首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Grader layered intrusion is part of the Havre-Saint-Pierre anorthosite in the Grenville Province (Quebec, Canada). This intrusion has a basin-like morphology and contains significant resources of Fe–Ti–P in ilmenite and apatite. Outcropping lithologies are massive oxide alternating with anorthosite layers, banded ilmenite–apatite–plagioclase rocks and layered oxide apatite (gabbro-)norites. Drill cores provide evidence for stratigraphic variations of mineral and whole rock compositions controlled by fractional crystallization with the successive appearance of liquidus phases: plagioclase and ilmenite followed by apatite, then orthopyroxene together with magnetite, and finally clinopyroxene. This atypical sequence of crystallization resulted in the formation of plagioclase–ilmenite–apatite cumulates or “nelsonites” in plagioclase-free layers. Fine-grained ferrodiorites that cross-cut the cumulates are shown to be in equilibrium with the noritic rocks. The high TiO2 and P2O5 contents of these assumed liquids explains the early saturation of ilmenite and apatite before Fe–Mg silicates, thus the nelsonites represent cumulates rather than crystallized Fe–Ti–P-rich immiscible melts. The location of the most evolved mineral and whole rock compositions several tens of meters below the top of the intrusion, forming a sandwich horizon, is consistent with crystallization both from the base and top of the intrusion. The concentrations of V and Cr in ilmenite display a single fractionation path for the different cumulus assemblages and define the cotectic proportion of ilmenite to 21 wt.%. This corresponds to bulk cotectic cumulates with ca. 8 wt.% TiO2, which is significantly lower than what is commonly observed in the explored portion of the Grader intrusion. The proposed mechanism of ilmenite-enrichment is the lateral removal of plagioclase due to its relative buoyancy in the dense ferrodiorite melt. This plagioclase has probably accumulated in other portions of the intrusion or has not been distinguished from the host anorthosite.  相似文献   

2.
Mafic rocks at Lake Nipigon provide a record of rift-related continental basaltic magmatism during the Keweenawan event at 1109 Ma. The mafic rocks consist of an early, volumetrically minor suite of picritic intrusions varying in composition from olivine gabbro to peridotite and a later suite of tholeiitic diabase dikes, sheets and sills. The diabase occurs primarily as two 150 to 200 m thick sills with a textural stratigraphy indicating that the sills represent single cooling units. Compositional variation in the sills indicates that they crystallized from several magma pulses.The diabases are similar in chemistry to olivine tholeiite flood basalts of the adjacent Keweenawan rift, particularly with respect to low TiO2, K2O and P2O5. The picrites have higher TiO2, K2O and P2O5 than the diabases and are similar to, but more primitive than, high Fe-Ti basalts which erupted early in the Keweenawan volcanic sequence.All of the rocks crystallized from fractionated liquids. The picrites are cumulate rocks derived at shallow crustal depths from a magma controlled predominantly by olivine fractionation. Picritic chills are in equilibrium with olivine phenocrysts of composition Fo80 and are interpreted to represent the least evolved liquids observed. The parental magma of the picrites was probably Fe rich relative to the parental magma of the diabase. The diabase sills crystallized from an evolved basaltic liquid controlled by cotectic crystallization of plagioclase and lesser olivine and pyroxene.The emplacement of dense olivine phyric picritic magmas early in the sequence, followed by later voluminous compositionally evolved magmas of lower density suggests the development of a crustal density filter effect as the igneous event reached a peak. Delamination of the crust-mantle interface may have resulted in the transition from olivine controlled primitive magma to fractionated magma through the development of crustal underplating.  相似文献   

3.
LATYPOV  RAIS M. 《Journal of Petrology》2003,44(9):1579-1618
Marginal reversals—a common feature of many basic differentiatedigneous bodies regardless of their size and bulk composition—areremarkable in being a mirror of the Layered Series. These aredistinguished by: (1) an apparent lack of mass balance betweenthe lower part of the marginal reversals, including chilledmargins, and the bulk composition of the intrusions; (2) mineralcrystallization sequences and (3) mineral compositional trends,which are both essentially the opposite of those in the LayeredSeries; (4) the cotectic composition of rocks composing themarginal reversals; (5) the capacity to form from both phenocryst-richand phenocryst-free parental magmas; (6) the capability to developalong the floor, subvertical walls and even the roof of magmachambers. None of the current models of magma chamber evolutioncan provide an adequate explanation for the characteristic featuresof the marginal reversals. The problem can be resolved in thecontext of a model combining Soret diffusion in thin liquidboundary layers at the magma chamber margins and vigorous convectionin the main magma body. The key proposal is that the formationof marginal reversals takes place through the non-equilibriumevolution of liquid boundary layers as a result of a temperaturegradient imposed by the cold country rock. The fundamental explanationfor the mirror image of a marginal reversal is that the non-equilibriumSoret fractionation works in a manner opposite to that of theequilibrium crystal–liquid fractionation that producesthe Layered Series. KEY WORDS: marginal compositional reversals; sills; layered intrusions; Soret fractionation  相似文献   

4.
J.C. Duchesne  B. Charlier 《Lithos》2005,83(3-4):229-254
Whole-rock major element compositions are investigated in 99 cumulates from the Proterozoic Bjerkreim–Sokndal layered intrusion (Rogaland Anorthosite Province, SW Norway), which results from the crystallization of a jotunite (Fe–Ti–P-rich hypersthene monzodiorite) parental magma. The scattering of cumulate compositions covers three types of cumulates: (1) ilmenite–leuconorite with plagioclase, ilmenite and Ca-poor pyroxene as cumulus minerals, (2) magnetite–leuconorite with the same minerals plus magnetite, and (3) gabbronorite made up of plagioclase, Ca-poor and Ca-rich pyroxenes, ilmenite, Ti-magnetite and apatite. Each type of cumulate displays a linear trend in variation diagrams. One pole of the linear trends is represented by plagioclase, and the other by a mixture of the mafic minerals in constant proportion. The mafic minerals were not sorted during cumulate formation though they display large density differences. This suggests that crystal settling did not operate during cumulate formation, and that in situ crystallization with variable nucleation rate for plagioclase was the dominant formation mechanism. The trapped liquid fraction of the cumulate plays a negligible role for the cumulate major element composition. Each linear trend is a locus for the cotectic composition of the cumulates. This property permits reconstruction by graphical mass balance calculation of the first two stages of the liquid line of descent, starting from a primitive jotunite, the Tjörn parental magma. Another type of cumulate, called jotunite cumulate and defined by the mineral association from the Transition Zone of the intrusion, has to be subtracted to simulate the most evolved part of the liquid line of descent. The proposed model demonstrates that average cumulate compositions represent cotectic compositions when the number of samples is large (> 40). The model, however, does not account for the K2O evolution, suggesting that the system was open to contamination by roof melts. The liquid line of descent corresponding to the Bjerkreim–Sokndal cumulates differs slightly from that obtained for jotunitic dykes in that the most Ti-, P- and Fe-rich melts (evolved jotunite) are lacking. The constant composition of the mafic poles during intervals where cryptic layering is conspicuous is explained by a compositional balance between the Fe–Ti oxide minerals, which decrease in Fe content in favour of Ti, and the pyroxenes which increase in Fe.  相似文献   

5.
U. Kramm  L. N. Kogarko 《Lithos》1994,32(3-4):225-242
Nd and Sr compositions of the highly evolved agpaitic nepheline syenites and associated ijolites and carbonatites from the Khibina and the Lovozero alkaline centres define three magma sources. Isotopes of the voluminous nepheline syenites and ijolites of Khibina intrusions III, IV, V, VI and VII as well as of nepheline syenites of Lovozero lie on the Kola Carbonatite Mixing Line which is close to the “mantle array” defined by the components “bulk earth” and “prema” on a Sr---Nd plot. The Khibina carbonatites and associated silicate rocks of intrusion VIII, which have more radiogenic Sr, did not evolve from the same parent magma as the nepheline syenites.

Isotopic constraints exclude a pre-enrichment of Rb, Sr, Sm and Nd in the lithospheric mantle below Kola over more than 10 Ma prior to the crystallization of the magmas. A formation of the melts involving major participation of the Precambrian crust of the Baltic Shield is also excluded.

The lack of significant Eu anomalies in the Lovozero nepheline syenites gives evidence that the agpaitic magmas in the Kola region did not form from basaltic liquids by fractional crystallization of plagioclase or anorthoclase at crustal levels. A formation from nephelinite or nepheline benmoreite magmas at mantle pressures is more likely, possibly by dynamic flow crystallization.

Enrichment factors suggest that large-ion lithophile and high field-strength elements as Ta, La, Nb and Zr, which are highly concentrated in the agpaites, were scavenged from mantle volumes of some 100,000 km3. An enrichment of these elements prior to magma formation may have been performed by volatile transfer.

The well-defined whole-rock isochrons of the Khibina III–VII and the Lovozero agpaites of c. 370 Ma date the magma separation for the different intrusion, if these melts are cogenetic and formed by fractional crystallization in a Khibina and a Lovozero magma chamber. If, however, Rb and Sr were collected by a process of volatile transfer, and the initial Sr isotopic compositions of the two distinguished agpaite suites are, therefore, averages of the sampled mantle volumes, the Rb---Sr whole-rock isochron ages of c. 370 Ma would date this process of element collection. The concordance of the whole-rock ages with the mineral ages of Khibina and Lovozero samples is then further evidence for the short period between magma genesis, intrusion and crystallization.  相似文献   


6.
The Wangrah Suite granites (Lachlan Fold Belt, Australia) reflect different stages of differentiation in the magmatic history of an A-type plutonic suite. In this study we use experimentally determined phase equilibria of four natural A-type granitic compositions of the Wangrah Suite to constrain phases and phase compositions involved in fractionation processes. Each composition represents a distinct granite intrusion in the Wangrah Suite. The intrusions are the Danswell Creek (DCG), Wangrah (WG), Eastwood (EG) and Dunskeig Granite (DG), ordered from “most mafic” to “most felsic” by increasing SiO2 and decreasing FeOtotal.

Experimental investigation show that the initial water content in melts from DCG is between 2–3 wt. % H2O. If the DCG is viewed as the parental magma for the Wangrah Suite, then (1) fractionation of magnetite, orthopyroxene and plagioclase ( 20 wt. %) of the DCG composition, leads to compositions similar to that of the EG; (2) further fractionation of plagioclase, quartz, K-feldspar and biotite ( 40 wt. %) from the EG composition, leads to the DG composition. These fractionation steps can occur nearly isobarically and are confirmed by bulk rock Ba, Sr, Rb and Zr concentrations.

In contrast, the generation of the most abundant WG composition cannot be explained by fractional crystallisation from the DCG at isobaric conditions because of the high K2O content of this granite. Magma Mixing could be the process to explain the chemical distinctiveness of the Wangrah Granite from all the other granites of the Wangrah Suite.  相似文献   


7.
WIEBE  R. A. 《Journal of Petrology》1988,29(2):383-411
The Newark Island Layered Intrusion occurs in the ProterozoicNain anorthosite complex of Labrador. It contains an exceptionalsuite of cumulates ranging from troctolites and gabbros to quartzmonzonites and intermediate hybrid rocks. These layered rocksformed in a chamber that was periodically fed by a wide rangeof basic and acid magmas, the compositions of which are preservedin numerous feeder dikes. Where basic magmas commingled withcooler granitic magma, they commonly formed chilled pillows.Because of periodic injections of both acid and basic magmasthe magma chamber was compositionally stratified for much ofits existence. At times, granitic cumulates formed along thechamber walls while mafic to intermediate hybrid cumulates formedon the floor. Stratigraphic and structural relations indicatethat the magma chamber grew upward during deposition, and thatit evolved from a west-dipping sheet to a north-plunging synform.Three major episodes of expansion can be linked to injectionsof large (e.g., 20km3) volumes of acid magma. The entry of thisacid magma into the chamber disrupted previously formed cumulates,creating enlarged feeders down which resident basic magma collapsed.The resultant structures (troughs) contain strongly chilledpillows of resident basic magma that existed near the bottomof the chamber at the time of acid replenishment.  相似文献   

8.
Analysis and simulation of magma mixing processes in 3D   总被引:2,自引:0,他引:2  
D. Perugini  G. Poli  G. D. Gatta 《Lithos》2002,65(3-4):313-330
Magma mixing structures from the lava flow of Lesbos (Greece) are analyzed in three dimensions using a technique that, starting from the serial sections of rock cubes, allows the reconstruction of the spatial distribution of magmas inside rocks. Two main kinds of coexisting structures are observed: (i) “active regions” (AR) in which magmas mix intimately generating wide contact surfaces and (ii) “coherent regions” (CR) of more mafic magma that have a globular shape and do not show large deformations. The intensity of mingling is quantified by calculating both the interfacial area (IA) between interacting magmas and the fractal dimension of the reconstructed structures. Results show that the fractal dimension is linearly correlated with the logarithm of interfacial area allowing discrimination among different intensities of mingling.

The process of mingling of magmas is simulated using a three-dimensional chaotic dynamical system consisting of stretching and folding processes. The intensity of mingling is measured by calculating the interfacial area between interacting magmas and the fractal dimension, as for natural magma mixing structures. Results suggest that, as in the natural case, the fractal dimension is linearly correlated with the logarithm of the interfacial area allowing to conclude that magma mixing can be regarded as a chaotic process.

Since chemical exchange and physical dispersion of one magma inside another by stretching and folding are closely related, we performed coupled numerical simulations of chaotic advection and chemical diffusion in three dimensions. Our analysis reveals the occurrence in the same system of “active mixing regions” and “coherent regions” analogous to those observed in nature. We will show that the dynamic processes are able to generate magmas with wide spatial heterogeneity related to the occurrence of magmatic enclaves inside host rocks in both plutonic and volcanic environments.  相似文献   


9.
G. Dias  J. Leterrier 《Lithos》1994,32(3-4):207-223
The late tectonic Braga plutonic complex in the “Centro Iberian Zone”, North Portugal, was emplaced during the Hercynian orogeny within a Silurian sedimentary sequence and displays an acid-basic association which consists of three well-defined intrusions: the biotite-dominant Braga granite, minor bodies of gabbro to granodiorite composition and the mildly peraluminous Gonça leucogranite. These three plutonic suites present field relationships indicating a synchronous magmatic emplacement for which a Rb---Sr age of 310±10 Ma is obtained. The distribution of the three plutonic units along regular curves in major and trace element diagrams suggests that the different units can be genetically related. However, the Rb---Sr and Sm---Nd isotopic results do not indicate a unique homogeneous source and a simple fractional crystallization process. The gabbros have chemical characters (high K, Ba, Sr and light rare-earth elements and low Nb, Ti and Zr contents) and isotopic compositions (Sri=0.70497 and εNd=−2.5), which suggest an alkaline magmatic affinity of shoshonitic type. They are probably derived from an enriched mantle source. In contrast, the peraluminous Gonça leucogranite (Sri=0.70933 and εNd=−6.8) is more likely the result of crustal anatexis. The Braga granite and the evolved members of the basic series have an intermediate isotopic composition (Sri=0.70532 to 0.70733 and εNd=−3.0 to −6.2) which can be interpreted in terms of an hybridization process between the two previous end-members. The chemical and Sr---Nd isotopic compositions of the Braga plutonic series can be explained by an assimilation-fractional crystallization (AFC) model between a mantle-derived magma (equivalent to the gabbros) and a crust-derived magma (the Gonça granite).  相似文献   

10.
Although there are many mafic-ultramafic intrusions in the western and central regions of Mongolia, Central Asian Orogenic Belt (CAOB), no economic-grade Ni-Cu deposits have yet been discovered. To understand the economic Ni-Cu deposit potential of the intrusions in central Mongolia, the parental magma affinity and sulfide saturation of the Oortsog, Dulaan, and Nomgon Ni-Cu mineralized mafic-ultramafic intrusions are studied. These three intrusions are predominantly gabbroic in composition, while the Oortsog and Dulaan intrusions also contain small proportions of peridotites. The parental magmas of the Oortsog and Dulaan intrusions are tholeiitic, as indicated by their Cr-spinel and clinopyroxene compositions, whereas the parental magma of the Nomgon intrusions is likely calc-alkaline. The compositions of Cr-spinel and clinopyroxene, combined with the presence of significant Nb-Ta depletions, indicate that these rocks were most likely derived from modified mantle sources. Both the Oortsog and Nomgon intrusions form two clusters in terms of their olivine composition, suggesting that multiple magma surges were involved during their emplacement. The relatively low Fo values and Ni contents in olivine from the three intrusions compared to those from Ni-Cu deposits in NW China, as well as those in the Voisey’s Bay deposit in Canada, indicate that the three intrusions were crystallized from relatively evolved magmas. The Cu/Zr ratios of rocks of the Oortsog, Dulaan, and Nomgon intrusions are higher than 1, suggesting that these rocks contain cumulus sulfide. This, coupled with the presence of rounded sulfide inclusions in olivine of the Oortsog and Dulaan intrusions, suggests that sulfide saturation occurred before or during olivine crystallization. The distribution patterns of platinum group elements (PGEs) of the Dulaan and Oortsog intrusions record slight Rh, Pt, and Pd (PPGE) enrichment relative to Os, Ir, and Rh (IPGE). Furthermore, the Ni/Cu ratios of sulfide-bearing rocks from the Oortsog intrusion vary from 1.8 to 3.8, which are consistent with those of the Ni-Cu sulfide deposits in NW China. In contrast, the Ni/Cu ratios of sulfide-bearing rocks from the Nomgon intrusion are extremely low (0.03 to 0.07). This, together with the significant enrichment in PPGE relative to IPGE, suggests that these sulfides of the Nomgon intrusion were segregated from a magma that was extremely enriched in Cu and PPGE but depleted in Ni and IPGE. The characteristics of the chalcophile elements in these intrusions are attributed to the fact that the derivation of the Nomgon magma was significantly different from that of the Dulaan and Oortsog parental magmas. Overall, although the parental magmas of the intrusions in central Mongolia are more evolved than those in NW China, they are comparable in terms of the sizes of their intrusions, constituent minerals, and mineral chemistry. These similarities suggest that the intrusions in central Mongolia have economic Ni-Cu sulfide potential. Furthermore, intrusions similar to the Nomgon intrusion may feature PGE mineralization potential.  相似文献   

11.
Cliff S.J. Shaw   《Lithos》1997,40(2-4):243-259
The Coldwell alkaline complex is a large (> 350 km2) gabbro and syenite intrusion on the north shore of Lake Superior. It was emplaced at 1108 Ma during early magmatic activity associated with the formation of the Mid-Continent Rift of North America. The eastern gabbro forms a partial ring dyke on the outer margin of the complex and consists of at least three discrete intrusions. The largest of these is the layered gabbro that comprises a 300 m thick fine- to medium-grained basal unit overlain by up to 1100 m of variably massive to layered gabbroic cumulates which vary from olivine gabbro to anorthosite. Several xenoliths of Archaean metamorphic rocks that range in size from 10's to 100's of meters are present in the central part of the intrusion. Within discrete horizons in the layered gabbro are many centimeter- to meter-scale, gabbroic xenoliths. The main cumulus minerals, in order of crystallization, are plagioclase, olivine and clinopyroxene ± Fe-Ti oxides. Biotite and Fe-Ti-oxide are the dominant intercumulus phases. Orthopyroxene occurs not as a cumulus phase but as peritectic overgrowths on cumulus olivine. A detailed petrographic and mineral chemical study of samples from two stratigraphically controlled traverses through the layered gabbro indicates that the stratigraphy cannot be correlated along the 33 km strike of the ring dyke. Mineral compositions show both normal and reversed fractionation trends. These patterns are interpreted to record at least three separate intrusions of magma into restricted dilatant zones within the ring dyke possibly associated with ongoing caldera collapse. Calculations of parental melt composition using mineral — melt equilibria show that even the most primitive gabbros crystallized from an evolved magma with mg# of 0.42-0.49. The presence of orthopyroxene overgrowths on cumulus olivine suggests rising silica activity in the melt during crystallization and implies a subalkaline parentage for the layered gabbro.  相似文献   

12.
《Gondwana Research》2002,5(2):519-534
The Capivaras Diorite, in the Vila Nova region, NW of the Sul-rio-grandense Shield, is composed of six NE- to NNE-oriented rock bodies of late-tectonic emplacement relative to the D3 deformation phase which forms subvertical high-strain zones in basement gneiss sequences. Within these intrusive bodies, a shape foliation is present, generally parallel to contacts and displaying a local solid-state deformational component. The internal structure of the Capivaras Diorite main intrusion is marked by a zone of intense flow and mingling, characterized by strong shape foliation and layers of variable texture and composition, which result from cumulative processes, heterogeneous flow and interaction of coeval, compositionally contrasting magmas. The central part of this intrusion is texturally homogeneous and slightly foliated, even though cumulative processes have remained important during its formation. Along the contact with basement gneisses, fine-grained diorites are found, which are considered to be compositionally close to the parental magma of the Capivaras Diorite. This magma has a mildly alkaline affinity and shows moderate to high contents of Zr, Ti and P. Highly-fractionated REE patterns, low Nb contents, as well as high contents of K, Sr, Ba, and Rb, are suggestive of its provenance from mantle sources which have been previously affected by subduction processes, such as those of mature magmatic arcs or post-collisional settings. Magmatic evolution was controlled by cumulative processes and gave origin to pyroxene orthocumulates, plagioclase-pyroxene orthocumulates, pyroxene adcumulates, and more rarely plagioclase adcumulates. The cumulative origin of these rocks is indicated by field, textural and geochemical features, which are distinct from those of crystallized liquids. The compositional diversity of cumulates has led to the generation of compositionally different melts. The early-formed pyroxene cumulates have caused Ca, Al, Na, Ba, and Sr enrichment in the magmatic liquid, leading to plagioclase crystallization and accumulation. Coarse-grained mafelsic cumulates were formed during the late stages of magmatic crystallization, due to volatile enrichment of the intercumulus liquid. Considering geological relations, as well as tectonic and compositional features of the Capivaras Diorite, it is interpreted as part of Neoproterozoic magmatism related to the post-collisional stage of Brasiliano/Pan-African Orogenic Cycle in southern Brazil.  相似文献   

13.
Ultramafic and mafic xenoliths of magmatic origin, sampled in the Beaunit vent (northern French Massif Central), derive from the Permian (257 Ma) Beaunit layered complex (BLC) that was emplaced at the crust-mantle transition zone (∼1 GPa). These plutonic xenoliths are linked to a single fractional crystallisation process in four steps: peridotitic cumulates; websteritic cumulates; Al-rich mafic cumulates (plagioclase, pyroxenes, garnet, amphibole and spinel) and finally low-Al mafic cumulates. This sequence of cumulates can be related to the compositional evolution of hydrous Mg basaltic magma that evolved to high-Al basalt and finally to andesitic basalt. Sr and Nd isotopic compositions confirm the co-genetic character of the various magmatic xenoliths and argue for an enriched upper mantle source comparable to present mantle wedges above subduction zones. LILE, LREE and Pb enrichment are a common feature of all xenoliths and argue for an enriched sub-alkaline transitional parental magma. The existence of a Permian magma chamber at 30 km depth suggests that the low-velocity zone observed locally beneath the Moho probably does not represent an anomalous mantle but rather a sequence of mafic/ultramafic cumulates with densities close to those of mantle rocks.  相似文献   

14.
Numerous tholeiitic mafic-ultramafic intrusions occurring in the Avalon and the Gander terranes of the Appalachian Orogen host magmatic Ni-Cu sulfide accumulations. The sulfide occurrences of the Gander terrane are depleted in the platinum-group elements (PGE). Total PGE abundances in these intrusions do not exceed several hundreds of ppb. The Mechanic intrusion occurring in the Avalon terrane, on the other hand, has PGE concentrations as high as 2400 ppb. Low PGE levels in the Gander terrane can be explained by equilibration of the immiscible sulfide melt with a low proportion of silicate magma. One possible explanation would be that the parental magmas for these intrusions were sulfur saturated before leaving their source region. An early sulfide fractionation during migration to the upper crustal levels, or immediately after entering the magma chamber is another possibility. Differences in the PGE geochemistry of the two groups can be explained by the different source region characteristics and different environments in which the magmas evolved.  相似文献   

15.
The Jurassic Bonanza arc, on Vancouver Island, British Columbia, represents an exhumed island arc crustal section of broadly diorite composition. We studied bodies of mafic and ultramafic cumulates within deeper levels of the arc to constrain the conditions and fractionation pathways leading from high-Mg basalt to andesite and dacite. Major element trends coupled with textural information show the intercumulus crystallization of amphibole, as large oikocrysts enclosing olivine in primitive cumulates controls the compositions of liquids until the onset of plagioclase crystallization. This process is cryptic, occurring only in the plutonic section, and explains the paucity of amphibole in mafic arc volcanics and the change in the Dy/Yb ratios in many arc suites with differentiation. The correlation of octahedral Al in hornblende with pressure in liquidus experiments on high-Mg basalts is applied as an empirical barometer to hornblendes from the Bonanza arc. It shows that crystallization took place at 470–880 MPa in H2O-saturated primitive basaltic magmas. There are no magmatic equivalents to bulk continental crust in the Bonanza arc; no amount of delamination of ultramafic cumulates will shift the bulk arc composition to the high-Mg# andesite composition of bulk continental crust. Garnet removal from wet magmas appears to be the key factor in producing continental crust, requiring high pressures and thick crust. Because oceanic island arcs are built on thinner crust, the long-term process generating the bulk continental crust is the accretion of island arcs to continental margins with attendant tectonic thickening.  相似文献   

16.
Biotite- and clinopyroxene-rich mafic nodules occur together with syenite ejecta in ca. 235 to 155 Ka tuffs surrounding the Latera caldera. Clinopyroxenites and leucite monzosyenites crystallized along the lower margins of a crustal magma system, and record complex crystallization histories of potassic magmas that were parental to a range of lava and tuff compositions. The mafic nodules have the mineral assemblage clinopyroxene >biotite>anorthite>orthoclase>leucite>haüyne >titanite>apatite±amphibole±olivine±phlogopite, and comprise mesocumulate and orthocumulate layers that commonly alternate on the scale of several centimeters. Despite the apparently ultramafic nature of the early cumulate assemblage, the common occurrence of intercumulate orthoclase, leucite, haüyne, salitic clinopyroxene and vesicular glass indicates that interstitial liquids underwent late-stage differentiation at relatively shallow depths but under highly variable conditions of volatile saturation. Many of the mafic nodules exhibit pronounced variations in the type and abundance of mineral reaction textures. These range from unreacted assemblages to nodules in which cumulate megacrysts are surrounded by well-developed symplectite halos. The textural variability indicates strongly localized disequilibrium between cumulate frameworks and vapor-saturated pore fluids, and is attributed to convective fractionation of liquids through permeable crystal mush. Lithologic discontinuities exhibited by the xenolith suite and host magmas are best explained by variable communication between a compositionally stratified magma reservoir and its partly crystallized lower chamber margins. Periodic replenishment of this system by less evolved magmas subsequently promoted mixing and hybridization that are characteristic features of many Latera lavas and tephra.  相似文献   

17.
The Pleasant Bay layered gabbro–diorite intrusion, locatedon the coast of Maine between Bar Harbor and Machias, is roughlyoval in plan, measuring 12 km by 20 km. Gravity data, contactrelations, and internal layering suggest that it is basinformin structure with a maximum thickness of {small tilde}3 km.Its roof and upper parts have been lost through erosion. Whereit is in contact with underlying granite, the base of the intrusiontypically consists of strongly chilled gabbro with convex-downwardlobate forms, suggesting that the granite was incompletely solidifiedwhen the gabbro was emplaced. Roughly 90% of the exposed rocksare weakly layered gabbro and mafic diorite, both of which varywidely in grain-size and texture. Layers and lenses of medium-grainedleucocratic diorite to granodiorite are widely intercalatedwith the chilled mafic rocks and commonly contain partly digestedmafic inclusions; they also commonly contain zones of pillow-likebodies of gabbro chilled on all margins. The dioritic rocksare consistently topped by gabbroic layers with chilled lobatebases and commonly appear to feed granitic pipes and diapirsinto overlying gabbro. Much of the intrusion can be subdividedinto hundreds of macrorhythmic units (from 1 to 100 m thick)consisting of basally chilled gabbro that grades upward to dioriteor highly evolved leucocratic silicic cumulates. Basaltic dikesare abundant both in the underlying granite and in the layeredgabbro–diorites; they have appropriate compositions tobe feeders for chilled gabbroic layers in the Pleasant Bay intrusion. The layered rocks of the Pleasant Bay intrusion record hundredsof basaltic injections into a chamber with resident silicicmagma. Small injections produced chilled gabbroic layers andpillows within silicic cumulates. Larger infusions of basalticmagma produced temporary compositional stratification and episodesof double-diffusive convection within the chamber. Althoughfractional crystallization produced compositional variationin much of the gabbro, units that grade from chilled gabbroat the base to highly silicic cumulates at the top provide cumulaterecords of magma stratification and hybridization along a double-diffusiveinterface between basaltic and silicic magmas. The intrusionprovides a superb plutonic record of events that have oftenbeen inferred for silicic eruptive centers. Mafic–siliciclayered intrusions comparable with the Pleasant Bay are morewidespread than has generally been appreciated.  相似文献   

18.
The three layered intrusions studied in the Laouni area have been emplaced within syn-kinematic Pan-African granites and older metamorphic rocks. They have crystallized at the end of the regional high-temperature metamorphism, but are free from metamorphic recrystallization, revealing a post-collisional character. The cumulate piles can be interpreted in terms of two magmatic liquid lines of descent: one is tholeiitic and marked by plagioclase–olivine–clinopyroxene cumulates (troctolites or olivine bearing gabbros), while the other is calc-alkaline and produced orthopyroxene–plagioclase rich cumulates (norites). One intrusion (WL (West Laouni)-troctolitic massif), shows a Lower Banded Zone where olivine-chromite orthocumulates are interlayered with orthopyroxene-rich and olivine–plagioclase–clinopyroxene cumulates, whereas the Upper Massive Zone consists mainly of troctolitic and gabbroic cumulates. The other two massifs are more homogeneous: the WL-noritic massif has a calc-alkaline differentiation trend whereas the EL (East Laouni)–troctolitic massif has a tholeiitic one. Separated pyroxene and plagioclase display similar incompatible trace element patterns, regardless of the cumulate type. Calculated liquids in equilibrium with the two pyroxenes for both noritic and troctolitic cumulates are characterized by negative Nb, Ta, Zr and Hf anomalies and light REE enrichment inherited from the parental magmas. Troctolitic cumulates have mantle-derived δ18O (+5 to +6‰), initial 87Sr/86Sr (Sri=0.7030 to 0.7054), Nd (+5 to −1) values whereas noritic cumulates are variably enriched in δ18O (+7 to +9‰), show negative Nd (−7 to −12) and slightly higher Sri (0.7040–0.7065). Based on field, isotopic ratios are interpreted as resulting from a depleted mantle source (Sri=0.7030; Nd=+5.1; δ18O=+5.1‰) having experience short term incompatible element enrichment and variable crustal contamination. The mantle magma was slightly contaminated by an Archaean lower crust in troctolitic cumulates, more strongly and with an additional contamination by an Eburnian upper crust in noritic cumulates. Lower crust input is recorded mainly by Sr and Nd isotopes and upper crust input by O isotopes. This is probably due to the different water/rock ratios of these two crust types. Assimilation of low amounts (<10%) of quartz-bearing felsic rocks, coming from both lower and upper crust, can explain the rise of SiO2 activity, the enrichment in 18O and 87Sr and the lowering of Nd in the noritic cumulates compared to troctolitic ones. The geodynamic model proposed to account for the Laouni tholeiitic magmatism involves a late Pan-African asthenospheric rise due to a rapid lithospheric thinning associated with functioning of shear zones, which allowed tholeiitic magmas to reach high crustal levels while experiencing decreasing degrees of crustal contamination with time.  相似文献   

19.
The Proterozoic Expo Intrusive Suite comprises a series of maficto ultramafic intrusions crosscutting the Povungnituk Groupof the Cape Smith Fold Belt in New Quebec. The intrusions aremainly in the form of blade-shaped dikes that penetrate a sediment-richhorizon in the middle of the Beauparlant Formation and terminatedownward against massive basalts of the lower Beauparlant Formation.Significant accumulations of magmatic sulfide occur at the basalterminations of the dikes. At stratigraphic levels above theBeauparlant Formation the intrusions appear as broad dikes orsills within the Nuvilik Formation, below the mineralized lavaflows and subvolcanic intrusions of the Raglan Formation. TheExpo Intrusive Suite and the mineralized bodies of the RaglanFormation are probably coeval and comagmatic with the overlyingChukotat Group. Post-emplacement folding has exposed the ExpoIntrusive Suite over about 5 km of structural relief, revealingthe basal sulfide concentrations where dike segments terminateon the flanks of anticlines. The parent magma as preserved inchilled margins and narrow dikes was a picrite containing 17wt % MgO (i.e. komatiitic basalt) and slightly depleted in Th,U and Nb relative to middle and heavy rare earth elements. Thecompositions of ultramafic cumulate rocks within the intrusionsare strongly enriched in Th, U and Nb relative to heavy rareearth elements, reflecting assimilation of the enclosing basaltsand metasediments. Modeling of the assimilation process suggeststhat the picritic magma was capable of assimilating masses ofbasalt or sediment up to 50% of the original mass of magma.Assimilation of 10% of a mixture of basalt and sediment causedthe magma to become sulfide-saturated, and was accompanied bythe crystallization of masses of ultramafic cumulates approximatelyequal to the mass of rock assimilated. The presence of dikeswhose chilled margins resemble uncontaminated primary magmasbut that contain abundant cumulates recording wholesale assimilationof host-rocks indicates that the process of assimilation andfractional crystallization required to produce continental tholeiitesfrom picritic parent magmas may not require the presence oflong-lived magma chambers, but can occur during transport alongdikes and reaction with wall-rocks. KEY WORDS: komatiite; Expo Intrusive Suite; assimilation; fractional crystallization; sulfide mineralization  相似文献   

20.
Within the Vourinos ophiolite evidence of two magmatic series has been preserved in cognate cumulates and in effusive and hypabyssal rocks, which constitute the earlier Krapa sequence and the younger Asprokambo sequence. The Asprokambo dyke basic magmas which are poor in incompatible elements and relatively Ni and Cr rich, bear some resemblance to very low Ti basalts (transitional to boninites) found in subduction related arcs or interarc basins. Krapa series magmas from sills, massive and pillow lavas are best equated with low-K tholeiites of island arc suites. Compositions of Al- and Ti- poor Cpx in lavas from both series are comparable to those in island arc basalts, the Asprokambo Cpx being richer in Ca and Cr than those from Krapa.The large volume of cumulates from the Krapa sequence displays the following crystallization order: Ol±Sp, Cpx, Pl±Opx, Mt. Periodic influx of fresh magma batches into the magma chamber occurred mainly during the formation of the lower cumulates (wehrlite, Ol-clinopyroxenite and melagabbro). The upper cumulates, gabbronorite and leucogabbronorite with minor Mt-bearing gabbronorite, crystallized in the upper levels of a magma chamber which became progressively smaller with time. In the Asprokambo sequence, Ol+Sp, Opx, Cpx, PI and Amph are the successively crystallizing phases. The ortho to heteradcumulates consist of websterite, Pl-websterite, gabbronorite, amphibole bearing leuconorite, diorite and granophyre. In cumulates, especially in the lower Krapa sequence, significant subsolidus reaction was probably induced by the persistence of high geothermal gradients linked to continuous magmatism. Petrological features indicate that the evolution of the Krapa series is more compatible with an intermediate fractional/equilibrium crystallization history in an initially open system, whereas nearly perfect fractional crystallization in closed system may have occurred in the small Asprokambo magma chambers. Chemical variations in the lavas of both series can be explained in terms of crystallization of the observed cumulates. Significantly, the Asprokambo intrusives have igneous Mg-hornblende and vanadium bearing, chromian, aluminous titaniferous magnetite, crystallization of which is responsible for the calcalkaline evolutionary trend of these rocks. Major and trace element modelling necessitates a two stage model for the petrogenesis of the Vourinos parental melts, involving high-degree remelting of previously depleted mantle sources favoured by the influx of subduction derived hydrous fluids. The primary magmas parental to the Krapa and Asprokambo series could have been derived respectively by 20 and 30% equilibrium partial fusion of variably depleted lherzolitic sources, leaving residua having a harzburgitic to dunitic composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号