共查询到14条相似文献,搜索用时 62 毫秒
1.
针对现有卫星导航系统RDSS授时服务研究较少的问题,该文结合北斗实测数据,提出采用时间序列分析法评估北斗RDSS单向和双向授时服务性能,系统地研究了单向授时原理和双向授时原理,并介绍了北斗RDSS实测数据和精度评估方法。通过分析钟差总体情况、零值分段情况、噪声情况及授时精度等,得出结论:RDSS单向授时精度小于30ns,RMS平均值为6.81ns;RDSS双向授时精度小于20ns,RMS平均值为3.60ns;各波束的单向授时和双向授时数据均存在周期切换现象,且单向授时数据存在分层现象。该结论可用于RDSS系统差补偿,为北斗系统差一致性提供参考,进而提高系统服务精度。 相似文献
2.
针对现有全球卫星导航系统性能评估无规范的评估标准问题,该文提出了以统一模型和算法为评估体系的方法,较详细的评估了全球卫星导航系统公开服务信号的基本性能,主要评估了空间信号误差、广播电离层模型改正效率及伪距单点定位精度等。结果表明:空间信号误差方面,伽利略最优、GPS和北斗三号相当;广播电离层模型方面,北斗全球广播电离层模型改正效果最优,GPSK8与NeQuick模型在低中纬度改正效果相当,北斗区域电离层模型在其服务区内具有较高改正效果;定位方面,北斗、GPS和伽利略静态伪距单点定位的三维位置均方根误差优于5m,格洛纳斯优于10 m;动态伪距单点定位方面,北斗在中国境内定位精度最高;基于统一评估体系下,可以直观对比得到目前各卫星导航系统的性能差异,同时也为后续的建设提供相应的参考。 相似文献
3.
全球卫星导航系统(Global Navigation Satellite System,GNSS)的空间信号异常会对用户的导航定位性能产生影响。异常信号的探测和性能评估对广播星历播发的空间信号(signal-in-space,SIS)的连续性、可用性和完好性等显得尤为重要。 相似文献
4.
5.
采用GNSS精密单点定位(PPP)技术和时钟驯服技术,构建了基于PPP的云平台高精度授时方案,研制了搭载多系统GNSS接收机板卡、恒温晶振(OCXO)和数字信号处理器(DSP)的授时原理样机。利用协同精密定位平台分析中心(武汉)提供的5 s间隔卫星轨道和钟差产品,采用PPP技术实时解算授时终端坐标和钟差,通过驯服恒温晶振输出亚纳秒精度的1 PPS,实现了长时间高精度的授时能力。本文通过短基线比较和与UTC绝对时间基准比较,验证了精密单点授时精度(RMS)优于1 ns。 相似文献
6.
Daniela Thaller Rolf Dach Manuela Seitz Gerhard Beutler Maria Mareyen Bernd Richter 《Journal of Geodesy》2011,85(5):257-272
Satellite Laser Ranging (SLR) observations to Global Navigation Satellite System (GNSS) satellites may be used for several
purposes. On one hand, the range measurement may be used as an independent validation for satellite orbits derived solely
from GNSS microwave observations. On the other hand, both observation types may be analyzed together to generate a combined
orbit. The latter procedure implies that one common set of orbit parameters is estimated from GNSS and SLR data. We performed
such a combined processing of GNSS and SLR using the data of the year 2008. During this period, two GPS and four GLONASS satellites
could be used as satellite co-locations. We focus on the general procedure for this type of combined processing and the impact
on the terrestrial reference frame (including scale and geocenter), the GNSS satellite antenna offsets (SAO) and the SLR range
biases. We show that the combination using only satellite co-locations as connection between GNSS and SLR is possible and
allows the estimation of SLR station coordinates at the level of 1–2 cm. The SLR observations to GNSS satellites provide the
scale allowing the estimation of GNSS SAO without relying on the scale of any a priori terrestrial reference frame. We show
that the necessity to estimate SLR range biases does not prohibit the estimation of GNSS SAO. A good distribution of SLR observations
allows a common estimation of the two parameter types. The estimated corrections for the GNSS SAO are 119 mm and −13 mm on
average for the GPS and GLONASS satellites, respectively. The resulting SLR range biases suggest that it might be sufficient
to estimate one parameter per station representing a range bias common to all GNSS satellites. The estimated biases are in
the range of a few centimeters up to 5 cm. Scale differences of 0.9 ppb are seen between GNSS and SLR. 相似文献
7.
The location requirements for emergency callers outside urban areas can hardly be fulfilled without global navigation satellite
systems (GNSS). Consequently, interest in positioning techniques based on use of a GNSS such as GPS or on the cellular network
infrastructure itself is growing rapidly in the mobile-telephone community. Moreover, the increasing demand for commercial
location-based services (LBS) has driven cellular-phone and network manufacturers to focus on positioning solutions which
are even more accurate than the regulatory mandates for positioning of emergency callers. One example of these upcoming LBS
is our PARAMOUNT project, which aims at improving user-friendly info-mobility services for hikers and mountaineers by combining
wireless communications (GMTS), satellite navigation (GNSS) and geographic information systems (GIS), based on a mobile client/server
architecture. The availability of mobile phones or PDAs with combined GNSS and cellular network-based wireless communication
on a high integration level is one primary demand of such LBS applications. Based on this, we will give some initial answers
to the question of whether mobile handset architecture synergies exist for the combination of GNSS with wireless location
in CDMA cellular wireless networks. In order to identify synergies, we will outline similarities and differences between wireless
communication and satellite navigation. In this respect, we pay particular attention to the so-called RAKE receiver architecture
employed in mobile CDMA cellular handsets. Our initial investigations will show that the RAKE receiver architecture, on which
mobile CDMA cellular handsets are based, will most likely be the one most suitable for achieving synergies between the two
positioning techniques within the same mobile handset architecture. Consequently, several receiver components could be used
to handle both types of signals (navigation and communications), resulting in a reduction of manufacturing costs and in a
decrease in energy consumption.
Electronic Publication 相似文献
8.
Antenna thrust is a small acceleration acting on Global Navigation Satellite System satellites caused by the transmission of radio navigation signals. Knowledge about the transmit power and the mass of the satellites is required for the computation of this effect. The actual transmit power can be obtained from measurements with a high-gain antenna and knowledge about the properties of the transmit and receive antennas as well as losses along the propagation path. Transmit power measurements for different types of GPS, GLONASS, Galileo, and BeiDou-2 satellites were taken with a 30-m dish antenna of the German Aerospace Center (DLR) located at its ground station in Weilheim. For GPS, total L-band transmit power levels of 50–240 W were obtained, 20–135 W for GLONASS, 95–265 W for Galileo, and 130–185 W for BeiDou-2. The transmit power differs usually only slightly for individual spacecraft within one satellite block. An exception are the GLONASS-M satellites where six subgroups with different transmit power levels could be identified. Considering the antenna thrust in precise orbit determination of GNSS satellites decreases the orbital radius by 1–27 mm depending on the transmit power, the satellite mass, and the orbital period. 相似文献
9.
由于现地观测条件限制,GNSS天线无法架设在需要观测的目标点上,无法实现精确对中观测目标所对应的地面点中心,此时就需要进行GNSS偏心观测。文中从解决卫星天线定位定向的工程出发,研究GNSS偏心观测三角形法和经纬仪交会法计算归心元素。依据模拟实测计算结果以及实际卫星天线定位定向的结果,分析了两种方法的优缺点。 相似文献
10.
地震的发生会造成巨大的破坏和损失,大地测量技术能观测地震形变和反演地震断层的错动情况,对于减少地震灾害具有非常重要的现实意义。GNSS技术已广泛用于震源参数的反演工作,但对于发生在海域的地震,由于GNSS站点往往位于陆地一侧,导致对断层的约束 能力有限。卫星重力技术因其全天候、全球覆盖、连续性,以及不受地域地形限制等诸多特点,可弥补海洋一侧常规观测不足。联合GNSS和GRACE两种观测手段反演震源机制,可进一步提高反演海域地震的震源参数。为此,论文基于GRACE和GNSS观测的同震和震后形变,联合反演了断层参数和地幔黏滞性系数等,主要成果如下。 相似文献
11.
实时监测海洋平台在环境激励下的动态变形对于保障其安全运营有着重要意义。GNSS PPP技术无需设置基站,仅依靠单点监测站便可实现精密单点定位,因而在海洋平台变形监测领域具有潜在的应用价值。针对GNSS PPP信号受背景噪声干扰而精度较低的问题,本文提出改进CEEMDAN算法对GNSS PPP信号降噪,并应用于某海洋平台动态变形监测。结果表明:①GNSS PPP技术结合改进CEEMDAN算法可有效监测海洋平台在环境激励下的动态变形;②改进CEEMDAN可有效去除GNSS PPP背景噪声干扰;③基于降噪后信号可获取监测点清晰的三维位移轨迹,从而为结构安全评估提供参考。 相似文献
12.
This paper introduces the design and construction of global navigation satellite systems (GNSS) vulnerability simulation, verification, and mitigation platform. The platform contains five modules: simulation of the signal-in-space environment, simulation of the vulnerabilities in the space segment, signal quality monitoring and data processing, vulnerability assessment and validation, and integrated control. It provides a set of integrated simulations of different types of interference in the GNSS signal propagation domain, including electromagnetic interference, atmospheric disturbances, multipath, and interference in the inter-satellite link. This paper focuses on the design of the main system modules and testing through an experimental analysis. The results demonstrate both the effectiveness and realism of the modules and overall platform. 相似文献
13.
14.
随着全球卫星导航系统(GNSS)的发展和移动通信技术的进步,用户对位置服务(LBS)提出了更高的要求. 本文采用市面上常见的两部Android智能手机采集GNSS数据,对Android智能手机伪距单点定位(SPP)和单频精密单点定位(PPP)算法进行研究,分析了在不同条件下智能手机的SPP、单频PPP定位性能. 结果表明:在使用多普勒平滑伪距和信噪比随机模型的基础上,Android智能手机GPS单系统的SPP定位精度可达3 m,GPS、Galileo、GLONASS、北斗卫星导航系统(BDS)四系统定位精度可达亚米级. 在单频PPP静态定位中,在GPS单系统下,定位精度仅能达到米级,且收敛时间较长;在GPS、Galileo、GLONASS、BDS四系统下,定位精度可达亚米级,且平面方向可在40 min内收敛. 在单频PPP动态定位中,手机的定位精度仅能达到米级. 相似文献