cap arcs. Polar cap arcs are identified from two-dimensional geomagnetic transforms of the optical data along with precipitating electron data for the time at which the satellite is on the field line intersecting the arc. No precipitating protons were detected for any of the arc crossings. The pitch angle. distribution of the precipitating electrons is generally isotropic and the differential electron spectra show enhancements in the flux in the 300–750 eV energy range. The average energy of the precipitating electrons for the different arcs ranges from about 300 to 600 eV. A possible explanation of the observed precipitating particle characteristics is that parallel electric fields are accelerating polar rain type spectra at an altitude of several thousand km. For the arc crossings reported here the equivalent 4278 Å emission rate per unit energy deposition rate has a mean value of 162 R/(erg cm?2 s?1). Average 3914 Å intensities are about 0.8 kR while 6300 Å intensities range from 0.5 to 3 kR. Model calculations indicate that direct impact excitation is a minor source for the 5577 Å emission rate, but supplies approx. 40% of the 6300 Å emission.  相似文献   

8.
Ground based high resolution (R ~ 120,000) spectra of the zenith day sky near 6300 Å were obtained with a PEPSIOS. When compared with the solar spectrum taken with the same spectrometer, the 6300.3 Å line of atomic oxygen was clearly present in emission. The apparent emission rate averaged 6 to 8 kR for solar zenith angles of 50 to 60 deg and decreased smoothly to about 1 kR as the solar zenith angle increased to 95 deg. The average emission line is somewhat different in width than the thermal line width expected with the Jacchia (1971) model for a 250 km altitude.  相似文献   

9.
The 557.7 nm OI night airglow emission was measured in the central polar cap by ground-based photometric systems at Thule Air Base, Greenland during the winter seasons from 1972–1973 to 1974–1975 and at Thule-Qanaq, Greenland during the winter season of 1973–1974. The behavior of the 557.7 nm night airglow emission in the polar cap was found to be quite different from that observed at mid and low latitudes. No diurnal variation greater than ±5% exist in the data. Large amplitude variations in the 557.7 nm daily average emission intensities can change by up to a factor of approximately 8 over periods ranging from 4 to 19 days. These long-term airglow variations cover at least a 100 km horizontal range as determined by a correlation coefficient of 0.94 between daily average 557.7 nm airglow intensities observed at Thule Air Base and Thule-Qanaq. An interplanetary magnetic field sector related behavior is evident in the daily average intensities which shows an increase of intensity in a positive (+) sector and a decrease of intensity in a negative (?) sector. No significant correlation was found between the 557.7 nm daily average intensities and Zurich sunspot number RZ, although a season to season positive trend was evident. Correlations between the 557.7 nm daily average intensities and planetary magnetic indices ΣKp and Ap were found to be inconclusive due to sector related effects. The Barth and Chapman mechanisms are discussed as possible source mechanisms for the 557.7 nm airglow in the central polar cap, and a hypothesis is presented to explain the airglow variations.  相似文献   

10.
From the night airglow observations of OH (7-2) and OH (8-3) bands made at Mt. Abu (24.6°N, 72.7°E geographic) we have noted that there is high positive correlation in their intensity variations (Rao and Kulkarni, 1971). Assuming covariation of the other OH band emissions and also their average emission ratios it is possible to estimate the contribution of one band ‘contaminating’ the measurement of line emission made by a filter of moderate width, from the measurement of another band. In the second method an attempt is made to estimate the OH contamination from the measurement through two filters centred on the emission line of airglow.  相似文献   

11.
Nighttime volume emission rates and rotational temperatures, obtained from simultaneous observations of molecular oxygen and hydroxyl airglow at Almaty (43.25°N, 76.92°E) and Sierra-Nevada (37.2°N, 356.7°E), along with ionospheric density derived from foF2 in the vertical sounding ionograms over Almaty are analysed to study the variability and coupling of parameters observed in the upper mesosphere and ionosphere during the period of February - April, 2000.Ionospheric critical frequency measurements and airglow observations by the Mesopause Rotational Temperature Imager (MORTI) at Almaty and the Spectral Airglow Temperature Imager (SATI) at Sierra-Nevada Observatories show an increase in long-period planetary wave (PW) activity from the end of February until the middle of March, 2000.Very good agreement was found in the temporal variations of emission rates and rotational temperatures from March 1-15, 2000 measured at the Almaty and Sierra-Nevada sites. Similar perturbations could also be seen in the ionospheric critical frequency (ΔfoF2) obtained as a difference between current foF2 values and an ionospheric background level.The perturbations observed have been interpreted employing the Met office stratospheric model results. Latitudinal structure of a quasi 5-day wave was identified, for which the first-symmetric-mode amplitude and symmetric behaviour of phase are in good agreement with theoretical prediction. The analysis of the Met office stratospheric data indicate the presence of westward-propagating PW with periods of ∼5 and 10 days during the period of interest. The temporal correlation between planetary scale oscillations observed in the datasets examined (ionospheric, optical and meteorological) suggest dynamical coupling with the stratosphere. A negative disturbance in ΔfoF2 of ∼25% observed 1 day before a sharp increase in the MORTI mesospheric rotational temperature registered on March 10 at Almaty, is also discussed in the context of the possible stratosphere/mesosphere/ionosphere coupling.  相似文献   

12.
N. Tabarie 《Icarus》1974,23(3):363-373
Several models of the Titan atmosphere are derived, and the corresponding vertical distribution of atomic hydrogen and its Lyman-alpha (1216 Å) emission are determined.  相似文献   

13.
The Voyager ultraviolet spectrometer disclosed strong longitude variation in the midlatitude Lyman alpha brightness of Jupiter. Minimum brightness of 16 and 14.4 kR were observed from Voyagers 1 and 2, respectively, with the intensity rising to peaks of 21 and 19.6 kR at a longitude near 110°. Observations of Jovian Lyman alpha, made with the International Ultraviolet Explorer (IUE) beginning in December 1978, and continuing through January 1982, also show a region of persistently enhanced but variable flux near a longitude, λ, of 100°; however, IUE measured brightnesses are consistently lower than those of Voyager. Although the Lyman alpha flux from the “normal” region of the plant between λ 200 and 300° remained nearly constant during the period of the IUE observations, that from the “perturbed” region centered on λ 110° varied by ±25% from the mean. The sources of Lyman alpha flux include resonance scattering of solar and interplanetary Lyman alpha, and excitation by charged particle precipitation. That portion of the dayside flux due to charged particle excitation has been variously estimated at between 2.3 and 7 kR. About 1 kR of the dayside flux is due to resonance scattering of the sky background. It is assumed that H and an absorber (CH4) are distributed above the homopause according to the local height distribution of temperature. The daytime equation of radiative transfer is solved to determine the longitudinal distribution of freely scattering atomic hydrogen that would account for the observed flux. This daytime solution shows that if the hydrogen bulge is the result of localized heating and a consequent increase in scale height, the temperature in the perturbed region must be about 100°K warmer than that in the normal region. The nightside Lyman alpha brightness exhibits a longitude variation very similar to that on the dayside. The H distribution derived from the dayside solution is used with the nightside flux to estimate the longitude variation of particle precipitation on the nightside.  相似文献   

14.
It is shown that variations in 6300 Å airglow intensities can, under certain assumptions, be simply related to ?0F2 and its time derivative. In deriving the relationship it is not necessary to assume that the concentration of the neutral atmosphere remains constant and so the relationship is useful on occasions when changes in the neutral atmosphere do occur making it difficult to obtain agreement between observed and calculated 6300 Å intensities; An example is given of a night in which a post-midnight enhancement occurred in the airglow and for which the observations could not be reproduced using a neutral atmosphere constant with time. It is shown that the airglow variations can be explained in terms of the variations of f0F2, implying that the airglow is due to recombination and that, during the night, changes occurred in the concentrations of the constituents of the neutral atmosphere.  相似文献   

15.
Several satellite experiments have measured the solar Lyman-α line, either in scattering from upper atmospheric atomic hydrogen (the Lyman-α airglow) or directly at line center (which determines the hydrogen column density along the line of sight). Recent analyses of data from the above experiments consistently reveal the presence of an atomic hydrogen depletion at high latitudes. In situ determinations of hydrogen at lower altitude show no evidence of such behaviour. This has led us to postulate two mechanisms which may be more effective in reducing the high-latitude density at the high altitudes of the exospheric measurements (500–2000 km). The first is the polar wind loss of protons, which depletes atomic hydrogen through a charge exchange reaction. The second is a high-latitude magnetospheric heating of protons, followed by charge exchange. Opposing the above loss mechanisms are the influences of ballistic lateral flow and mean meriodional winds. We have shown by means of a three-dimensional exospheric transport model that none of the above mechanisms can reconcile the disparate results in the two altitude regimes, nor can they provide the large outward hydrogen fluxes and the correct seasonal variations observed at high latitudes.  相似文献   

16.
Ultraviolet (UV) nightglow data from the SPICAV instrument (SPectroscopy for the Investigation of the Characteristics of the Atmosphere of Venus) onboard the Venus Express spacecraft, currently in orbit around Venus, are presented. In its extended source mode, SPICAV has shown that the Venus nightglow in the UV contains essentially Lyman-α and Nitric Oxide (NO) emissions. In the stellar mode, when the slit of the spectrometer is removed, an emission is also observed at the limb in addition to the stellar spectrum. A forward model allows us to identify this feature as being an NO emission. Due to radiative recombination of N and O atoms produced on the dayside of Venus, and transported to the nightside, NO nightglow provides important constraints to the Solar-to-Anti Solar thermospheric circulation prevailing above 90 km. The forward model presented here allows us to derive the altitude of the peak of emission of the NO layer, found at 113.5±6 km, as well as its scale height, of 3.4±1 km and its brightness. The latter is found to be very variable with emissions between 19 Kilo-Rayleigh (kR) and 540 kR. In addition, the NO nightglow is sometimes very patchy, as we are able to observe two distinct emission zones in the field of view. Finally, systematic extraction of this emission from stellar occultations extends the database of the NO emission already reported elsewhere using limb observations.  相似文献   

17.
The upper mesosphere airglow emissions OI 5577, NaD and OH have been observed at Cachoeira Paulista (22.7°S; 45.0°W) Brazil. Nocturnal variations and their seasonal dependencies in amplitude and phase, and the annual variations of these emissions are presented, analysing the data obtained from 1977 to 1982 during the ascending phase of the last solar cycle. The nocturnal variations of the OI 5577 emission and the OH rotational temperature showed a significant semidiurnal oscillation, with the phase of maximum moving from midnight in January to early morning in June. Semiannual variation of the OI 5577 and NaD emissions with the maximum intensities in April/May and October/November were observed. The OH rotational temperature, however, showed an annual variation, maximum in summer and minimum in winter, while no significant seasonal variation was found in the OH emission intensities. Long-term intensity variations are also presented with the solar sunspot numbers and the 10.7 cm flux.  相似文献   

18.
OH day and night airglow intensity variations were measured with a three-channel balloon-borne i.r. photometer in four separate flights from southern France in June 1970 and June 1971. The nightglow intensity showed a minimum at some time between midnight and 0200 hr local mean time followed by a steady increase until the end of the night. In all four flights a rapid pre-sunrise decrease in intensity was observed at a solar elevation of ?6°. The dayglow intensities increased slowly after sunrise with the emission reaching half its pre-dawn value near a solar elevation of 36°. The morning twilight observations are compared with other observations and with theoretical predictions.  相似文献   

19.
Hydroxyl nightglow is intensively studied in the Earth atmosphere, due to its coupling to the ozone cycle. Recently, it was detected for the first time also in the Venus atmosphere, thanks to the VIRTIS-Venus Express observations. The main Δν=1, 2 emissions in the infrared spectral range, centred, respectively, at 2.81 and 1.46 μm (which correspond to the (1-0) and (2-0) transitions, respectively), were observed in limb geometry (Piccioni et al., 2008) with a mean emission rate of 880±90 and 100±40 kR (1R=106 photon cm−2 s−1 (4πster)−1), respectively, integrated along the line of sight. In this investigation, the Bates-Nicolet chemical reaction is reported to be the most probable mechanism for OH production on Venus, as in the case of Earth, but HO2 and O may still be not negligible as mechanism of production for OH, differently than Earth. The nightglow emission from OH provides a method to quantify O3, HO2, H and O, and to infer the mechanism of transport of the key species involved in the production. Very recently, an ozone layer was detected in the upper atmosphere of Venus by the SPICAV (Spectroscopy for Investigation of Characteristics of the Atmosphere of Venus) instrument onboard Venus Express (Montmessin et al., 2009); this discovery enhances the importance of ozone to the OH production in the upper atmosphere of Venus through the Bates-Nicolet mechanism. On Venus, OH airglow is observed only in the night side and no evidence has been found whether a similar emission exists also in the day side. On Mars it is expected to exist both on the day and night sides of the planet, because of the presence of ozone, though OH airglow has not yet been detected.In this paper, we review and compare the OH nightglow on Venus and Earth. The case of Mars is also briefly discussed for the sake of completeness. Similarities from a chemical and a dynamical point of view are listed, though visible OH emissions on Earth and IR OH emissions on Venus are compared.  相似文献   

20.
An application of a tilting filter photometer for the ground-based measurement of the atmospheric temperature at the mesopause altitude (~85km) is described. The technique uses selected rotational emission lines of the OH Meinel night airglow to determine a rotational temperature. A sampling rate of approximately one per minute with a precision of ±5K can be achieved with a field of view (4-km transverse at the mesopause height) sufficient to detect fine structure variations in the temperature and intensity. The systematic error of these measurements is comparable with those of rocket in situ measurements by falling spheres or parachute-borne thermistors. Results obtained March 1974, at Ester Dome, Alaska, indicate the presence of systematic fluctuations in the rotational temperature and the 8-3 band intensity of period 16 min and amplitude 2–4 per cent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号