首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
It is the aim of this paper to introduce the use of isotropic wavelets to detect and determine the flux of point sources appearing in cosmic microwave background (CMB) maps. The most suitable wavelet to detect point sources filtered with a Gaussian beam is the 'Mexican Hat'. An analytical expression of the wavelet coefficient obtained in the presence of a point source is provided and used in the detection and flux estimation methods presented. For illustration the method is applied to two simulations (assuming Planck mission characteristics) dominated by CMB (100 GHz) and dust (857 GHz), as these will be the two signals dominating at low and high frequencies respectively in the Planck channels. We are able to detect bright sources above 1.58 Jy at 857 GHz (82 per cent of all sources) and above 0.36 Jy at 100 GHz (100 per cent of all), with errors in the flux estimation below 25 per cent. The main advantage of this method is that nothing has to be assumed about the underlying field, i.e. about the nature and properties of the signal plus noise present in the maps. This is not the case in the detection method presented by Tegmark & Oliveira-Costa. Both methods are compared, producing similar results.  相似文献   

4.
We study the power of several scalar quantities constructed on the sphere (presented in Monteserín et al.) to detect non-Gaussianity in the temperature distribution of the cosmic microwave background (CMB). The test has been performed using non-Gaussian CMB simulations with injected skewness or kurtosis generated through the Edgeworth expansion. We have also taken into account in the analysis the effect of anisotropic noise and the presence of a Galactic mask. We find that the best scalars to detect an excess of skewness in the simulations are the derivative of the gradient, the fractional isotropy, the Laplacian and the shape index. For the kurtosis case, the fractional anisotropy, the Laplacian and the determinant are the quantities that perform better.  相似文献   

5.
We investigate the power of wavelets in detecting non-Gaussianity in the cosmic microwave background (CMB). We use a wavelet-based method on small simulated patches of the sky to discriminate between a pure inflationary model and inflationary models that also contain a contribution from cosmic strings. We show the importance of the choice of a good test statistic in order to optimize the discriminating power of the wavelet technique. In particular, we construct the Fisher discriminant function, which combines all the information available in the different wavelet scales. We also compare the performance of different decomposition schemes and wavelet bases. For our case, we find that the Mallat and a ` trous algorithms are superior to the 2D-tensor wavelets. Using this technique, the inflationary and strings models are clearly distinguished even in the presence of a superposed Gaussian component with twice the rms amplitude of the original cosmic string map.  相似文献   

6.
7.
8.
9.
We investigate the power of geometrical estimators on detecting non-Gaussianity in the cosmic microwave background (CMB). In particular the number, eccentricity and Gaussian curvature of excursion sets above (and below) a threshold are studied. We compare their different performance when applied to non-Gaussian simulated maps of small patches of the sky, which take into account the angular resolution and instrumental noise of the Planck satellite. These non-Gaussian simulations are obtained as perturbations of a Gaussian field in two different ways which introduce a small level of skewness or kurtosis in the distribution. A comparison with a classical estimator, the genus, is also shown. We find that the Gaussian curvature is the best of our estimators in all the considered cases. Therefore we propose the use of this quantity as a particularly useful test to look for non-Gaussianity in the CMB.  相似文献   

10.
We introduce new symmetry-based methods to test for isotropy in cosmic microwave background (CMB) radiation. Each angular multipole is factored into unique products of power eigenvectors, related multipoles and singular values that provide two new rotationally invariant measures mode by mode. The power entropy and directional entropy are new tests of randomness that are independent of the usual CMB power. Simulated Galactic plane contamination is readily identified. The ILC– WMAP data maps show seven axes well aligned with one another and the direction Virgo. Parameter free statistics find 12 independent cases of extraordinary axial alignment, low power entropy, or both having 5 per cent probability or lower in an isotropic distribution. Isotropy of the ILC maps is ruled out to confidence levels of better than 99.9 per cent, whether or not coincidences with other puzzles coming from the Virgo axis are included. Our work shows that anisotropy is not confined to the low l region, but extends over a much larger l range.  相似文献   

11.
A method to compute several scalar quantities of cosmic microwave background (CMB) maps on the sphere is presented. We consider here four type of scalars: the Hessian matrix scalars, the distortion scalars, the gradient-related scalars and the curvature scalars. Such quantities are obtained directly from the spherical harmonic coefficients   a ℓ m   of the map. We also study the probability density function of these quantities for the case of a homogeneous and isotropic Gaussian field, which are functions of the power spectrum of the initial field. From these scalars it is possible to construct a new set of scalars which are independent of the power spectrum of the field. We test our results using simulations and find good agreement between the theoretical probability density functions and those obtained from simulations. Therefore, these quantities are proposed to investigate the presence of non-Gaussian features in CMB maps. Finally, we show how to compute the scalars in the presence of anisotropic noise and realistic masks.  相似文献   

12.
We present a method, based on the correlation function of excursion sets above a given threshold, to test the Gaussianity of the cosmic microwave background (CMB) temperature fluctuations in the sky. In particular, this method can be applied to discriminate between standard inflationary scenarios and those producing non-Gaussianity such as topological defects. We have obtained the normalized correlation of excursion sets, including different levels of noise, for two-point probability density functions constructed from the Gaussian, χ2 n and Laplace one-point probability density functions in two different ways. Considering subdegree angular scales, we find that this method can distinguish between different distributions even if the corresponding marginal probability density functions and/or the radiation power spectra are the same.  相似文献   

13.
14.
15.
We adapt the smooth tests of goodness-of-fit developed by Rayner and Best to the study of the non-Gaussianity of interferometric observations of the cosmic microwave background (CMB). The interferometric measurements (visibilities) are transformed into signal-to-noise ratio eigenmodes, and then the method is applied directly in Fourier space. This transformation allows us to perform the analysis in different subsets of eigenmodes according to their signal-to-noise ratio level. The method can also deal with non-uniform or incomplete coverage of the UV plane. We explore here two possibilities: we analyse either the real and imaginary parts of the complex visibilities (Gaussianly distributed under the Gaussianity hypothesis) or their phases (uniformly distributed under the Gaussianity hypothesis). The power of the method in discriminating between Gaussian and non-Gaussian distributions is studied by using several kinds of non-Gaussian simulations. On the one hand, we introduce a certain degree of non-Gaussianity directly into the Fourier space using the Edgeworth expansion, and afterwards the desired correlation is introduced. On the other hand, we consider interferometric observations of a map with topological defects (cosmic strings). To these previous non-Gaussian simulations we add different noise levels and quantify the required signal-to-noise ratio necessary to achieve a detection of these non-Gaussian features. Finally, we have also studied the ability of the method to constrain the so-called non-linear coupling constant f NL using χ2 simulations. The whole method is illustrated here by application to simulated data from the Very Small Array interferometer.  相似文献   

16.
17.
18.
19.
We have estimated the cosmic microwave background (CMB) variance from the three-year Wilkinson Microwave Anisotropy Probe ( WMAP ) data, finding a value which is significantly lower than the one expected from Gaussian simulations using the WMAP best-fitting cosmological model, at a significance level of 98.7 per cent. This result is even more prominent if we consider only the North ecliptic hemisphere (99.8 per cent). Different analyses have been performed in order to identify a possible origin for this anomaly. In particular, we have studied the behaviour of single-radiometer and single-year data as well as the effect of residual foregrounds and 1/f noise, finding that none of these possibilities can explain the low value of the variance. We have also tested the effect of varying the cosmological parameters, finding that the estimated CMB variance tends to favour higher values of n s than the one of the WMAP best-fitting model. In addition, we have also tested the consistency between the estimated CMB variance and the actual measured CMB power spectrum of the WMAP data, finding a strong discrepancy. A possible interpretation of this result could be a deviation from Gaussianity and/or isotropy of the CMB.  相似文献   

20.
The map-making step of cosmic microwave background (CMB) data analysis involves linear inversion problems that cannot be performed by a brute-force approach for the large time-lines of today. In this paper we present optimal vector-only map-making methods, which are an iterative COBE method, a Wiener direct filter and a Wiener iterative method. We apply these methods on diverse simulated data, and we show that they produce very well restored maps, by removing nearly completely the correlated noise that appears as intense stripes on the simply pixel-averaged maps. The COBE iterative method can be applied to any signals, assuming the stationarity of the noise in the time-line. The Wiener methods assume both the stationarity of the noise and the sky, which is the case for CMB-only data. We apply the methods to Galactic signals too, and test them on balloon-borne experiment strategies and on a satellite whole-sky survey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号