首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calc-alkalic chemical trends characteristic of arc volcanic rocks mainly result from three mechanisms which act additively: (1) fractional crystallization involving separation of titanomagnetite; (2) selective concentration of plagioclase phenocrysts and selective depletion of titanomagnetite phenocryst compared with the actually fractionated proportion; and (3) mixing of magmas on continuous fractionation trends. The association of calc-alkalic and tholeiitic trends in a single composite volcano may not represent different fractional crystallization processes or different chemistries of primary magmas, but the calc-alkalic chemical trend can be considered as a mixing trend resulting from mixing of various magmas on associated tholeiitic chemical trends. Chemical variations of most arc volcanic rocks, including calc-alkalic ones, can accordingly be essentially accounted for by the low-pressure fractional crystallization of phenocrystic phases from primary basaltic magmas.Crystallization sequences of arc magmas which are strongly dependent on water content in magmas are deduced from the phenocryst assemblages. The crystallization sequence changes laterally across-arc, suggesting increasing water contents in magmas toward the back-arc side, as is also seen for other incompatible elements such as K and Rb. Systematic differences in the characteristic crystallization sequence are also observed among arcs, roughly correlating with the crustal thickness. Water content in magma, like other incompatible elements, tends to increase with increasing crustal thickness. The variation of incompatible elements including water roughly represents that of the degree of partial melting of the upper mantle, which is broadly controlled by the crustal thickness.The variation of water content indicates that arc magmas are not saturated with water during differentiation to late differentiates such as dacite or rhyolite. This strongly constrains the maximum water contents in primary basaltic magma, at most 2.5 wt.%. This value suggests that magma generation beneath arcs is dependent on dry solidus of peridotite. Diapiric uprise of the hot deeper mantle and associated adiabatic decompression would be necessary for mantle peridotite to attain the temperature as high as dry solidus. Diapirs that begin to rise from the subduction zone may stop at or near the crust-mantle boundary because of the surrounding density change, and their degree of partial melting is roughly controlled by their stopped depth assuming their similar temperature. Across-arc variation is also explained by the stopped depth of diapirs, but is not controlled by crustal thickness.  相似文献   

2.
18O/16O and 87Sr/86Sr ratios were determined for Quaternary calc-alkalic volcanic rocks from six volcanic rock suites in the central and western Japan arcs. The δ18O values relative to SMOW and 87Sr/86Sr ratios range from +6.3 to +9.90/00 and 0.70357 to 0.70684, respectively. Both the O- and Sr-isotopic compositions are higher than those for island-arc primitive magmas and their differentiates. The isotopic compositions of the calc-alkalic rocks cannot be derived by a simple fractional crystallization of the primitive magmas. On the other hand, the 18O- and 87Sr-enrichment is confined to the rock suites located in well-developed island arcs having thick continental-type crust with low or negative Bouguer anomalies. Involvement of 18O- and 87Sr-rich crustal material in the magma formation is suggested.The isotopic compositions vary remarkably within individual rock suites as well as from volcano to volcano. The data points in δ18O vs. 87Sr/86Sr plot accord with a mixing model between primitive magmas and crustal material of dioritic composition on an average, assuming their comparative Sr contents. The primitive magmas involved could not be low-Sr tholeiites, but magmas more or less enriched in incompatible elements including Sr, which correspond to high-alkali tholeiites or alkali basalts and their evolved magmas. The nature of the primitive magmas seems to change from tholeiitic to more alkalic with progressing island-arc evolution.Mixing of crust-derived melts is more plausible than assimilation of solid-rocks for involving 20 to 30% crustal material in the magmas along simple mixing curves. Isotopic variations between the rock suites are ascribed to variable Sr concentration radio of the end-members, variable isotopic compositions of crustal material or variable mixing ratio of the end-members. Extremely high-δ 18O rocks with moderate increase in 87Sr/86Sr ratio suggest another mixing process in shallower magma chambers between andesite magmas and metasedimentary rocks having high δ 18O and 87Sr/86Sr values but low Sr content. Subsequent fractional crystallization of once-derived magmas would be the prominent process for the rock suites showing gradual increase in 18O up to 10/00 with uniform 87Sr/86Sr ratios.  相似文献   

3.
Glass separates from 115 ash layers derived from the Kamchatkan (DSDP Site 192; 34 layers), the eastern Aleutian (DSDP Site 183; 56 layers) and the Alaska Peninsula (DSDP Site 178; 25 layers) volcanic arcs have been analyzed for up to 28 elements. In addition, the abundance and diversity of associated mafic phenocrysts have been evaluated. The resulting data set has made possible an evaluation of the late Miocene to Recent changes in composition of ashes derived from North Pacific volcanic arcs and of the factors controlling the evolution of highly siliceous magmas.We find no evidence for a general transition from arc tholeiite to calc-alkalic magma parentage of ashes derived from the volcanic arcs during the last 10 m.y., but instead find 0.1- to 0.5-m.y. intervals during which particular types of volcanism are prevalent. Most convincing is the transition from arc tholeiite to calc-alkalic for ashes derived from Kamchatka during the last 0.8 m.y., a change believed to be associated with a landward shift in the site of magma generation. Considered together, ashes derived from North Pacific volcanic arcs have been becoming more siliceous during the last 1.5 m.y. and may be associated with accelerated subduction during the same time interval.Hydrous phenocrysts (e.g., biotite) are typically associated with low-silica deep-sea ashes, but not with terrestrial volcanic rocks of comparable silica contents, suggesting the important role of water in the evolution of siliceous magma. REE patterns and relative abundances of mafic phenocrysts demonstrate the importance of fractional crystallization in controlling the evolution of highly siliceous arc magmas. REE increase with increasing silica, but become less concentrated in ashes with SiO2 > 64%. Eu anomalies increase throughout the SiO2 range. Initial fractionation is dominated by clinopyroxene and plagioclase with amphibole strongly influencing fractionation above 64% SiO2.  相似文献   

4.
Middle Miocene to Quaternary lavas on Kunashir Island in the southern zone of the Kurile Arc were examined for major, trace, and Sr–Nd–Pb isotope compositions. The lavas range from basalt through to rhyolite and the mafic lavas show typical oceanic island arc signatures without significant crustal or sub-continental lithosphere contamination. The lavas exhibit across-arc variation, with increasingly greater fluid-immobile incompatible element contents from the volcanic front to the rear-arc; this pattern, however, does not apply to some other incompatible elements such as B, Sb, and halogens. All Sr–Nd–Pb isotope compositions reflect a depleted source with Indian Ocean mantle domain characteristics. The Nd and Pb isotope ratios are radiogenic in the volcanic front, whereas Sr isotope ratios are less radiogenic. These Nd isotope ratios covary with incompatible element ratios such as Th/Nd and Nb/Zr, indicating involvement of a slab-derived sediment component by addition of melt or supercritical fluid capable of mobilizing these high field-strength elements and rare earth elements from the slab. Fluid mobile elements, such as Ba, are also elevated in all basalt suites, suggesting involvement of slab fluid derived from altered oceanic crust. The Kurile Arc lavas are thus affected both by slab sediment and altered basaltic crust components. This magma plumbing system has been continuously active from the Middle Miocene to the present.  相似文献   

5.
Arenal volcano in Costa Rica has been erupting nearly continuously, but at a diminishing rate, since 1968, producing approximately 0.35 km3 of lavas and tephras that have shown consistent variations in chemistry and mineralogy. From the beginning of the eruption in July 1968 to early 1970 (stage 1, vol.=0.12 km3) tephras and lavas became richer in Ca, Mg, Ni, Cr, Fe, Ti, V, and Sc and poorer in Al2O3 and SiO2. Concentrations of incompatible trace elements (including Sr) decreased by 5%–20%. Phenocryst contents increased 20–50 vol%. During stage 2 (1970–1973, vol. = 0.13 km3) concentrations of compatible trace elements rose, and concentrations of incompatible trace elements either remained constant or also rose. Al2O3 contents decreased by 1 wt%. Phenocryst content increased slightly, principally due to increased orthopyroxene. During stage 3 (mid-1974 to the present, vol.= 0.10 km3) concentrations of SiO2 increased by 1 wt%, compatible trace elements decreased slightly, and incompatible trace element concentrations increased by 5% to 10%. Although crystals increased in size during stage 3, their overall abundance stayed roughly constant.Our modeling suggests that early stage-1 magmas were produced by boundary layer fractionation under high-p H2O conditions of an unseen basaltic andesitic magma that intruded into the Arenal system after approximately 500 B.P. Changes in composition during stage 2 resulted from mixing of this more mafic original magma with new magma that had a similar SiO2 content, but higher compatible and incompatible element concentrations. The changes during stage 3 resulted from continued influx of the same magma plus crystal removal.We conclude that the eruption proceeded in the following way. Before 1968 zoned stage-1 magma resided in the deep crust below Arenal. A new magma intruded into this chamber in July 1968 causing ejection of the stage-1 magmas. The intruding magma mixed with mafic portions of the original chamber producing the mixed lavas of stage 2. Continued mixing plus crystal fractionation along the chamber and conduit walls produced stage-3 lavas. The time scales of crustal level magmatic processes at Arenal range 100–103 years, which are 3–6 orders of magnitude shorter than those of larger, more silicic systems.  相似文献   

6.
Continental sedimentary rocks of post-Archean age are characterized by europium depletion relative to the other REE. Typical values for Eu/Eu* are 0.65±0.05 (where Eu* is the theoretical value for no chondrite-normalized Eu anomaly).Basalts and andesites from island-arc suites rarely display significant europium anomalies. Calculations indicate that the maximum amount of sediment that can be admixed without producing a signature of Eu depletion is: (a) 10% for a MORB source; (b) 1% for primitive mantle or a single-stage depleted mantle, and (c) 0.1–0.3% for a two-stage depleted mantle.  相似文献   

7.
Origin of calc-alkalic andesite in the Japanese Islands is reviewed on the basis of the recent trace element data and new experimental results. It is suggested that calc-alkalic andesites in the Japanese Islands have at least four different origins; (1) fractional crystallization with separation of magnetite of high-alumina basalt magma, (2) partial melting of hydrous upper mantle peridotite (for magnesian andesite), (3) fractional crystallization with separation of olivine and/or orthopyroxene of magnesian andesite magma and (4) mixing of dacitic and basaltic magmas. Emphasis is placed on the possible generation of primary magnesian calc-alkalic andesite magmas by direct partial melting of the upper mantle peridotite under hydrous conditions at depths between 40 and 60 km.  相似文献   

8.
The regional variation of physical and geochemical characteristics of Central American volcanoes occurs in two fundamentally different patterns. The first pattern is symmetrical about Nicaragua. Crustal thickness, silica contents of mafic lavas and volcanic edifice heights are lowest in Nicaragua and increase smoothly toward Costa Rica to the south and Guatemala to the north. Magma density is maximum in Nicaragua and decreases smoothly outward. The regional variation in crustal thickness is just enough so that magma densities, calculated at appropriate Moho pressures, are the same at the base of the crust throughout the region. This is consistent with magma ponding at the base of the crust. The bulk compositions of Central American basalts show the same symmetrical variation. Suites of Nicaraguan basalts plotted in pseudo-ternary CMAS projections indicate large olivine and plagioclase primary-phase volumes. Toward Costa Rica and Guatemala the olivine and plagioclase fields inferred from suites of basaltic lavas are smaller, which is consistent with fractionation at increasing depth.The second pattern is the segmentation of the volcanic front and the plate margin in general. The segmentation strongly affects the spacing and size of volcanic centers. At segment boundaries volcanic centers are generally small and unusually widely spaced. Toward segment interiors volcano spacing and size increase systematically. The LIL element contents of lavas strongly reflect this pattern. For lavas with similar silica contents the larger the volcano, the higher the LIL element contents. The relationships between segmentation, volcano spacing and volcano size are compatible with diapiric rise of magma accumulated in narrow ribbons near the upper surface of the underthrust slab. The relationship between volcano volume and LIL element content is qualitatively in agreement with an open-system fractionation model.  相似文献   

9.
The Katla volcano in Iceland is characterized by subglacial explosive eruptions of Fe–Ti basalt composition. Although the nature and products of historical Katla eruptions (i.e. over the last 1,100 years) at the volcano is well-documented, the long term evolution of Katla’s volcanic activity and magma production is less well known. A study of the tephra stratigraphy from a composite soil section to the east of the volcano has been undertaken with emphasis on the prehistoric deposits. The section records ∼8,400 years of explosive activity at Katla volcano and includes 208 tephra layers of which 126 samples were analysed for major-element composition. The age of individual Katla layers was calculated using soil accumulation rates (SAR) derived from soil thicknesses between 14C-dated marker tephra layers. Temporal variations in major-element compositions of the basaltic tephra divide the ∼8,400-year record into eight intervals with durations of 510–1,750 years. Concentrations of incompatible elements (e.g. K2O) in individual intervals reveal changes that are characterized as constant, irregular, and increasing. These variations in incompatible elements correlate with changes in other major-element concentrations and suggest that the magmatic evolution of the basalts beneath Katla is primarily controlled by fractional crystallisation. In addition, binary mixing between a basaltic component and a silicic melt is inferred for several tephra layers of intermediate composition. Small to moderate eruptions of silicic tephra (SILK) occur throughout the Holocene. However, these events do not appear to exhibit strong influence on the magmatic evolution of the basalts. Nevertheless, peaks in the frequency of basaltic and silicic eruptions are contemporaneous. The observed pattern of change in tephra composition within individual time intervals suggests different conditions in the plumbing system beneath Katla volcano. At present, the cause of change of the magma plumbing system is not clear, but might be related to eruptions of eight known Holocene lavas around the volcano. Two cycles are observed throughout the Holocene, each involving three stages of plumbing system evolution. A cycle begins with an interval characterized by simple plumbing system, as indicated by uniform major element compositions. This is followed by an interval of sill and dyke system, as depicted by irregular temporal variations in major element compositions. This stage eventually leads to a formation of a magma chamber, represented by an interval with increasing concentrations of incompatible elements with time. The eruption frequency within the cycle increases from the stage of a simple plumbing system to the sill and dyke complex stage and then drops again during magma chamber stage. In accordance with this model, Katla volcano is at present in the first interval (i.e. simple plumbing system) of the third cycle because the activity in historical time has been characterized by uniform magma composition and relatively low eruption frequency.  相似文献   

10.
The existence and subduction of the eastern Mianlue oceanic basin in the south Qinling belt are keys to understand the Qinling orogen. Based on geological mapping, several volcanic slices have been identified in Tumen, Zhoujiawan, Xiaofu and Yuantan areas, which distribute in the northern margin of the Dahong Mountains (DHM), and thrust into the Sanligang-Sanyang fault. These slices consist mainly of diabases, basaltic-andesitic lavas, pyroclastic rocks and a minor tuff. The geochemistry of the basalts, andesites, and diabases is characterized by depleting in Nb and Ta, enriching in Th and LILE (e.g.K, Rb, Ba), and undifferentiating in HFSE. These geochemical characteristics suggest that the original magma of these rocks was derived from a mantle wedge above a subduction zone, and formed in an island-arc setting in Carboniferous-early Triassic. Comparing with the ophiolites and island-arc volcanic rocks in Mianxian-Lueyang area to the west, it is reasonable to consider that there had been an oceanic basin connecting with the Mianlue ancient ocean to the westward, distributing along the south edge of the Tongbai-Dabie block. In view of the ophiolite in Huashan area and these island-arc volcanic rocks along the north of the Dahong Mountains, it is suggested that there had been a plate tectonic evolutionary history with oceanic basin rifting and subduction in this region.  相似文献   

11.
Abstract Geochemical analyses of volcanic rocks in the Gamilaroi terrane reveal several phases of arc activity within an intra-oceanic island-arc terrane. Felsic volcanic rocks at the base of the section have rare earth element (REE) and trace element compositions which indicate that they were derived from an island-arc source. Basalts immediately overlying the felsic volcanic rocks have a distinctive geochemical signature with low levels of Ti and Y and high levels of Ni, Cr and Mg. Low concentrations of REE and trace elements relative to mid-ocean-ridge basalts (MORB) indicate that they were also derived from an intra-oceanic island-arc source. Extensive basalts and basaltic andesites among the youngest rocks of the terrane have typically flat to enriched REE and trace element compositions, indicating a transitional arc-back-arc source. The change in basalt compositions indicates that rifting had occurred by this stage in the evolution of the arc. Confirmation of an intra-oceanic setting for this terrane enables a more detailed comparison with similar intra-oceanic rocks in the northern New England orogen. This study of the Gamilaroi terrane is an example of the potential use of geochemical data to identify other ancient intra-oceanic island-arc-rift suites.  相似文献   

12.
Calc-alkaline intermediate rocks are spatially and temporally associated with high-Mg andesites (HMAs, Mg#>60) in Middle Miocene Setouchi volcanic belt. The calc-alkaline rocks are characterized by higher Mg# (strongly calc-alkaline trend) than ordinary calc-alkaline rocks at equivalent silica contents. Phenocrysts in the intermediate rocks have petrographical features such as: (1) coexisting reversely and normally zoned orthopyroxene phenocrysts in single rock; (2) sieve type plagioclase in which cores are mantled by higher An%, melt inclusion-rich zone; and (3) reversely zoned amphibole phenocrysts with opacite cores. In addition, mingling textures and magmatic inclusions were observed in some rocks. These petrographic features and the mineral chemistry indicate that magma mixing was the most important process in producing the strongly calc-alkaline rocks. The core composition of normally zoned orthopyroxene phenocrysts and the mantle composition of reversely zoned orthopyroxene phenocrysts have relatively high Mg# (85–90) in maximum. Although basaltic and high-Mg andesitic magmas are candidate as possible mafic end-member magmas, basaltic magma is excluded in terms of phenocryst assemblage and bulk composition. HMA magmas are suitable mafic end-member magmas that precipitated high Mg# (90) orthopyroxene, whereas andesitic to dacitic magma are suitable felsic end-members. In contrast, it is difficult to produce the strongly calc-alkaline trend through fractional crystallization from a HMA magma, because it would require removal of plagioclase together with mafic minerals from the early stage of crystallization, whereas the precipitation of plagiolase is suppressed due to the high water content of HMA magmas. These results imply that Archean Mg#-rich TTGs (>45–55), which are an analog of the strongly calc-alkaline rocks in terms of chemistry and magma genesis, can be derived from magma mixing in which a HMA magma is the mafic end-member magma, rather than by fractional crystallization from a HMA magma.  相似文献   

13.
The existing data on findings of unaltered volcanic glasses in the Paleozoic (from Late Ordovician to Late Devonian inclusive) volcanic strata of the Ural fold belt are systematized. These glasses have compositions that correspond to tholeiitic basalts, potassic alkaline basaltoids, andesites, and rhyolites. Relic portions of glasses of cenotypal appearance are preserved in thick glassy crusts of pillow lava flows, in fragments among hyaloclastites, in bombs from tuffs, and in extrusive bodies and dykes. Chemical analysis showed that the amount of dissolved water was low (1–1.3 wt %) in the primary tholeiitic magma and higher (8–10 wt %) in the magma that formed island-arc hyalobasalts, potassic alkaline basaltoids, andesites and rhyolites.  相似文献   

14.
Cenozoic volcanism in the Great Basin is characterized by an outward migration of volcanic centers with time from a centrally located core region, a gradational decrease in the initial Sr87/Sr86 ratio with decreasing age and increasing distance from the core, and a progressive change from calc-alkalic core rocks to more alkalic basin margin rocks. Generally each volcanic center erupted copious silicic ignimbrites followed by small amounts of basalt and andesite. The Sr82/Sr86 ratio for old core rocks is about 0.709 and the ratio for young basin margin rocks is about 0.705. Spatially and temporally related silicic and mafic suites have essentially the same Sr87/Sr86 ratios. The locus of older volcanism of the core region was the intersection of a north-south trending axis of crustal extension and high heat flow with the northeast trending relic thermal ridge of the Mesozoic metamorphic hinterland of the Sevier Orogenic Belt. Derivation of the Great Basin magmas directly from mantle with modification by crustal contamination seems unlikely. Initial melting of lower crustal rocks probably occurred as a response to decrease in confining pressure related to crustal extension. Volcanism was probably also a consequence of the regional increase in the geothermal gradient that is now responsible for the high heat flow of the Basin and Range Province. High Sr isotopic ratios of the older core volcanic rocks suggests that conditions suitable for the production of silicic magmas by partial fusion of the crust reached higher levels within the crust during initial volcanism than during production of later magmas with lower isotopic ratios and more alkaline chemistry. As the Great Basin became increasingly attenuated, progressively lower portions of the crust along basin margins were exposed to conditions suitable for magma genesis. The core region became exhausted in low temperature melting components, and volcanism ceased in the core before nearby areas had completed the silicic-mafic eruption cycle leading to their own exhaustion of crustal magma sources.  相似文献   

15.
Thorium, U and K analyses by γ-ray spectrometry of monzonitic intrusives from Lofoten-Vesterålen (ca. 1800 m.y.), Bjerkreim-Sogndal (ca. 1000 m.y.) and the Oslo region (ca. 275 m.y.) are used to calculate values of radioactive heat generation. A strong negative correlation between heat generation and depth of crystallization is demonstrated, indicating that the chemical zoning of the continental crust with respect to Th and U is of a rather regional and regular character, and was probably firmly established at least 1800 m.y. ago. The K contents, in contrast to Th and U, show an increase with depths of crystallization for these rocks. This may be explained by considerations of the pressure dependence of the partition coefficients for these elements between minerals and magma, and the importance of a fluid phase as a transport medium for the incompatible elements Th and U. A positive correlation between K content and age of intrusion is discussed on a tentative basis.  相似文献   

16.
The basalts of Tandur and adjoining areas in Andhra Pradesh are olivinefree tholeiites. Major element abundances in thirty samples indicate that these basalts are poorer in silica and richer in iron, magnesium, phosphorous and titanium relative to the normal basalts. The high Fe2O3/FeO ratio (1.07) could mean either that the traps were extruded under oxidising conditions or that the magma held excess amount of water. The relative enrichment of iron and depletion of silica in the Tandur basalts may have been controlled by the partial pressure of oxygen, presence of significant amounts of water, depth of generation of source magma etc.  相似文献   

17.
The Serra Geral (Paraná) continental flood-basalt province of southern Brazil has two main basalt types: low-TiO2 ( 1 wt.%) basalts occupy the southern portion, and high-TiO2 (> 3 wt.%) basalts are largely in the northern part. Low-Ti basalts are less evolved (Mg# 60) and more radiogenic (e.g., 87Sr/86Sr 0.708) than high-Ti basalts (Mg# 35; 87Sr/86Sr 0.705). This is consistent with a model that invokes variable melting of a single mantle source to produce picritic magmas that have relatively lower and higher incompatible element contents. Varying percentages of melting can be related to varying proximity to the early Tristan da Cunha hotspot. The Mg-rich magmas fractionated 60–75% olivine, clinopyroxene, and plagioclase to yield low- or high-Ti flood basalts, assimilating more or less crust in the process. The extent of fractionation and assimilation depended on crustal “warmth” (also tied to location relative to hotspot): (1) above zones of 25% melting, warm crust relatively easily contaminated crystallizing picritic magma that originated by a high degree of melting (i.e., magma with lower incompatible element contents); additionally, high degrees of melting sustained replenishment of magma with low-Ti magma characteristics; (2) above 10% melting zones, cooler crust comparatively restricted assimilation during crystallization (of magma with higher incompatible element contents) and permitted magma evolution to high-Ti derivatives; lesser degrees of melting also limited replenishment magma and thereby allowed greater evolution of existing magma. This model refers all diagnostic geochemical and isotopic features of Serra Geral basalts to percentages of partial melting of an essentially homogeneous mantle material.  相似文献   

18.
The lower Yangtze River area, situated at the fore-land of the Qinling-Dabie orogen, is an important re-gion for high-grade mineral deposits in Cen-tral-Eastern China. Nearly 300 different types of Cu and Au polymetal, Fe, and S mineral deposits have been found and mined in this zone[1,2]. The overall distribution of these deposits follows the trend of the Mesozoic igneous rocks, suggesting their fundamental controls on the formation of these deposits. Geo-physical and geologic observatio…  相似文献   

19.
In the Iblean region, southeast Sicily, a sequence of subaqueous and subaerial volcanics is interlayered in sedimentary levels, Upper Miocene to Lower Pleistocene in age. These rocks range from low-K tholeiites to basanites.Rare earth elements (REE) have been determined by instrumental neutron activation analysis in five samples, and other trace elements (Li, Rb, Sr, Co, Cr, Cu, Ni) by atomic absorption spectrophotometry in thirteen samples, already analyzed also for major elements.The tholeiites differ systematically from rocks of the alkalic suite for elements like Li, Sr and light REE (Sr < 200 ppm, Ce ? 15 ppm in the former; Sr > 500 up to 2000 ppm, Ce > 150 ppm in the latter), while Ni, Co, Cr and heavy REE ranges overlap in the two rock suites.The results agree in indicating different degrees of partial melting, probably at different levels in a heterogeneous mantle, as responsible for the origin of most of the rocks found in the Iblean region: the tholeiites should have been formed at relatively shallow depth by fusion of large proportions of a depleted mantle, while increasingly undersaturated volcanics of the alkalic suite have been probably generated at greater depth by partial melting of decreasing amounts of mantle material.  相似文献   

20.
The magma evolution of Tianchi volcano, Changbaishan   总被引:4,自引:0,他引:4  
The Changbaishan Tianchi volcano is composed of the basaltic rocks at the shield-forming stage, the trachyte and pantellerite at the cone-forming stage and modern eruption. Studies on their REE, incompatible elements and Sr, Nd, Pb isotopes suggest that rocks at different stages have a common magma genesis and close evolution relationship with differentiation crystallization playing the key role. The co-eruption of basaltic trachyandesite magma and pantellerite magma indicates that there exist both crustal magma chamber and mantle magma reservoir beneath the Tianchi volcano. Project supported by the National Natural Science Foundation of China (Grant No. 49672109).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号