首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pacific-type orogeny revisited: Miyashiro-type orogeny proposed   总被引:30,自引:0,他引:30  
Shigenori  Maruyama 《Island Arc》1997,6(1):91-120
Abstract The concept of Pacific-type orogeny is revised, based on an assessment of geologic data collected from the Japanese Islands during the past 25 years. The formation of a passive continental margin after the birth of the Pacific Ocean at 600 Ma was followed by the initiation of oceanic plate subduction at 450 Ma. Since then, four episodes of Pacific-type orogeny have occurred to create an orogenic belt 400 km wide that gradually grew both oceanward and downward. The orogenic belt consists mainly of an accretionary complex tectonically interlayered with thin (<2 km thick), subhorizontal, high-P/T regional metamorphic belts. Both the accretionary complex and the high-P/T rocks were intruded by granitoids ~100 million years after the formation of the accretionary complex. The intrusion of calc-alkaline (CA) plutons was synchronous with the exhumation of high-P/T schist belts. Ages from microfossils and K-Ar analysis suggest that the orogenic climax happened at a time of mid-oceanic ridge subduction. The orogenic climax was characterized by the formation of major subhorizontal orogenic structures, the exhumation of high-P/T schist belts by wedge extrusion and subsequent domed uplift, and the intrusion-extrusion of CA magma dominantly produced by slab melting. The orogenic climax ended soon after ridge subduction, and thereafter a new Pacific-type orogeny began. A single Pacific-type orogenic cycle may correspond to the interaction of the Asian continental margin with one major Pacific oceanic plate. Ophiolites in Japan occur as accreted material and are not of island-arc but of plume origin. They presumably formed after the birth of the southern Pacific superplume at 600 Ma, and did not modify the cordilleran-type orogeny in a major way. Microplates, fore-arc slivers, intra-oceanic arc collisions and the opening of back-arc basins clearly contributed to cordilleran orogenesis. However, they were of secondary importance and served only to modify pre-existing major orogenic components. The most important cause of cordilleran-type orogeny is the subduction of a mid-oceanic ridge, by which the volume of continental crust increases through the transfer of granitic melt from the subducting oceanic crust to an orogenic welt. Accretionary complexes are composed mainly of recycled granitic sediments with minor amounts of oceanic material, which indicate that the accretion of oceanic material, including huge oceanic plateaus, was not significant for orogenic growth. Instead, the formation and intrusion of granitoids are the keys to continental growth, which is the most important process in Pacific-type orogeny. Collision-type orogeny does not increase the volume of continental crust. The name ‘Miyashiro-type orogeny’ is proposed for this revised concept of Pacific-type or cordilleran-type orogeny, in order to commemorate Professor A. Miyashiro's many contributions to a better understanding of orogenesis.  相似文献   

2.
Regional metamorphic belts of the Japanese Islands   总被引:1,自引:0,他引:1  
Takashi  Nakajima 《Island Arc》1997,6(1):69-90
Abstract An overview of the regional metamorphic belts of Japan is given in the context of the tectonic evolution of the Japanese Islands. The Japanese Islands were situated on an active margin of the Eurasian continent or its constituent landmass before their assembly during the Phanerozoic. The Japanese Islands are composed mainly of metamorphosed and unmetamorphosed accretionary complexes, granitoids and their effusive equivalents that were formed by the Cordilleran-type orogeny. The metamorphic belts are regarded essentially as a deep-seated portion of an accretionary complex. In spite of continuous subduction of oceanic plates beneath the continents, these orogenic rocks were formed quite episodically, as evidenced by discontinuous matrix ages of the accretionary complexes and a striking concentration of isotopic ages of the granitoids. A systematic along-arc age shift of Cretaceous large-scaled granitic magmatism and regional metamorphism suggests a tectonic control such as ridge subduction, which triggered the episodic orogeny. A tectonic model based on the paired metamorphic belts, combined with the non-steady tectonic control, works well to explain this magmatism and metamorphism in a single arc-trench system as a continental margin process. However, the juxtapositional process of the paired metamorphic belts is still a problem. Two possible cases, namely transcurrent displacement and back-arc overthrusting are discussed.  相似文献   

3.
Shigenori  Maruyama  J. G. Liou  Ruyuan  Zhang 《Island Arc》1994,3(2):112-121
Abstract In the Triassic suture between the Sino-Korean and Yangtze cratons, the Dabie metamorphic Complex in central China includes three tectonic units: the northern Dabie migmatitic terrane, the central ultrahigh-P coesite- and diamond-bearing eclogite belt, and the southern high-P blueschist-eclogite belt. This complex is bounded to the north by a north-dipping normal fault with a Paleozoic accretionary complex and to the south by a north-dipping reverse fault with Yangtze basement plus its foreland fold-and-thrust sequence. Great differences in metamorphic pressure suggests that these units reached different depths during metamorphism and their juxtaposition occurred by wedge extrusion of subducted old continental fragments. These units were subsequently subjected to (i) Barrovian type regional metamorphism and deformation at shallow depths; (ii) intrusion of Cretaceous granitic plutons; and (iii) doming and segmentation into several blocks by normal and strike-slip faults. A new speculative model of tectonic exhumation of UHP rocks is proposed.  相似文献   

4.
Kenshiro  Otsuki 《Island Arc》1992,1(1):51-63
Abstract The Izanagi plate subducted rapidly and obliquely under the accretionary terrane of Japan in the Cretaceous before 85 Ma. A chain of microcontinents collided with it at about 140 Ma. In southwest Japan the major part of it subducted thereafter, but in northeast Japan it accreted and the trench jumped oceanward, resulting in a curved volcanic front. The oblique subduction and the underplated microcon-tinent caused uplifting of high-pressure (high-P) metamorphic rocks and large scale crustal shortening in southwest Japan. The oblique subduction caused left-lateral faulting and ductile shearing in northeast Japan. The arc sliver crossed over the high-temperature (high-T) zone of arc magmatism, resulting in a wide high-T metamorphosed belt. At about 85 Ma, the subduction mode changed from oblique to normal and the tectonic mode changed drastically. Just after this the Kula/Pacific ridge subducted and the subduction rate of the Pacific plate decreased gradually, causing the intrusion of huge amounts of granite magma and the eruption of acidic volcanics from large cauldrons. The oblique subduction of the Pacific plate resumed at 53 Ma and the left-lateral faults were reactivated.  相似文献   

5.
Abstract Apatite and zircon fission-track (FT) analyses of the Shimanto accretionary complex and its vicinities, southwest Japan, unraveled the episodic material migration of the deep interiors of the accretionary complex. Apatite data with 100°C closure temperature (Te) generally indicate ~10 Ma cooling throughout the Shimanto complex. In contrast, zircon data with 260°C Te exhibit a wide range of apparent ages as a consequence of paleotemperature increase to the zircon partial annealing zone. In the Muroto and Kyushu regions, maximum temperatures tend to have been higher in the northern, older part of the complex, with indistinguishable temperature differences between coherent and melange units adjacent to each other. It thus suggests, along with vitrinite reflectance data, that older accretionary units occurring to the north sustain greater maximum burial during the accretion-burial-exhumation process. Zircon data suggest two cooling episodes: ~70 Ma cooling at widespread localities in the Cretaceous Shimanto Belt and Sambagawa Belt, and ~15 Ma cooling in the central Kii Peninsula. The former is consistent with 40Ar/39Ar cooling ages from the Sambagawa Belt, whereas the latter slightly predates the widespread 10 Ma apatite cooling ages. These data imply that the extensive material migration and exhumation took place in and around the Shimanto complex in Late Cretaceous as well as in Middle Miocene. Considering tectonic factors to control evolution of accretionary complexes, the episodic migration is best explained by accelerated accretion of sediments due to increased sediment influx at the ancient Shimanto trench, probably derived from massive volcano-plutonic complexes contemporaneously placed inland. Available geo- and thermochronologic data suggest that extensive magmatism triggered regional exhumation twice in the past 100 Ma, shedding new light on the cordilleran orogeny and paired metamorphism concepts.  相似文献   

6.
The South Kitakami Massif is one of the oldest geological domains in Japan having Silurian strata with acidic pyroclastic rocks and Ordovician–Silurian granodiorite–tonalite basement, suggesting that it was matured enough to develop acidic volcanisms in the Silurian period. On the northern and western margin of the South Kitakami Massif, an Ordovician arc ophiolite (Hayachine–Miyamori Ophiolite) and high‐pressure and low‐temperature metamorphic rocks (Motai metamorphic rocks) exhumed sometime in the Ordovician–Devonian periods are distributed. Chronological, geological, and petrochemical studies on the Hayachine–Miyamori Ophiolite, Motai metamorphic rocks, and other early Paleozoic geological units of the South Kitakami Massif are reviewed for reconstruction of the South Kitakami arc system during Ordovician to Devonian times with supplementary new data. The reconstruction suggests a change in the convergence polarity from eastward‐ to westward‐dipping subduction sometime before the Late Devonian period. The Hayachine–Miyamori Ophiolite was developed above the eastward‐dipping subduction through three distinctive stages. Two separate stages of overriding plate extension inducing decompressional melting with minor involvement of slab‐derived fluid occurred before and after a stage of melting under strong influence of slab‐derived fluids. The first overriding plate extension took place in the back‐arc side forming a back‐arc basin. The second one took place immediately before the ophiolite exhumation and near the fore‐arc region. We postulate that the second decompressional melting was triggered by slab breakoff, which was preceded by slab rollback inducing trench‐parallel wedge mantle flow and non‐steady fluid and heat transport leaving exceptionally hydrous residual mantle. The formation history of the Hayachine–Miyamori Ophiolite implies that weaker plate coupling may provide preferential conditions for exhumation of very hydrous mantle. Very hydrous peridotites involved in arc magmatism have not yet been discovered except for in the Cambrian–Ordovician periods, suggesting its implications for global geodynamics, such as the thermal state and water circulation in the mantle.  相似文献   

7.
Yukio  Isozaki 《Island Arc》1996,5(3):289-320
Abstract The Japanese Islands represent a segment of a 450 million year old subduction-related orogen developed along the western Pacific convergent margin. The geotectonic subdivision of the Japanese Islands is newly revised on the basis of recent progress in the 1980s utilizing microfossil and chronometric mapping methods for ancient accretionary complexes and their high-P/T metamorphic equivalents. This new subdivision is based on accretion tectonics, and it contrasts strikingly with previous schemes based on‘geosyncline’tectonics, continent-continent collision-related tectonics, or terrane tectonics. Most of the geotectonic units in Japan are composed of Late Paleozoic to Cenozoic accretionary complexes and their high-PIT metamorphic equivalents, except for two units representing fragments of Precambrian cratons, which were detached from mainland Asia in the Tertiary. These ancient accretionary complexes are identified using the method of oceanic plate stratigraphy. The Japanese Islands are comprised of 12 geotectonic units, all noted in southwest Japan, five of which have along-arc equivalents in the Ryukyus. Northeast Japan has nine of these 12 geotectonic units, and East Hokkaido has three of these units. Recent field observations have shown that most of the primary geotectonic boundaries are demarcated by low-angle faults, and sometimes modified by secondary vertical normal and/or strike-slip faults. On the basis of these new observations, the tectonic evolution of the Japanese Islands is summarized in the following stages: (i) birth at a rifted Yangtze continental margin at ca 750–700 Ma; (ii) tectonic inversion from passive margin to active margin around 500 Ma; (iii) successive oceanic subduction beginning at 450 Ma and continuing to the present time; and (iv) isolation from mainland Asia by back-arc spreading at ca 20 Ma. In addition, a continent-continent collision occurred between the Yangtze and Sino-Korean cratons at 250 Ma during stage three. Five characteristic features of the 450 Ma subduction-related orogen are newly recognized here: (i) step-wise (not steady-state) growth of ancient accretionary complexes; (ii) subhorizontal piled nappe structure; (iii) tectonically downward-younging polarity; (iv) intermittent exhumation of high-P/T metamorphosed accretionary complex; and (v) microplate-induced modification. These features suggest that the subduction-related orogenic growth in Japan resulted from highly episodic processes. The episodic exhumation of high-P/T units and the formation of associated granitic batholith (i.e. formation of paired metamorphic belts) occurred approximately every 100 million years, and the timing of such orogenic culmination apparently coincides with episodic ridge subduction beneath Asia.  相似文献   

8.
Granulites in the Dabie Mountains are mainly ob-served in northern Dabie complex zone. Huangtuling intermediate-acid granulites and Huilanshan mafic granulites in the Luotian dome are two famous out-crops (Fig. 1)[1]. It is important to know the genesis and metamorphic age of these granulites for under-standing tectonic evolution and exhumation history of the Dabie Mountains. Previous geochemical and geo-chronological work[2―8]1) on the Huangtuling granu-lites indicates that their protoli…  相似文献   

9.
Morphologic and geologic observations suggest that subduction of bathymetric highs, such as aseismic ridges, chains of seamounts, and fracture zones, are important in the development of many forearc features and that those features form during relatively brief episodes of intense tectonism. A bathymetric high obliquely entering a subduction zone tends to compress sediments along its leading edge, resulting in arcward compression of the accretionary wedge. A landward deflection of the trench axis and a steepened inner wall result from this deformation. If a significant component of oblique slip occurs along the subduction zone, then along-strike movement of the accretionary wedge may also occur. Stresses resulting from subduction of bathymetric features with sufficient buoyancy or high relief extend farther landward than in the case of smaller, less buoyant features, inducing uplift of the leading edge of the overriding plate. Tectonic erosion of the base of the overriding plate and along-strike transport of are material may also occur. The accelerated tectonism observed along several convergent margins can be attributed to the consumption of bathymetric irregularities on the seafloor rather than temporally abrupt changes in rates and directions of plate motions or other episodic events in the accretionary prism.  相似文献   

10.
It has been suggested that much of the lithopheric mantle beneath the Colorado Plateau was hydrated by the dehydration of the Farallon plate when it was undergoing low angle subduction during the Laramide orogeny. If correct, low angle subduction could be a viable mechanism for weakening laterally extensive regions of continental lithosphere, allowing such lithosphere potentially to be recycled back into the Earth's interior and into the asthenospheric mantle wedge. To test this hypothesis, we model the release of water during prograde metamorphism of a flat-subducting Farallon plate by considering a thermal model for flat subduction and tracking open-system metamorphic phase equilibria. Our model indicates that significant amounts of water can be laterally transported ∼700 km inboard of the trench, close to the width of the North American Cordillera. The amount of water released is shown here to have been large enough to influence the rheology of the overriding North American lithosphere and the potential for melting at its base. Anomalously high S-velocities in the lithospheric mantle supports our modeled calculations of laterally extensive weakening at the base of the continental lithosphere.  相似文献   

11.
Detrital zircon multi‐chronology combined with provenance and low‐grade metamorphism analyses enables the reinterpretation of the tectonic evolution of the Cretaceous Shimanto accretionary complex in Southwest Japan. Detrital zircon U–Pb ages and provenance analysis defines the depositional age of trench‐fill turbidites associated with igneous activity in provenance. Periods of low igneous activity are recorded by youngest single grain zircon U–Pb ages (YSG) that approximate or are older than the depositional ages obtained from radiolarian fossil‐bearing mudstone. Periods of intensive igneous activity recorded by youngest cluster U–Pb ages (YC1σ) that correspond to the younger limits of radiolarian ages. The YC1σ U–Pb ages obtained from sandstones within mélange units provide more accurate younger depositional ages than radiolarian ages derived from mudstone. Determining true depositional ages requires a combination of fossil data, detrital zircon ages, and provenance information. Fission‐track ages using zircons estimated YC1σ U–Pb ages are useful for assessing depositional and annealing ages for the low‐grade metamorphosed accretionary complex. These new dating presented here indicates the following tectonic history of the accretionary wedge. Evolution of the Shimanto accretionary complex from the Albian to the Turonian was caused by the subduction of the Izanagi plate, a process that supplied sediments via the erosion of Permian and Triassic to Early Jurassic granitic rocks and the eruption of minor amounts of Early Cretaceous intermediate volcanic rocks. The complex subsequently underwent intensive igneous activity from the Coniacian to the early Paleocene as a result of the subduction of a hot and young oceanic slab, such as the Kula–Pacific plate. Finally, the major out‐of‐sequence thrusts of the Fukase Fault and the Aki Tectonic Line formed after the middle Eocene, and this reactivation of the Shimanto accretionary complex as a result of the subduction of the Pacific plate.  相似文献   

12.
Continental subduction and collision normally follows oceanic subduction,with the remarkable event of formation and exhumation of high-to ultra-high-pressure(HP-UHP)metamorphic rocks.Based on the summary of numerical geodynamic models,six modes of continental convergence have been identified:pure shear thickening,folding and buckling,one-sided steep subduction,flat subduction,two-sided subduction,and subducting slab break-off.In addition,the exhumation of HP-UHP rocks can be formulated into eight modes:thrust fault exhumation,buckling exhumation,material circulation,overpressure model,exhumation of a coherent crustal slice,episodic ductile extrusion,slab break-off induced eduction,and exhumation through fractured overriding lithosphere.During the transition from subduction to exhumation,the weakening and detachment of subducted continental crust are prerequisites.However,the dominant weakening mechanisms and their roles in the subduction channel are poorly constrained.To a first degree approximation,the mechanism of continental subduction and exhumation can be treated as a subduction channel flow model,which incorporates the competing effects of downward Couette(subduction)flow and upward Poiseuille(exhumation)flow in the subduction channel.However,the(de-)hydration effect plays significant roles in the deformation of subduction channel and overriding lithosphere,which thereby result in very different modes from the simple subduction channel flow.Three-dimensionality is another important issue with highlighting the along-strike differential modes of continental subduction,collision and exhumation in the same continental convergence belt.  相似文献   

13.
New U–Pb ages of zircons from migmatitic pelitic gneisses in the Omuta district, northern Kyushu, southwest Japan are presented. Metamorphic zonation from the Suo metamorphic complex to the gneisses suggests that the protolith of the gneisses was the Suo metamorphic complex. The zircon ages reveal the following: (i) a transformation took place from the high‐P Suo metamorphic complex to a high‐T metamorphic complex that includes the migmatitic pelitic gneisses; (ii) the detrital zircon cores in the Suo pelitic rocks have two main age components (ca 1900–1800 Ma and 250 Ma), with some of the detrital zircon cores being supplied (being reworked) from a high‐grade metamorphic source; and (iii) one metamorphic zircon rim yields 105.1 ±5.3 Ma concordant age that represents the age of the high‐T metamorphism. The high‐P to high‐T transformation of metamorphic complexes implies the seaward shift of a volcanic arc or a landward shift of the metamorphic complex from a trench to the sides of a volcanic arc in an arc–trench system during the Early Cretaceous. The Omuta district is located on the same geographical trend as the Ryoke plutono‐metamorphic complex, and our estimated age of the high‐T metamorphism is similar to that of the Ryoke plutono‐metamorphism in the Yanai district of western Chugoku. Therefore, the high‐T metamorphic complex possibly represents the western extension of the Ryoke plutono‐metamorphic complex. The protolith of the metamorphic rocks of the Ryoke plutono‐metamorphic complex was the Jurassic accretionary complex of the inner zone of southwest Japan. The high‐P to high‐T transformation in the Omuta district also suggests that the geographic trend of the Jurassic accretionary complex was oblique to that of the mid‐Cretaceous high‐T metamorphic field.  相似文献   

14.
A model involving buoyancy, wedging and thermal doming is postulated to explain the differential exhumation of ultrahigh-pressure (UHP) metamorphic rocks in the Dabie Mountains, China, with an emphasis on the exhumation of the UHP rocks from the base of the crust to the upper crust by opposite wedging of the North China Block (NCB). The Yangtze Block was subducted northward under the NCB and Northern Dabie microblock, forming UHP metamorphic rocks in the Triassic (240–220 Ma). After delamination of the subduction wedge, the UHP rocks were exhumed rapidly to the base of the crust by buoyancy (220–200 Ma). Subsequently, when the left-lateral Tan–Lu transform fault began to be activated, continuous north–south compression and uplifting of the orogen forced the NCB to be subducted southward under the Dabie Orogen (`opposite subduction'). Opposite subduction and wedging of the North China continental crust is responsible for the rapid exhumation of the UHP and South Dabie Block units during the Early Jurassic, at ca 200–180 Ma at a rate of ∼ 3.0 mm/year. The UHP eclogite suffered retrograde metamorphism to greenschist facies. Rapid exhumation of the North Dabie Block (NDB) occurred during 135–120 Ma because of thermal doming and granitoid formation during extension of continental margin of the Eurasia. Amphibolite facies rocks from NDB suffered retrograde metamorphism to greenschist facies. Different unit(s) and terrane(s) were welded together by granites and the wedging ceased. Since 120–110 Ma, slow uplift of the entire Dabie terrane is caused by gravitational equilibrium.  相似文献   

15.
Cong  Bolin  Wang  Qingchen  Zhai  Mingguo  Zhang  Ruyuan  Zhao  Zhongyan Ye  Kai 《Island Arc》1994,3(3):135-150
Abstract Based on petrological, structural, geological and geochronological research, the authors summarize the progress of ultra-high pressure (UHP) metamorphic rock study since 1989 by Chinese geoscientists and foreign geoscientists in the Dabie-Su-Lu region. The authors introduce and discuss a two-stage exhumation process for the UHP metamorphic rocks that have various lithologies; eclogite, ultramafics, jadeitic quartzite, gneiss, schist and marble. The metamorphic history of UHP metamorphic rocks is divided into three stages, that is, the pre-eclogite stage, coesite eclogite stage, and retrograde stage. Prior to UHP metamorphism, the ultramafics had a high temperature environment assemblage of mantle and others had blueschist facies assemblages. The granulite facies assemblages, which have recorded a temperature increase event with decompression, have developed locally in the Weihai basaltic rocks. Isotopic ages show a long range from > 700 Ma to 200 Ma. The diversity in protoliths of UHP metamorphic rocks may be related to the variation of isotopic ages older than 400 Ma. The Sm-Nd dating of ~ 220 Ma could reflect the initial exhumation stage after the peak UHP metamorphism in relation to the collision between the Sino-Korean and Yangtze blocks and subsequent events. Petrological and structural evidence imply a two-stage exhumation process. During the initial exhumation, the UHP metamorphic rocks were sheared and squeezed up in a high P/T regime. In the second exhumation stage the UHP metamorphic rocks were uplifted and eventually exposed with middle crustal rocks.  相似文献   

16.
Poly-deformed and poly-metamorphosed glaucophane-eclogite mega-boudins beneath the Samail Ophiolite, Oman record an early subduction-related high-P metamorphism as well as subsequent overprinting deformation and metamorphism related to exhumation. Previously published Rb/Sr ages of 78 Ma and 40Ar/39Ar ages of 82-79 Ma record the major NE-directed shearing event that partially exhumed the eclogites to a shallower crustal level. New Sm/Nd garnet-garnet leachate-whole rock isochron data from garnet-bearing eclogite assemblages in the As Sifah subwindow in NE Oman are 110±9 Ma (DG02-87D); 5-point isochron) and 109±13 Ma (DG02-86E; 3-point isochron). On the basis of microfabric and field structural relationships these ages are interpreted to reflect the timing of prograde, peak high-P metamorphism in the rocks structurally beneath the Samail Ophiolite. This metamorphism clearly predates the age of formation of the obducted Samail oceanic lithosphere (97-94 Ma) as well as the subsequent obduction onto the margin (80-70 Ma). A U-Pb SHRIMP zircon age from small (<200 μm in length) zircons with herring-bone textured zoning from DG02-87D indicate that rapid zircon growth associated with high-Si phengites occurred at 82±1 Ma. Zircon growth is possibly related to liberation of Zr on garnet breakdown during decompression metamorphism under high-P conditions with exhumation. These data require that crustal stacking models attendant with ophiolite obduction are inappropriate to explain the Oman high-P metamorphism.  相似文献   

17.
Diancangshan metamorphic massif is one of the four metamorphic massifs developed along the Ailaoshan-Red River strike-slip fault zone, Yunnan, China. It has experienced multi-stage metamorphism and deformation, especially since the late Oligocene it widely suffered high-temperature ductile shear deformation and exhumation of the metamorphic rocks from the deep crust to the shallow surface. Based on the previous research and geological field work, this paper presents a detailed study on deformation and metamorphism, and exhumation of deep metamorphic rocks within the Diancangshan metamorphic massif, especially focusing on the low-temperature overprinted retrogression metamorphism and deformation of mylonitic rocks. With the combinated experimental techniques of optical microscope, electron backscatter diffraction attachmented on field-emission scanning electron microscopy and cathodoluminescence, our contribution reports the microstructure, lattice preferred orientations of the deformed minerals, and the changes of mineral composition phases of the superposition low-temperature retrograde mylonites. All these results indicate that: (1) Diancangshan deep metamorphic rock has experienced early high-temperature left-lateral shear deformation and late extension with rapid exhumation, the low-temperature retrogression metamorphism and deformation overprinted the high-temperature metamorphism, and the high-temperature microstructure and texture are in part or entirely altered by subsequent low-temperature shearing; (2) the superposition of low-temperature deformation-metamorphism occurs at the ductile-brittle transition; and (3) the fluid is quite active during the syn-tectonic shearing overprinted low-temperature deformation and metamorphism. The dynamic recrystallization and/or fractures to micro-fractures result in the strongly fine-grained of the main minerals, and present strain localization in micro-domians, such as micro-shear zones in the mylonites. It is often accompanied by the decrease of rock strength and finally influences the rheology of the whole rock during further deformation and exhumation of the Diancangshan massif.  相似文献   

18.
马尼拉俯冲带北段增生楔前缘构造变形和精细结构   总被引:1,自引:0,他引:1       下载免费PDF全文
马尼拉俯冲带是南海的东部边界,记录了南海形成演化的关键信息,同时也是地震和海啸多发区域.本文利用过马尼拉俯冲带北段的高分辨率多道地震剖面,分析了研究区内海盆和海沟的沉积特征,精细刻画了区内增生楔前缘的构造变形、结构以及岩浆活动特征.研究区内增生楔下陆坡部分由盲冲断层、构造楔和叠瓦逆冲断层构成,逆冲断层归并于一条位于下中新统的滑脱面上,滑脱面向海方向的展布明显受到增生楔之下埋藏海山和基底隆起的影响;上陆坡的反射特征则因变形强烈和岩浆作用而难以识别;岩浆活动开始于晚中新世末期并持续至第四纪.马尼拉俯冲带北段增生楔的形成时间早于16.5 Ma,并通过前展式逆冲向南海方向扩展;马尼拉俯冲带的初始形成时间可能在晚渐新世,而此时南海海盆扩张仍在持续.南海东北缘19°N-21°N区域为南海北部陆坡向海盆的延伸,高度减薄的陆壳的俯冲造成马尼拉海沟北段几何形态明显地向东凹进.  相似文献   

19.
This paper presents a review on the rock associations, geochemistry, and spatial distribution of Mesozoic-Paleogene igneous rocks in Northeast Asia. The record of magmatism is used to evaluate the spatial-temporal extent and influence of multiple tectonic regimes during the Mesozoic, as well as the onset and history of Paleo-Pacific slab subduction beneath Eurasian continent. Mesozoic-Paleogene magmatism at the continental margin of Northeast Asia can be subdivided into nine stages that took place in the Early-Middle Triassic, Late Triassic, Early Jurassic, Middle Jurassic, Late Jurassic, early Early Cretaceous, late Early Cretaceous, Late Cretaceous, and Paleogene, respectively. The Triassic magmatism is mainly composed of adakitic rocks, bimodal rocks, alkaline igneous rocks, and A-type granites and rhyolites that formed in syn-collisional to post-collisional extensional settings related to the final closure of the Paleo-Asian Ocean. However, Triassic calc-alkaline igneous rocks in the Erguna-Xing’an massifs were associated with the southward subduction of the Mongol-Okhotsk oceanic slab. A passive continental margin setting existed in Northeast Asia during the Triassic. Early Jurassic calc-alkaline igneous rocks have a geochemical affinity to arc-like magmatism, whereas coeval intracontinental magmatism is composed of bimodal igneous rocks and A-type granites. Spatial variations in the potassium contents of Early Jurassic igneous rocks from the continental margin to intracontinental region, together with the presence of an Early Jurassic accretionary complex, reveal that the onset of the Paleo- Pacific slab subduction beneath Eurasian continent occurred in the Early Jurassic. Middle Jurassic to early Early Cretaceous magmatism did not take place at the continental margin of Northeast Asia. This observation, combined with the occurrence of low-altitude biological assemblages and the age population of detrital zircons in an Early Cretaceous accretionary complex, indicates that a strike-slip tectonic regime existed between the continental margin and Paleo-Pacific slab during the Middle Jurassic to early Early Cretaceous. The widespread occurrence of late Early Cretaceous calc-alkaline igneous rocks, I-type granites, and adakitic rocks suggests low-angle subduction of the Paleo-Pacific slab beneath Eurasian continent at this time. The eastward narrowing of the distribution of igneous rocks from the Late Cretaceous to Paleogene, and the change from an intracontinental to continental margin setting, suggest the eastward movement of Eurasian continent and rollback of the Paleo- Pacific slab at this time.  相似文献   

20.
Blueschist-bearing Osayama serpentinite melange develops beneath a peridotite body of the Oeyama ophiolite which occupies the highest position structurally in the central Chugoku Mountains. The blueschist-facies tectonic blocks within the serpentinite melange are divided into the lawsonite–pumpellyite grade, lower epidote grade and higher epidote grade by the mineral assemblages of basic schists. The higher epidote-grade block is a garnet–glaucophane schist including eclogite-facies relic minerals and retrogressive lawsonite–pumpellyite-grade minerals. Gabbroic blocks derived from the Oeyama ophiolite are also enclosed as tectonic blocks in the serpentinite matrix and have experienced a blueschist metamorphism together with the other blueschist blocks. The mineralogic and paragenetic features of the Osayama blueschists are compatible with a hypothesis that they were derived from a coherent blueschist-facies metamorphic sequence, formed in a subduction zone with a low geothermal gradient (~ 10°C/km). Phengite K–Ar ages of 16 pelitic and one basic schists yield 289–327 Ma and concentrate around 320 Ma regardless of protolith and metamorphic grade, suggesting quick exhumation of the schists at ca 320 Ma. These petrologic and geochronologic features suggest that the Osayama blueschists comprise a low-grade portion of the Carboniferous Renge metamorphic belt. The Osayama blueschists indicate that the 'cold' subduction type (Franciscan type) metamorphism to reach eclogite-facies and subsequent quick exhumation took place in the northwestern Pacific margin in Carboniferous time, like some other circum-Pacific orogenic belts (western USA and eastern Australia), where such subduction metamorphism already started as early as the Ordovician.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号