首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Numerical calculations of the electron cap shape of a rapidly rotating neutron star with a strong magnetic field have been provided. It is supposed that the magnetic dipole axis is aligned, and ejection of positive charged particles from the star's surface absent. The total charge of the star has been calculated. Estimation of the character of charged-particle motion in the electromagnetic field of the star has been obtained. It is shown that two streams of charged particles escape from the star surface. The electron stream moves along the magnetic axis. The electron stream is enveloped by proton-positron stream, which is generated by returning hard electrons accelerated by electromagnetic field of the star.  相似文献   

2.
The expressions are derived for thermal and electric conductivities as well as thermopower of a degenerate relativistic electron gas in the surface layers of neutron stars along the magnetic fieldB=4×1011–1014G for two scattering mechanisms of electrons, namely, for Coulomb scattering on ions in the ion-liquid regime and on high-temperature phonons in the solid regime. The results may be of use to study neutron star cooling rates, nuclear burning of the matter in the surface layers, diffusion of the magnetic field, etc.  相似文献   

3.
The magnetic field distribution in the superfluid, spherical, hadronic core of a rotating neutron star, which consists of vortex and vortex-free zones, is investigated. Due to the effect of entrainment of superconducting protons by rotating superfluid neutrons, a nonuniform magnetic field, the average value of which is constant, is formed in the vortex zone of the neutron star, directed parallel to the star's axis of rotation. It is shown that at the stellar surface, near the equatorial plane, there is a vortex-free zone of macroscopic size in which there is no magnetic field. The magnetic field near the boundaries of the vortex-free zone falls off exponentially with depth into the interior of this zone. This result essentially alters earlier concepts about the magnetic field distribution in the superfluid hadronic core of a neutron star. Outside the hadronic core the magnetic field has a dipole character with a magnetic moment on the order of 1030 g×cm3.  相似文献   

4.
It has been shown that vibrations can be generated in the electron cap of the neutron star (Rylov, 1976, 1977; Jackson, 1976) under certain conditions. The mechanism of generation is like that in a klystron. The electron gas of the cap plays the role of the klystron resonant circuit. The electron beam penetrating the electron cap and returning to the star's surface plays the role of the klystron electron beam. The bunching electron stream along the magnetic axis acts like a strongly directed antenna. The conditions in which it is possible to generate these vibrations were also investigated. The energy of the accelerated primary electrons, the frequency of radiated radiowaves and the degree of the radiation directivity are evaluated.  相似文献   

5.
A self-consistent pulsar magnetospheric model with electron-positron pair production is considered. Unlike conventional models, the primary particles (electrons) are accelerated towards the neutron star and their curvature radiation towards a star generates electron-positron plasma near the neutron star. Inside an outflow channel, the generated plasma flows away from the pulsar magnetosphere. A part of the plasma electrons returns and, being accelerated towards the star, regenerate the plasma by their curvature radiation. It is shown that plasma production near the star causes an appearance of positron and electron equatorial belts. The plasma concentration and the flux of the returning electrons are estimated. The portion of the energy entering into the pulsar magnetosphere and its dependence on pulsar parameters are estimated.  相似文献   

6.
The production of pairs of magnetic monopoles-antimonopoles should be expected in the interactions of the high energy particles accelerated by pulsars. In the frame of the Sturrock model, the interactions of the very high energy protons emitted from the polar caps with the secondary electrons can be a source of magnetic monopoles. It may be the dominating process in very young pulsars such as the Crab pulsar. In the polar gap model of Ruderman and Sutherland, magnetic monopoles can be created by the electrons accelerated across the cap and interacting with the neutron star crust or by the negatons and positrons interacting head-on inside the sparks.Half of these monopoles are accelerated towards the interstellar medium by the pulsar magnetic field and the others are likely to be trapped inside the neutron star crust. This leads to a decrease in the pulsar magnetic field which would imply that the characteristic age may not give the true age of the pulsar This can be related to the discrepancy between and the real age of the Crab pulsar and the kinematical ages obtained from the measurement of the proper motion of some pulsars. Furthermore, the trapping of magnetic monopoles close under the surface of the neutron star perturbates the pulsar electrodynamics. To have such observable effects, it is shown that the cross-sections for the magnetic monopoles production can be several orders of magnitude smaller than the upper limits so far derived from cosmic rays or accelerator data.The possibility that the magnetic monopoles, accelerated outwards, are responsible for the highest energy extensive air showers, is considered.The production of an avalanche of secondary monopoles, due to acceleration by the magnetic field in the neutron star crust, is possible and the consequences of this process are considered.  相似文献   

7.
We discuss the time profiles and the energy spectra of the γ-ray burst event of 1979 March 5. We find: (1) the energy spectrum in the burst phase (< 0s, 3) can be fitted by a thermal bremsstrahlung with kT ? 50KeV, plus a bremsstrahlung of relativistic electrons with equivalent Lorentz factor γ = 3.3 and a broad line at 430KeV. (2) The average spectrum in the pulsating phase can be fitted with a bremsstrahlung of thermal electrons with kT ? 40KeV. (3) The time profile in the pulsating phase can be fitted by the bremsstrahlung of a radiative region which is cooling in time. Accordingly, we propose the following morphological model: somehow a large amount of matter is suddenly injected onto the surface of a neutron star at its magnetic poles. The gravitational energy of the electrons is transformed into radiation during the burst phase through the bremsstrahlung of the electrons. The gravitational energy of the protons is first transformed into heat in a radiative region, which then radiates during the pulsating phase by the bremsstrahlung of the thermal electrons.  相似文献   

8.
The constraints on the properties of neutron star matter from the mass of neutron star PSR J1614-2230 are examined in the framework of the relativistic mean field theory. We find that there are little differences between the σ potentials of large mass neutron star and those of canonnical mass neutron star. For potentials of ω, ρ, neutrons and electrons, the values corresponding to the large mass neutron star are larger than those to the canonnical mass neutron star as the baryon number density is more than a certain value. We also find that for the relative particle number density of electrons, muons, neutrons and protons and the pressure of the neutron star, the values corresponding to the large mass neutron star are far larger than those to the canonnical mass neutron star. For the relative particle number density of hyperons Λ, Σ?, Σ0, Σ+ and Ξ?, the values corresponding to the large mass neutron star are far smaller than those to the canonnical mass neutron star. These mean that the larger mass of neutron star is more advantageous to the production of protons but is not advantageous to the production of hyperons.  相似文献   

9.
A two-dimensional potential energy surface of an H 2 + molecular ion is calculated for the case of the strong magnetic field of the neutron starB=1011–1013 G. It is shown that the dependence of the potential energy from the angle between the magnetic field direction and the internuclear axis becomes very sharp as the magnetic field increases. The obtained potential energy surfaces can be used for studying the vibrational-rotational structure of the H 2 + spectrum in a strong magnetic field and the development of the observational methods for the determination of the magnetic field of a neutron star.  相似文献   

10.
Z. Osmanov 《New Astronomy》2010,15(4):351-355
We investigate the role of centrifugal acceleration of electrons in producing the very high energy (VHE) radiation from the BL Lac object 1ES 0806+524, recently detected by VERITAS. The efficiency of the inverse Compton scattering (ICS) of the accretion disk thermal photons against rotationally accelerated electrons is examined. By studying the dynamics of centrifugally induced outflows and by taking into account a cooling process due to the ICS, we estimate the maximum attainable Lorentz factors of particles and derive corresponding energetic characteristics of the emission. Examining physically reasonable parameters, by considering the narrow interval of inclination angles (0.7–0.95°) of magnetic field lines with respect to the rotation axis, it is shown that the centrifugally accelerated electrons may lead to the observational pattern of the VHE emission, if the density of electrons is in a certain interval.  相似文献   

11.
本文计算和讨论了强磁场下由冷的催化物质组成的中子星外壳的组份和状态方程。文中考虑了晶格能和强磁场下均匀电子气体的交换能的贡献.得出结论:(1)强磁场使低密度区的状态方程变软;(2)强磁场对高密度区的状态方程几乎没有影响;(3)核质量公式对外壳的组份影响较明显.  相似文献   

12.
The general-relativistic Ohm’s law for a two-component plasma which includes the gravitomagnetic force terms even in the case of quasi-neutrality has been derived. The equations that describe the electromagnetic processes in a plasma surrounding a neutron star are obtained by using the general relativistic form of Maxwell equations in a geometry of slow rotating gravitational object. In addition to the general-relativistic effect first discussed by Khanna and Camenzind (Astron. Astrophys. 307:665, 1996) we predict a mechanism of the generation of azimuthal current under the general relativistic effect of dragging of inertial frames on radial current in a plasma around neutron star. The azimuthal current being proportional to the angular velocity ω of the dragging of inertial frames can give valuable contribution on the evolution of the stellar magnetic field if ω exceeds 2.7×1017(n/σ) s−1 (n is the number density of the charged particles, σ is the conductivity of plasma). Thus in general relativity a rotating neutron star, embedded in plasma, can in principle generate axial-symmetric magnetic fields even in axisymmetry. However, classical Cowling’s antidynamo theorem, according to which a stationary axial-symmetric magnetic field can not be sustained against ohmic diffusion, has to be hold in the general-relativistic case for the typical plasma being responsible for the rotating neutron star.  相似文献   

13.
This paper deals with a detailed analysis of spectral and imaging observations of the November 5, 1998 (Hα 1B, GOES M1.5) flare obtained over a large spectral range, i.e., from hard X-rays to radiometric wavelengths. These observations allowed us to probe electron acceleration and transport over a large range of altitudes that is to say within small-scale (a few 103 km) and large-scale (a few 105 km) magnetic structures. The observations combined with potential and linear force-free magnetic field extrapolations allow us to show that: (i) Flare energy release and electron acceleration are basically driven by loop–loop interactions at two independent, low lying, null points of the active region magnetic field; (ii) <300 keV hard X-ray-producing electrons are accelerated by a different process (probably DC field acceleration) than relativistic electrons that radiate the microwave emission; and (iii) although there is evidence that hard X-ray and decimetric/metric radio-emitting electrons are produced by the same accelerator, the present observations and analysis did not allow us to find a clear and direct magnetic connection between the hard X-ray emitting region and the radio-emitting sources in the middle corona.  相似文献   

14.
Pneuman  G. W. 《Solar physics》1984,94(2):387-411
Adopting the point of view that a coronal transient is a defined magnetic structure, it must be diamagnetic with respect to the external ambient magnetic field, i.e., the external field lines cannot penetrate the structure. If this is so, an integral approach involving only external forces can be very useful for studying the conditions for acceleration and large-scale dynamical behavior of the transient.After a discussion of a suggested transient configuration based upon observations of prominences, flare loops, and transient - filament relative orientations observed by Trottet and MacQueen (1980), we demonstrate the diamagnetic approach to this problem through a particularly simplified model. Necessary conditions for upward acceleration of the transient are discussed in some detail. One such plausible initiation mechanism is shown to be a constriction of the structure near its base by the external forces. This mechanism not only can provide the upward acceleration for the transient but is also compatible with the observation of hot rising flare loops during two-ribbon flare which show evidence for magnetic reconnection.We have studied the equilibrium conditions and dynamical behavior of the transient using this mechanism for two limiting cases - that in which the gas pressure in the structure dominates over the magnetic pressure and that in which the magnetic pressure dominates. For both cases, the required equilibrium conditions are compatible with observed coronal parameters. The dynamical behavior upon inward constriction, however, resembles the observed characteristics for transients best for the magnetically dominated case. For example, in the pressure-dominated case, the required temperatures for acceleration appear somewhat high being in excess of about 1.9 × 106 K. If, in addition, the internal temperature declines adiabatically during the outward motion, the structure does not reach inifinity unless its initial temperature exceeds about 3 × 106 K but stops a some radial distance, returns to the Sun only to be accelerated outward again in the same fashion. The rather stringent requirements on internal temperature for the pressure-dominated case in addition to the expectation that pressure-dominated transients should evolve into a thin pencil shape instead of maintaining an approximately self-similar profile as observed are strong arguments in favor of the magnetically dominated case.Based upon the above results, we suggest that the reconnection process evidenced in two-ribbon flares may not necessarily be the result of the relaxation of a locally open field configuration produced by the transient as described by Kopp and Pneuman (1976) but, instead, that the acceleration of the transient and the two-ribbon flare both may be produced by a common force, namely that provided by the constricting effect of the external magnetic field displaced by the presence of the structure.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

15.
We compute the characteristic parameters of the magneto-dipole radiation of a neutron star undergoing torsional seismic vibrations under the action of Lorentz restoring force about an axis of a dipolar magnetic field experiencing decay.After a brief outline of the general theoretical background of the model of a vibration-powered neutron star,we present numerical estimates of basic vibration and radiation characteristics,such as frequency,lifetime and luminosity,and investigate their time dependence on magn...  相似文献   

16.
A gas cocoon surrounding a neutron star can be heated to a high temperature by the low frequency radiation emitted by the neutron star whose rotation axis is inclined to its magnetic axis. This heated gas can emit X-rays and may be identified with thermal X-ray sources. If the neutron star emission shows periodicities larger than the cooling time of the gas, these will be reflected in the emission of X-ray; the recently observed X-ray sources which show oscillations and quasiperiodicities (Oscillars) may be such sources.  相似文献   

17.
The neutrino-pair radiation by electrons in a non-quantizing magnetic field B is investigated. For a relativistic degenerate electron gas the emissivity of this process is mainly given by \documentclass{article}\pagestyle{empty}\begin{document}$ \varepsilon _r = 5 \times 10^{15} (pF/mc)^{4/3} \,B_{13}^{2/3} T_y^{12/8} \,{\rm erg} \times {\rm cm}^{ - 3} \times {\rm sec}^{- 1} $\end{document} where pF is the electron Fermi momentum. Under typical neutron star conditions at B ∼ 1013G neutrino synchrotron radiation appears to be one of the most effective mechanisms of neutrino energy loss in the envelopes of neutron stars; this mechanism may also compete with other known neutrino production mechanisms in the neutron star cores if pion condensate or quark matter is absent.  相似文献   

18.
A mechanism of electron acceleration and storage of energetic particles in solar and stellar coronal magnetic loops, based on oscillations of the electric current, is considered. The magnetic loop is presented as an electric circuit with the electric current generated by convective motions in the photosphere. Eigenoscillations of the electric current in a loop induce an electric field directed along the loop axis. It is shown that the sudden reductions that occur in the course of type IV continuum and pulsating type III observed in various frequency bands (25?–?180 MHz, 110?–?600 MHz, 0.7?–?3.0 GHz) in solar flares provide evidence for acceleration and storage of the energetic electrons in coronal magnetic loops. We estimate the energization rate and the energy of accelerated electrons and present examples of the storage of energetic electrons in loops in the course of flares on the Sun or on ultracool stars. We also discuss the efficiency of the suggested mechanism as compared with the electron acceleration during the five-minute photospheric oscillations and with the acceleration driven by the magnetic Rayleigh–Taylor instability.  相似文献   

19.
We analyze particle acceleration processes in large solar flares, using observations of the August, 1972, series of large events. The energetic particle populations are estimated from the hard X-ray and γ-ray emission, and from direct interplanetary particle observations. The collisional energy losses of these particles are computed as a function of height, assuming that the particles are accelerated high in the solar atmosphere and then precipitate down into denser layers. We compare the computed energy input with the flare energy output in radiation, heating, and mass ejection, and find for large proton event flares that:
  1. The ~10–102 keV electrons accelerated during the flash phase constitute the bulk of the total flare energy.
  2. The flare can be divided into two regions depending on whether the electron energy input goes into radiation or explosive heating. The computed energy input to the radiative quasi-equilibrium region agrees with the observed flare energy output in optical, UV, and EUV radiation.
  3. The electron energy input to the explosive heating region can produce evaporation of the upper chromosphere needed to form the soft X-ray flare plasma.
  4. Very intense energetic electron fluxes can provide the energy and mass for interplanetary shock wave by heating the atmospheric gas to energies sufficient to escape the solar gravitational and magnetic fields. The threshold for shock formation appears to be ~1031 ergs total energy in >20 keV electrons, and all of the shock energy can be supplied by electrons if their spectrum extends down to 5–10 keV.
  5. High energy protons are accelerated later than the 10–102 keV electrons and most of them escape to the interplanetary medium. The energetic protons are not a significant contributor to the energization of flare phenomena. The observations are consistent with shock-wave acceleration of the protons and other nuclei, and also of electrons to relativistic energies.
  6. The flare white-light continuum emission is consistent with a model of free-bound transitions in a plasma with strong non-thermal ionization produced in the lower solar chromosphere by energetic electrons. The white-light continuum is inconsistent with models of photospheric heating by the energetic particles. A threshold energy of ~5×1030 ergs in >20 keV electrons is required for detectable white-light emission.
The highly efficient electron energization required in these flares suggests that the flare mechanism consists of rapid dissipation of chromospheric and coronal field-aligned or sheet currents, due to the onset of current-driven Buneman anomalous resistivity. Large proton flares then result when the energy input from accelerated electrons is sufficient to form a shock wave.  相似文献   

20.
In this paper we present a new result, namely that the primal magnetic field of the collapsed core during a supernova explosion will, as a result of the conservation of magnetic flux, receive a massive boost to more than 90 times its original value by the Pauli paramagnetization of the highly degenerate relativistic electron gas just after the formation of the neutron star. Thus, the observed super-strong magnetic field of neutron stars may originate from the induced Pauli paramagnetization of the highly degenerate relativistic electron gas in the interior of the neutron star. We therefore have an apparently natural explanation for the surface magnetic field of a neutron star.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号