首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On 15 February, 1977, ground magnetic, ionospheric electric and auroral signatures of a multiple onset substorm were observed simultaneously by the Scandinavian Magnetometer Array (SMA), the Scandinavian Twin Auroral Radar Experiment (STARE) and the Finnish all-sky camera chain. Between 21:00 and 21:30 U.T., i.e. around local magnetic midnight, three consecutive local auroral break-ups were observed over Scandinavia. Each of these break-ups was preceded by a clear fading of the aurora and magnetic fields (while the electric fields remained unaffected), and occurred slightly south of the Harang discontinuity in the region of north-westward-directed electric fields. They were associated with a sudden change in direction of the electric field from north-west to south-west and the appearance of a westward equivalent current in the localized active region (about 1200 × 300 km2). These observations matched the features to be expected during the generation of a Cowling channel by a strong increase of the ionospheric conductivities due to precipitating auroral electrons. Numerical model calculations, based on the observations during the initial brightening and peak development of the second, most conspicuous break-up, show that the field-aligned currents at the northern and southern border of the active region are indeed very weak. However, highly localized and intense upward field-aligned currents at the western edge of the active region and more widespread and less intense downward currents in the eastern half preserve current continuity of the westward Cowling current and complete the substorm current wedge.  相似文献   

2.
Dipolarization fronts in the magnetotail plasma sheet   总被引:1,自引:0,他引:1  
We present a THEMIS study of a dipolarization front associated with a bursty bulk flow (BBF) that was observed in the central plasma sheet sequentially at X=−20.1, −16.7, and −11.0RE. Simultaneously, the THEMIS ground network observed the formation of a north-south auroral form and intensification of westward auroral zone currents. Timing of the signatures in space suggests earthward propagation of the front at a velocity of 300 km/s. Spatial profiles of current and electron density on the front reveal a spatial scale of 500 km, comparable to an ion inertial length and an ion thermal gyroradius. This kinetic-scale structure traveled a macroscale distance of 10RE in about 4 min without loss of coherence. The dipolarization front, therefore, is an example of space plasma cross-scale coupling. THEMIS observations at different geocentric distances are similar to recent particle-in-cell simulations demonstrating the appearance of dipolarization fronts on the leading edge of plasma fast flows in the vicinity of a reconnection site. Dipolarization fronts, therefore, may be interpreted as remote signatures of transient reconnection.  相似文献   

3.
The paper describes a comparison of vertical electron drift in the F-region (Vz) measured by VHP incoherent scatter radar at Jicamarca with the corresponding variations of geomagnetic horizontal field (H) and the maximum frequency reflected from The Es layer (Es) at Huancayo during the geomagnetic storm period 7–9 March, 1970. The Vz is generally upward during the daytime at the equator, but during 7–9, March, 1970, Vz was negative for brief periods associated with negative bays in H. These periods of abnormally low or of downward Vz correspond closely with the period of complete disappearance of the q type of Es layer. The magnetic bays associated with the intensification of ring current do not affect the equatorial Es- q and it is only the negative bays in H at the equator due to the ionospheric current flowing westward, that cause sudden disappearance of Es? q. It is suggested that the q type of Es is due to cross-field instability created in the electrojet region due to interaction of northward magnetic field and vertical upward Hall polarization electric field when the plasma density gradient is upward. The sudden disappearances of Es? q are due to the reversal of the horizontal electric field in the equatorial ionosphere and thereby due to the reversal of the equatorial electrojet currents. These reversals of electric field may be due to the imposition on the normal Sq field of another westward electric field.  相似文献   

4.
The configuration of the magnetotail magnetic field has been calculated for a situation where a disruption of a portion of the tail current system develops. The decrease of the current in a localized region of the magnetotail leads to a collapse of the magnetic field in that vicinity. The calculated configuration of the field resembles what is predicted by reconnection models with the field lines moving toward the neutral sheet and then connecting and either moving toward or away from the earth. Associated with this changing magnetic field there is an induced electric field which will then influence the motion of the plasma in the magnetotail via E × B drifts.When the current from Xsm = ?20 to ?40 RE in the tail is decreasing with a tune-constant of 0.5 h the electric field produced, which is primarily westward, has a maximum value of 0.83 mV m?1 and produces plasma sheet thinning velocities of 0.3 km s?1. Higher velocities result for more rapid rates of current decrease, and they agree well with experimental observations. The plasma flows in the sunward direction are, however, much smaller than what has been observed. This is due in part to the inability of the magnetic field model to adequately represent the magnetic field in the immediate vicinity of the neutral sheet. Use of an improved model would give better agreement with the observations.The calculations show that the induced electric field of a time-dependent magnetic field is able to explain certain observed features of the plasma sheet motions. Also, this agreement suggests that the assumption that there is no charge separation contribution to the electric field may be reasonable during situations of large scale and rapid current disruptions in the magnetotail.  相似文献   

5.
Energetic electron fluxes from more than two years of ASPERA-3 observations are organized in different coordinate systems for the investigation of asymmetries in the global dynamics of the Martian magnetosphere. A clear asymmetry is found in the distribution of high-flux events with respect to the solar wind convective electric field (Esw) direction. These events are frequently detected below the average magnetic pile-up boundary (MPB) location at the terminator region of the hemisphere to which the Esw points and extend toward the tail. A detailed investigation of the electron fluxes at the terminator region also reveals that the largest contribution to this Esw asymmetry comes from locations of moderate or strong crustal fields. These observations have implications about reconnection processes in the terminator and provide new insight on magnetic anomaly effects in the global dynamics of the Mars-solar wind interaction.  相似文献   

6.
Although the Harang discontinuity has so far been identified in terms of various phenomena (such as ground magnetic fields, ionospheric currents, auroral features, and electric fields), the loci defined by those different phenomena do not always coincide. It is suggested that the Harang discontinuity may not be a line boundary across which the electric field changes its direction simply from poleward to equatorward, but that the field gradually rotates counterclockwise in a narrow region; thus the westward electric field dominates there. In such a case, no field-aligned current is necessarily required to flow from or into the discontinuity region. This view may be contrasted with the conventional view that an intense upward field-aligned current should flow from the Harang discontinuity. A model is presented in which the poleward ionospheric current (the Hall current resulting from the westward electric field) in the Harang discontinuity region connects the eastward electrojet and the westward electrojet.  相似文献   

7.
The effect of southward or northward changes in the interplanetary magnetic field is examined statistically in the nightside magnetosphere over the range of 6.6 to 80R E from the Earth. After southward changes, the deformation of the magnetosphere toward a greater antisunward extension of field lines occurs at 6.6R E with 10 min delay and spreads down the tail to 80R E in 30 min. Around the onset of the field-line collapse that occurs 1–2 hr later, the southwarddirected field is observed briefly in the distant tail. The effect of northward changes could not be recognized in the lobe region of the tail.  相似文献   

8.
Energetic proton (Ep ? 50 keV) and magnetic field observations during crossings of the Earth's Bow Shock by the IMP-7 and 8 spacecraft are incorporated in this work in order to examine the effect of the Bow Shock on a pre-existing proton population under different “interplanetary magnetic field-Bow Shock” configurations, as well as the conditions for the presence of the Bow Shock associated energetic proton intensity enhancements. The presented observations indicate that the dominant process for the efficient acceleration of ambient energetic particles to energies exceeding ~ 50 keV is by “gradient-B” drifting parallel to the induced electric field at quasi-perpendicular Bow Shocks under certain well defined limitations deriving from the finite and curved Bow Shock surface. It is shown that the proton acceleration at the Bow Shock is most efficient for high values of the upstream magnetic field (in general B1 > 8γ), high upstream plasma speed and expanded Bow Shock fronts, as well as for directions of the induced electric field oriented almost parallel to the flanks of the Bow Shock, i.e. when the drift distance of protons parallel to the electric field at the shock front is considerably smaller than the local radius of curvature of the Bow Shock. The implications of the presented observations of Bow Shock crossings as to the source of the energetic proton intensity enhancements are discussed.  相似文献   

9.
A correlative study of characteristic features observed in the ATS-5 particle data, in the Chatanika electric field and ionospheric conductivity data has been performed. It is found that distinct variations in the electric field are observed at Chatanika at the onset of a precipitation event at geostationary orbit. This is probably the effect of the transient electric field inferred by McIlwain (1973). A turn in the meridional component from north to south is observed at Chatanika at about the same local time as the ATS-5 satellite is crossing the injection boundary. This turn in the electric field at Chatanika which is also related to strong particle precipitation is probably due to the crossing of the Harang discontinuity.  相似文献   

10.
Photoelectrons of ionospheric origin have been observed for the first time at high altitudes (up to 7RE geocentric distance) using the suprathermal plasma analysers (SPA) on the GEOS satellites. At such high altitudes the photoelectron flux is confined within a few degrees of the magnetic field direction. We show how this flux may be identified and extracted from the background which is a combination of locally produced photoelectrons and ambient plasma. GEOS-2 results are presented to illustrate the “turn-on” of the photoelectron flux at dawn in the ionosphere. Data from GEOS-1 are used to study the behaviour of the photoelectron flux with equatorial geocentric distance from 3 to 7RE. The results compare favourably with theoretical models and with ionospheric observations at mid latitudes.  相似文献   

11.
Using the Faraday rotation technique with the ATS-3 satellite, it has been possible to monitor changes in the total electron content (NT) of the mid-latitude ionosphere during the first day of 20 geomagnetic storms. Our analysis has shown that during the positive phase (ΔNT > 0) of ionospheric storms the absolute magnitude of the increase in NT exhibits a very pronounced maximum near sunset. The mean value of ΔNT at 17:00 LT is more than five times the average ΔNT value at local noon. This effect is basically independent of the storm commencement time and is usually associated with substantial local enhancements of the total geomagnetic field. The NT enhancements are discussed in terms of a contraction and draining of the plasmasphere. A model is presented in which the dawn-dusk electric field responsible for the magnetospheric convection slows down the corotational motion of the plasmaspheric ionization in the dusk sector. This braking action causes a ‘pile up’ of the plasma and the magnetic field along the entire dusk sector.  相似文献   

12.
Under magnetically quiet conditions, ionospheric plasma in the midlatitude F-region corotates with the Earth and relative east-west drifts are small compared to the corotation velocity. During magnetic storms, however, the enhanced dawn-to-dusk magnetospheric convection electric field often penetrates into the midlatitude region, where it maps into the ionosphere as a poleward electric field in the 18:00 LT sector, producing a strong westward plasma drift. To evaluate the ionospheric response to this east-west drift, the time-dependent O+ continuity equation is solved numerically, including the effects of production by photoionization, loss by charge exchange and transport by diffusion, neutral wind and E × B drift. In this investigation only the neutral wind's meridional component and east-west E × B drift are included. It is found that an enhanced equatorward wind coupled with westward drift produces an enhancement in the peak electron density (NMAX(F2)) and in the electron content (up to 1000 km) in the afternoon sector and a subsequent greater-than-normal decay in ionization after 18:00 LT. These results agree in general with midlatitude F-region ionospheric storm observations of NMAX(F2) and electron content which show an afternoon enhancement over quiet-time values followed by an abrupt transition to lower-than-normal values. Westward drift appears to be a sufficient mechanism in bringing about this sharp transition.  相似文献   

13.
High resolution E-region measurements carried out on 16 November 1983 using the EISCAT incoherent scatter radar are presented. The experiment was monostatic with a vertical radar beam, and it was based on a Barker-coded four-pulse code on one frequency channel and Barker-coded single pulses on three channels. The basic integration time was 15 s and the spatial resolution 450 m. The results reveal a short-lived but intense thin sporadic E-layer at 18:00–18:06 U.T. at an altitude of about 106 km. Both before and during the event, downward ion velocities of the order of 100 m s−1 are observed above this height. A convergent null in the vertical ion speed is occasionally seen at the layer altitude. The layer occurrence is associated with auroral arcs drifting across the radar beam. Simultaneous observations of the STARE radar show an ionospheric electric field of 25–30 mV m−1. The field always has a westward component, which is in accordance with the observed downward plasma flow. Most of the time when the layer is intense, the field points into the NW-sector. Theoretically, this field direction should create convergent vertical plasma motion. Therefore it is suggested that the observed Es-layer is created by the action of the auroral electric field rather than by the wind shear mechanism.  相似文献   

14.
Nearly 1000 magnetopause crossings from HEOS-2, HEOS-1, OGO-5 and 5 IMP space-craft covering most of the northern and part of the southern dayside and near-Earth tail magnetopause (X >?15 RE) have been used to perform a detailed study of the three-dimensional shape and location of the magnetopause. The long-term influence of the solar wind conditions on the average magnetopause geometry has been reduced by normalising the radial distances of the observed magnetopause crossings to an average dynamical solar wind pressure. Best-fit ellipsoids have been obtained to represent the average magnetopause surface in geocentric solar ecliptic (GSE) and (as a function of tilt angle) in solar magnetic (SM) coordinates. Average geocentric distances to the magnetopause for the 1972–1973 solar wind conditions (density 9.4 cm?3, velocity 450 km s?1) are 8.8 RE in the sunward direction, 14.7 RE in the dusk direction, 13.4 RE in the dawn direction and 13.7 RE in the direction normal to the ecliptic plane. The magnetopause surface is tilted by 6.6° ± 2° in a direction consistent with that expected from the aberration effect of the radial solar wind. Our data suggest that the solar wind plasma density and the interplanetary magnetic field (IMF) orientation affect the distance to the polar magnetopause, larger distances corresponding to higher plasma density and southward fields. Our best-fit magnetopause surface shows larger geocentric distances than predicted by the model of Choe et al. [Planet Space Sci. 21, 485 (1973).] normalised to the same solar wind pressure.  相似文献   

15.
Many previous researchers have shown that convection in the magnetosphere is reflected in the ionosphere by an eastward electrojet in the evening sector and a westward electrojet in the post-midnight sector. In this paper we shall demonstrate the existence of eastward electrojet flow in the dawn sector in the latitude regime normally occupied by the westward convection electrojet. It will be shown that the convection westward electrojet near dawn may co-exist with the eastward electrojet while lying poleward of it. It is suggested that this eastward electrojet consists of Pedersen current flow driven by an eastward electric field and it is shown that the field lines which penetrate the eastward electrojet are populated by energetic electrons normally associated with the plasma sheet as well as high energy electrons normally associated with the trapped particle population. The high conductivity channel is generated by processes associated with the precipitation of high energy (E > 20 keV) electrons drifting eastwards from midnight in the trapping region. It is further shown that antiparallel current sheets may flow on the magnetic lines of force penetrating the electrojet, and that this flow is closed in the ionosphere by Hall currents flowing equatorward in the high conductivity channel.  相似文献   

16.
By the test particle method, we have investigated the kinematic characteristics of the electrons in the reconnecting current sheet with a guiding magnetic field Bz after they are accelerated by the supper-Dreicer electric field Ez. Firstly, the influence of the guiding magnetic field Bz on the particle acceleration is discussed under the assumption that Bz is constant in magnitude but different in orientation with respect to the electric field. In this case, the variation of the Bz direction directly leads to the variation of electron trajectories and makes electrons leave the current sheet along different paths. If Bz is parallel to Ez, the pitch angles of the accelerated electrons are close to 180°. If Bz is anti-parallel to Ez, the pitch angles of the accelerated electrons are close to 0°. The orientation of the guiding magnetic field just makes the electric field accelerate selectively the electrons in different regions, but does not change the energy distribution of electrons, and the finally derived energy spectrum is the common power-law spectrum E. In typical coronal conditions, γ is about 2.9. The further study indicates that the magnitude of γ depends on the strengths of the guiding magnetic field and reconnecting electric field, as well as the scale of the current sheet. Then, the kinematic characteristics of the accelerated electrons in the current sheet with multiple X-points and O-points are also studied. The result indicates that the existences of the X-points and O-points have the particles constrained in the accelerating region to obtain the maximum acceleration, and the final energy spectrum has the characteristics of multi-power law spectra.  相似文献   

17.
During very intense geomagnetic storm of November 7–8, 2004 simultaneous presence of storm time disturbance dynamo and eastward and westward directed prompt penetration electric fields inferred from the ground based magnetometer data in the 75° E sector is presented. Magnetometer observations show that, on the whole, average ΔH variation on 8 November remains below the night time level compared to its quiet day variation. A number of upward and downward excursions have been observed between 0130 UT and 0800 UT in the ΔH variation on 8 November. These excursions in ΔH have been attributed to the episodes of eastward and westward prompt penetrating electric fields. Ionospheric response in the equatorial ionization anomaly region along 75° E has also been studied using the total electron content data recorded at five GPS stations, namely Udaipur, Bengaluru (IISC), Hyderabad (HYDE), Maldives (MALD) and Diego Garcia (DGAR). Observation of markedly suppressed EIA, in conjunction with ΔH variation which was m negative during the daytime on 8 November, indicates the presence of an external field of opposite polarity (the disturbance dynamo electric field) that either undermined, or overshadowed the daytime ambient (eastward) electric field to the extent that the equatorial plasma fountain could not become effective.  相似文献   

18.
The principal advance of the ATS-6 satellite beacon experiment was the ability to deduce continuously the electron content along the entire slant path from ground-based measurements of the signal group delay. This feature has been exploited in conjunction with the more usual Faraday rotation technique to separate the total electron content into ionospheric and protonospheric components. The physical validity of the deduced quantities is investigated using a mathematical model of the plasmasphere in which integration of the time-dependent continuity and momentum equations for oxygen and hydrogen ions along selected L shells yields the ion concentrations and field-aligned fluxes. The ion concentrations are then integrated along the propagation path to various ground stations from ATS-6 to give computed values for comparison with observations. The mathematical model is used with different sets of atmospheric parameters to investigate the significance of ionospheric and protonospheric contents as derived from beacon data.The calculated electron concentrations are able to reproduce mid-latitude equinoctial electron content observations. The shape parameters τ and F can also be simulated by day, but night-time values do not match the observations well, a greater protonospheric content being required. The calculations show that the quantity Np, which is readily derived from ATS-6 observations, may be interpreted as the slant H+ content above some fixed height in the case of some stations (but not others) if the plasmasphere is reasonably full. The total slant content of H+ is approx. twice the value of Np, though it appears that for the Lancaster raypath a closer relationship exists between Np and the H+ tube content at L = 1.8. In general,Np is most closely related to the tube content for an L value slightly greater than the minimum L intersected along the raypath.  相似文献   

19.
Observations of solar protons at energies from 1 MeV to 360 MeV are examined in relation to the information that these particles give about the magnetosphere, magnetotail and magnetopause. Trajectory integrations in a realistic model of the geomagnetic field out to 25RE and a tail field model fitted to observations from 15RE to 80RE are used to obtain a better understanding of the particle motion. The mean free path of protons in the tail is found to be 700RE and 200RE for 100 MeV and 1 MeV protons respectively, which indicates that trajectory calculations in a static field model are valid.  相似文献   

20.
An attempt has been made to estimate the east-west component (Ew) of the magnetospheric equatorial electric field near L = 1.12 during a magnetic storm period from the whistlers observed at our low latitude ground station, Nainital (geomag.lat. 19°1'N), on March 25, 1971 in the 0130–0500 IST sector. The method of measuring Ew from the observed cross L-motions of whistler ducts within the plasmasphere, indicated by changes in nose frequency of whistlers, has been outlined. The nose frequencies of non-nose whistlers under consideration have been deduced from Dowden-Allcock linear Q-technique. The variation of (?n)23 with local time has been shown, the slope of which can be directly related to the convection electric field. The estimated equatorial electric field at L? 1.12 is in the range 0.1–0.5 mV m?1 (in the 0130–0500 IST sector) during a storm period, which is in agreement with the results reported by earlier workers. The departure from a dipole field and the contribution of an induced electric field from the temporal changes have been discussed. The importance of an electric field study has been indicated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号