首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kulagin  E.S.  Kouprianov  V.V. 《Solar physics》2004,219(1):79-86

A distribution map of the large-scale chromospheric Doppler velocities on the solar disk for 5 June 2002 is presented. The map was obtained using a 2D-spectroscopy technique within the He?i 10830 Å line. The spatial resolution of the map is about 30 arc sec. The map demonstrates a downflow in the chromosphere over active regions, especially significant around the spots and inside the plages. Positive Doppler velocities correspond to strong magnetic field areas, regardless of the field sign. Three major chromospheric outflow zones are observed: an equatorial and two polar ones. Each area of substantial negative Doppler velocities matches a zone of weak intensity of inner corona observed within the Fe?ix-x 171 Å line by the SOHO spacecraft. A Doppler velocity histogram and the dependence of the Doppler velocities on the cosine of the heliocentric angle for the solar disk are calculated. The total mass outflow from the upper chromosphere is estimated as 2×1013 g s?1. Four percent of this amount is sufficient to produce the fast solar wind.

  相似文献   

2.
Photospheric and heliospheric magnetic fields   总被引:1,自引:0,他引:1  
Schrijver  Carolus J.  DeRosa  Marc L. 《Solar physics》2003,212(1):165-200

The magnetic field in the heliosphere evolves in response to the photospheric field at its base. This evolution, together with the rotation of the Sun, drives space weather through the continually changing conditions of the solar wind and the magnetic field embedded within it. We combine observations and simulations to investigate the sources of the heliospheric field from 1996 to 2001. Our algorithms assimilate SOHO/MDI magnetograms into a flux-dispersal model, showing the evolving field on the full sphere with an unprecedented duration of 5.5 yr and temporal resolution of 6 hr. We demonstrate that acoustic far-side imaging can be successfully used to estimate the location and magnitude of large active regions well before they become visible on the solar disk. The results from our assimilation model, complemented with a potential-field source-surface model for the coronal and inner-heliospheric magnetic fields, match Yohkoh/SXT and KPNO/He?10830 Å coronal hole boundaries quite well. Even subject to the simplification of a uniform, steady solar wind from the source surface outward, our model matches the polarity of the interplanetary magnetic field (IMF) at Earth ~3% of the time during the period 1997–2001 (independent of whether far-side acoustic data are incorporated into the simulation). We find that around cycle maximum, the IMF originates typically in a dozen disjoint regions. Whereas active regions are often ignored as a source for the IMF, the fraction of the IMF that connects to magnetic plage with absolute flux densities exceeding 50 Mx cm?2 increases from ?10% at cycle minimum up to 30–50% at cycle maximum, with even direct connections between sunspots and the heliosphere. For the overall heliospheric field, these fractions are ?1% to 20–30%, respectively. Two case studies based on high-resolution TRACE observations support the direct connection of the IMF to magnetic plage, and even to sunspots. Parallel to the data assimilation, we run a pure simulation in which active regions are injected based on random selection from parent distribution functions derived from solar data. The global properties inferred for the photospheric and heliospheric fields for these two models are in remarkable agreement, confirming earlier studies that no subtle flux-emergence patterns or field-dispersal properties are required of the solar dynamo beyond those that are included in the model in order to understand the large-scale solar and heliospheric fields.

  相似文献   

3.
This paper describes the development of X-ray diffractive optics for imaging solar flares with better than 0.1 arcsec angular resolution. X-ray images with this resolution of the ???10?MK plasma in solar active regions and solar flares would allow the cross-sectional area of magnetic loops to be resolved and the coronal flare energy release region itself to be probed. The objective of this work is to obtain X-ray images in the iron-line complex at 6.7?keV observed during solar flares with an angular resolution as fine as 0.1 arcsec ?C over an order of magnitude finer than is now possible. This line emission is from highly ionized iron atoms, primarily Fe xxv, in the hottest flare plasma at temperatures in excess of ???10 MK. It provides information on the flare morphology, the iron abundance, and the distribution of the hot plasma. Studying how this plasma is heated to such high temperatures in such short times during solar flares is of critical importance in understanding these powerful transient events, one of the major objectives of solar physics. We describe the design, fabrication, and testing of phase zone plate X-ray lenses with focal lengths of ???100 m at these energies that would be capable of achieving these objectives. We show how such lenses could be included on a two-spacecraft formation-flying mission with the lenses on the spacecraft closest to the Sun and an X-ray imaging array on the second spacecraft in the focal plane ???100 m away. High-resolution X-ray images could be obtained when the two spacecraft are aligned with the region of interest on the Sun. Requirements and constraints for the control of the two spacecraft are discussed together with the overall feasibility of such a formation-flying mission.  相似文献   

4.
We present velocity estimates of bulk motions in the solar corona using data from the Large Angle Spectrometric Coronagraph (LASCO) aboard the Solar and Heliospheric Observatory spacecraft ( SOHO ). We describe a new technique which automatically provides a mass-weighted mean velocity profile in an entirely objective fashion without the need for individual event identification. A weighted velocity profile of this kind reflects the motion of the energetically dominant component of the coronal mass ejection (CME) mass spectrum and is of particular interest in consideration of the overall energy budget of the CME process. We consider the mean motion within three latitudinal bands centred at 0°, 20° and 40° over a one-year period around the time of solar minimum. We find terminal velocities within the LASCO field of around 300 km s−1 in all latitude bands but note a latitudinal dependence in CME evolution through the low corona prior to reaching these velocities. We find evidence that ejections in the equatorial zone undergo continuous acceleration whilst at higher latitudes a discrete burst of acceleration is seen to occur at around 4 R from the Sun's centre with relatively little acceleration thereafter. We also consider the energy deposition rates necessary to generate these profiles.  相似文献   

5.
Opitz  A.  Karrer  R.  Wurz  P.  Galvin  A. B.  Bochsler  P.  Blush  L. M.  Daoudi  H.  Ellis  L.  Farrugia  C. J.  Giammanco  C.  Kistler  L. M.  Klecker  B.  Kucharek  H.  Lee  M. A.  Möbius  E.  Popecki  M.  Sigrist  M.  Simunac  K.  Singer  K.  Thompson  B.  Wimmer-Schweingruber  R. F. 《Solar physics》2009,256(1-2):365-377

The two STEREO spacecraft with nearly identical instrumentation were launched near solar activity minimum and they separate by about 45° per year, providing a unique tool to study the temporal evolution of the solar wind. We analyze the solar wind bulk velocity measured by the two PLASTIC plasma instruments onboard the two STEREO spacecraft. During the first half year of our measurements (March?–?August 2007) we find the typical alternating slow and fast solar wind stream pattern expected at solar minimum. To evaluate the temporal evolution of the solar wind bulk velocity we exclude the spatial variations and calculate the correlation between the solar wind bulk velocity measured by the two spacecraft. We account for the different spacecraft positions in radial distance and longitude by calculating the corresponding time lag. After adjusting for this time lag we compare the solar wind bulk velocity measurements at the two spacecraft and calculate the correlation between the two time-shifted datasets. We show how this correlation decreases as the time difference between two corresponding measurements increases. As a result, the characteristic temporal changes in the solar wind bulk velocity can be inferred. The obtained correlation is 0.95 for a time lag of 0.5 days and 0.85 for 2 days.

  相似文献   

6.

By the analysis of the profiles of 20 weak lines observed at five centre-to-limb positions on the solar disk, radial and tangential components of the velocity amplitude of the photospheric motion field are derived in the range of optical depth - 3.0 ? lgτ5 ? +0.5.

  相似文献   

7.
A new method for the automated detection of coronal holes and filaments on the solar disk is presented. The starting point is coronal images taken by the Extreme Ultraviolet Telescope on the Solar and Heliospheric Observatory (SOHO/EIT) in the Fe ix/x 171 Å, Fe xii 195 Å, and He ii 304 Å extreme ultraviolet (EUV) lines and the corresponding full-disk magnetograms from the Michelson Doppler Imager (SOHO/MDI) from different phases of the solar cycle. The images are processed to enhance their contrast and to enable the automatic detection of the two candidate features, which are visually indistinguishable in these images. Comparisons are made with existing databases, such as the He i 10830 Å NSO/Kitt Peak coronal-hole maps and the Solar Feature Catalog (SFC) from the European Grid of Solar Observations (EGSO), to discriminate between the two features. By mapping the features onto the corresponding magnetograms, distinct magnetic signatures are then derived. Coronal holes are found to have a skewed distribution of magnetic-field intensities, with values often reaching 100?–?200 gauss, and a relative magnetic-flux imbalance. Filaments, in contrast, have a symmetric distribution of field intensity values around zero, have smaller magnetic-field intensity than coronal holes, and lie along a magnetic-field reversal line. The identification of candidate features from the processed images and the determination of their distinct magnetic signatures are then combined to achieve the automated detection of coronal holes and filaments from EUV images of the solar disk. Application of this technique to all three wavelengths does not yield identical results. Furthermore, the best agreement among all three wavelengths and NSO/Kitt Peak coronal-hole maps occurs during the declining phase of solar activity. The He ii data mostly fail to yield the location of filaments at solar minimum and provide only a subset at the declining phase or peak of the solar cycle. However, the Fe ix/x 171 Å and Fe xii 195 Å data yield a larger number of filaments than the Hα data of the SFC.  相似文献   

8.
Using multi-wavelength observations of Solar and Heliospheric Observatory (SoHO)/Michelson Doppler Imager (MDI), Transition Region and Coronal Explorer (TRACE, 171 ?), and H?? from Culgoora Solar Observatory at Narrabri, Australia, we present a unique observational signature of a propagating supersonic plasma blob before an M6.2-class solar flare in active region 10808 on 9 September 2005. The blob was observed between 05:27 UT and 05:32 UT with almost a constant shape for the first 2??C?3 min, and thereafter it quickly vanished in the corona. The observed lower-bound speed of the blob is estimated as ???215?km?s?1 in its dynamical phase. The evidence of the blob with almost similar shape and velocity concurrent in H?? and TRACE 171 ? images supports its formation by a multi-temperature plasma. The energy release by a recurrent three-dimensional reconnection process via the separator dome below the magnetic null point, between the emerging flux and pre-existing field lines in the lower solar atmosphere, is found to be the driver of a radial velocity pulse outwards that accelerates this plasma blob in the solar atmosphere. In support of identification of the possible driver of the observed eruption, we solve the two-dimensional ideal magnetohydrodynamic equations numerically to simulate the observed supersonic plasma blob. The numerical modelling closely match the observed velocity, evolution of multi-temperature plasma, and quick vanishing of the blob found in the observations. Under typical coronal conditions, such blobs may also carry an energy flux of 7.0×106?erg?cm?2?s?1 to balance the coronal losses above active regions.  相似文献   

9.
Balthasar  H. 《Solar physics》1999,187(2):389-403

The magnetic field strength in sunspots was derived from time series of two-dimensional spectra taken with the Göttingen 2D-spectrometer at the Vacuum Tower Telescope on Tenerife in August 1997. For the present measurements the magnetically sensitive line Fe?i 684.3 nm was selected. The main spot of the investigated sunspot group has a maximum magnetic field strength of 2270 G. Enhanced power of the magnetic field variations was found at the boundary between umbra and penumbra for all frequency ranges. These fluctuations are not well correlated with those of intensity variations or line shifts. Other spatial power peaks occur in a dark patch inside the centreside penumbra and at the centres of some accompanying small spots. Since no clear peaks at certain frequencies are found, the variations are not harmonic oscillations. A possible relation to Hα flares is investigated. There are several cases of published observations of magnetic field variations where flares occurred soon after the measurements, but very little before. Therefore it is not very probable that flares act as exciters of magnetic field variations.

  相似文献   

10.
The differences between physical conditions in solar faculae and those in sunspots and quiet photosphere (increased temperature and different magnetic field topology) suggest that oscillation characteristics in facula areas may also have different properties. The analysis of 28 time series of simultaneous spectropolarimetric observations in facula photosphere (Fe?i 6569 Å, 8538 Å) and chromosphere (Hα, Ca?ii 8542 Å) yields the following results. The amplitude of five-minute oscillations of line-of-sight (LOS) velocity decreases by 20?–?40% in facula photosphere. There are only some cases revealing the inverse effect. The amplitude of four- to five-minute LOS velocity oscillations increases significantly in the chromosphere above faculae, and power spectra fairly often show pronounced peaks in a frequency range of 1.3?–?2.5 mHz. Evidence of propagating oscillations can be seen from space?–?time diagrams. We have found oscillations of the longitudinal magnetic field (1.5?–?2 mHz and 5.2 mHz) inside faculae.  相似文献   

11.
The SPIRIT complex onboard the CORONAS-F satellite has routinely imaged the Sun in the 171, 175, 195, 284, and 304 Å spectral bands since August 2001. The complex incorporates two telescopes. The Ritchey-Chretien telescope operates in the 171, 195, 284, and 304 Å bands and has an objective similar to that of the SOHO/EIT instrument. The Herschel telescope obtains solar images synchronously in the 175 and 304 Å bands with two multilayer-coated parabolic mirrors. The SPIRIT program includes synoptic observations, studies of the dynamics of various structures on the solar disk and in the corona up to 5 solar radii, and coordinated observations with other spaceborne and ground-based telescopes. In particular, in the period 2002–2003, synoptic observations with the SPIRIT Ritchey-Chretien telescope were coordinated with regular 6-hour SOHO/EIT observations. Since June 2003, when EIT data were temporarily absent (SOHO keyholes), the SPIRIT telescope has performed synoptic observations at a wavelength of 175 A. These data were used by the Solar Influence Data Analysis Center (SIDC) at the Royal Observatory of Belgium for an early space weather forecast. We analyze the photometric and spectral parameters of the SPIRIT and EIT instruments and compare the integrated (over the solar disk) EUV fluxes using solar images obtained with these instruments during the CORONAS-F flight from August 2001 through December 2003.  相似文献   

12.
Based on the solar X-ray data in the band of 0.1??C?0.8?nm observed by Geostationary Operational Environmental Satellites (GOES), the XUV and EUV data in the bands of 26??C?34?nm and 0.1??C?50?nm observed by the Solar EUV Monitor (SEM) onboard the Solar and Heliospheric Observatory (SOHO), a statistical analysis on the excess peak flux (the pre-flare flux is subtracted) in two SEM bands during M- and X-class flares from 1998 to 2007 is given. The average ratio of the excess peak flux to the pre-flare flux for the M-class flares is 5.5?%±3.7?% and that for the X-class flares is 16?%±11?%. The excess peak fluxes in two SEM bands are positively correlated with the X-ray flare class; with the increase in the X-ray flare class, the excess peak flux in two SEM bands increases. However, a large dispersion in the excess peak flux in the SEM bands and their ratio is found for the same X-ray flare class. The relationship between the excess peak fluxes of the two SEM bands also shows large dispersion. It is considered that the diversity we found in the flare spectral irradiance is caused by many variable factors related to the structure and evolution of solar flares.  相似文献   

13.
J. Koza 《Solar physics》2010,266(2):261-275
We examine the sensitivity of selected Ba?ii, Fe?i, Fe?ii, and Cr?i spectral lines to changes of the line-of-sight velocity by sharpness of their line profiles and response functions to line-of-sight velocity evaluated by the 1-D model of the quiet solar atmosphere in the LTE approximation. The set of selected lines includes the Ba?ii 4554 Å line, generally considered to be an excellent Doppler mapper. Our findings confirm earlier results showing that the sensitivity increases not only with wavelength, as anticipated from the Doppler relation, but mainly with the sharpness of line profiles given by the ratio of their depths and widths. The line Fe?i 5247 Å is the most sensitive in our set, whereas the Fe?i and Fe?ii infrared lines show very low sensitivity because of their large thermal widths. The line Ba?ii 4554 Å shows only moderate sensitivity due to its large width, given by a broad hyperfine structure and isotopic split. For the first time we identify a very promising and so far unknown Doppler mapper of the solar photosphere and low chromosphere, which is the line Ba?ii 6497 Å. Its sensitivity is comparable with the sensitivity of Fe?i 5247 Å and clearly surpasses the sensitivity of Ba?ii 4554 Å. The line Ba?ii 6497 Å offers many advantages, making it a highly recommendable choice for future studies of line-of-sight velocities in the photosphere and low chromosphere.  相似文献   

14.
The Solar Dynamics Observatory/Helioseismic and Magnetic Imager (SDO/HMI) filtergrams, taken at six wavelengths around the Fe i 6173.3 Å line, contain information about the line-of-sight velocity over a range of heights in the solar atmosphere. Multi-height velocity inferences from these observations can be exploited to study wave motions and energy transport in the atmosphere. Using realistic convection-simulation datasets provided by the STAGGER and MURaM codes, we generate synthetic filtergrams and explore several methods for estimating Dopplergrams. We investigate at which height each synthetic Dopplergram correlates most strongly with the vertical velocity in the model atmospheres. On the basis of the investigation, we propose two Dopplergrams other than the standard HMI-algorithm Dopplergram produced from HMI filtergrams: a line-center Dopplergram and an average-wing Dopplergram. These two Dopplergrams correlate most strongly with vertical velocities at the heights of 30?–?40 km above (line center) and 30?–?40 km below (average wing) the effective height of the HMI-algorithm Dopplergram. Therefore, we can obtain velocity information from two layers separated by about a half of a scale height in the atmosphere, at best. The phase shifts between these multi-height Dopplergrams from observational data as well as those from the simulated data are also consistent with the height-difference estimates in the frequency range above the photospheric acoustic-cutoff frequency.  相似文献   

15.
Models of the chemical evolution of our Galaxy are extended to include radial migration of stars and flow of gas through the disc. The models track the production of both iron and α-elements. A model is chosen that provides an excellent fit to the metallicity distribution of stars in the Geneva–Copenhagen survey (GCS) of the solar neighbourhood and a good fit to the local Hess diagram. The model provides a good fit to the distribution of GCS stars in the age–metallicity plane, although this plane was not used in the fitting process. Although this model's star formation rate is monotonically declining, its disc naturally splits into an α-enhanced thick disc and a normal thin disc. In particular, the model's distribution of stars in the ([O/Fe], [Fe/H]) plane resembles that of Galactic stars in displaying a ridge line for each disc. The thin-disc's ridge line is entirely due to stellar migration, and there is the characteristic variation of stellar angular momentum along it that has been noted by Haywood in survey data. Radial mixing of stellar populations with high  σ z   from inner regions of the disc to the solar neighbourhood provides a natural explanation of why measurements yield a steeper increase of  σ z   with age than predicted by theory. The metallicity gradient in the interstellar medium is predicted to be steeper than in earlier models, but appears to be in good agreement with data for both our Galaxy and external galaxies. The models are inconsistent with a cut-off in the star formation rate at low gas surface densities. The absolute magnitude of the disc is given as a function of time in several photometric bands, and radial colour profiles are plotted for representative times.  相似文献   

16.
Handy  B.N.  Tarbell  T.D.  Wolfson  C.J.  Korendyke  C.M.  Vourlidas  A. 《Solar physics》1999,190(1-2):351-361

Since shortly after launch in April 1998, the Transition Region and Coronal Explorer (TRACE) observatory has amassed a collection of H?i Lα (1216 Å) observations of the Sun that have been not only of high spatial and temporal resolution, but also span a duration in time never before achieved. The Lα images produced by TRACE are, however, composed of not only the desired line emission, but also local ultraviolet continuum and longer wavelength contamination. This contamination has frustrated attempts to interpret TRACE observations in H?i Lα. The Very Advanced Ultraviolet Telescope (VAULT) sounding rocket payload was launched from White Sands Missile range 7 May 1999 at 20:00 UT. The VAULT telescope for this flight was a dedicated H?i Lα imaging spectroheliograph. We use TRACE observations in the 1216 Å and 1600 Å channels along with observations from the VAULT flight to develop a method for removing UV continuum and longer wavelength contamination from TRACE Lα images.

  相似文献   

17.
It is shown that the contrast of coronal holes, just as their size, determines the velocity of the solar wind streams. Fully calibrated EIT images of the Sun have been used. About 450 measurements in 284 Å have been analyzed. The time interval under examination covers about 1500 days in the declining phase of cycle 23. All coronal holes recorded for this interval in the absence of coronal mass ejections (CMEs) have been studied. The comparison with some other parameters (e.g. density, temperature, magnetic field) was carried out. The correlations with the velocity are rather high (0.70?–?0.89), especially during the periods of moderate activity, and could be used for everyday forecast. The contrast of coronal holes is rather small.  相似文献   

18.
Predicting Flares and Solar Energetic Particle Events: The FORSPEF Tool   总被引:1,自引:0,他引:1  
A novel integrated prediction system for solar flares (SFs) and solar energetic particle (SEP) events is presented here. The tool called forecasting solar particle events and flares (FORSPEF) provides forecasts of solar eruptive events, such as SFs with a projection to occurrence and velocity of coronal mass ejections (CMEs), and the likelihood of occurrence of an SEP event. In addition, the tool provides nowcasting of SEP events based on actual SF and CME near real-time data, as well as the SEP characteristics (e.g. peak flux, fluence, rise time, and duration) per parent solar event. The prediction of SFs relies on the effective connected magnetic field strength (\(B_{\mathrm{eff}}\)) metric, which is based on an assessment of potentially flaring active-region (AR) magnetic configurations, and it uses a sophisticated statistical analysis of a large number of AR magnetograms. For the prediction of SEP events, new statistical methods have been developed for the likelihood of the SEP occurrence and the expected SEP characteristics. The prediction window in the forecasting scheme is 24 hours with a refresh rate of 3 hours, while the respective prediction time for the nowcasting scheme depends on the availability of the near real-time data and ranges between 15?–?20 minutes for solar flares and 6 hours for CMEs. We present the modules of the FORSPEF system, their interconnection, and the operational setup. Finally, we demonstrate the validation of the modules of the FORSPEF tool using categorical scores constructed on archived data, and we also discuss independent case studies.  相似文献   

19.
We measured metal abundances of the intracluster medium in the central regions of 34 nearby clusters of galaxies, using ASCA data. Clusters that have a sharp X-ray emission centred on a cD galaxy are commonly found to exhibit a central increment in the Fe abundance, which is more pronounced in lower temperature clusters; +(0.1–0.2) solar at kT >5 keV, compared with +(0.2–0.3) solar at 1.5< kT <4 keV. These central excess metals are thought to be ejected from cD galaxies. Several low-temperature cD type clusters also show significant Si abundance increase by +(0.1–0.2) solar at the central region. Compared with the Si-rich abundances observed in the outer regions of rich clusters, the Si to Fe abundance ratio of central excess metals tends to be near the solar ratio, implying that type Ia products from cD galaxies are dominant for the central excess metals. On the other hand, some other clusters do not show the central Fe abundance increase. As these clusters tend to contain two or three central giant galaxies, it is suggested that galaxy interactions have removed the central abundance increase.  相似文献   

20.
The declining phases of solar cycles are known for their high speed solar wind streams that dominate the geomagnetic responses during this period. Outstanding questions about these streams, which can provide the fastest winds of the solar cycle, concern their solar origins, persistence, and predictability. The declining phase of cycle 23 has lasted significantly longer than the corresponding phases of the previous two cycles. Solar magnetograph observations suggest that the solar polar magnetic field is also ~?2?–?3 times weaker. The launch of STEREO in late 2006 provided additional incentive to examine the origins of what is observed at 1 AU in the recent cycle, with the OMNI data base at the NSSDC available as an Earth/L1 baseline for comparisons. Here we focus on the year 2007 when the solar corona exhibited large, long-lived mid-to-low latitude coronal holes and polar hole extensions observed by both SOHO and STEREO imagers. STEREO provides in situ measurements consistent with rigidly corotating solar wind stream structure at up to ~?45° heliolongitude separation by late 2007. This stability justifies the use of magnetogram-based steady 3D solar wind models to map the observed high speed winds back to their coronal sources. We apply the WSA solar wind model currently running at the NOAA Space Weather Prediction Center with the expectation that it should perform its best at this quiet time. The model comparisons confirm the origins of the observed high speed streams expected from the solar images, but also reveal uncertainties in the solar wind source mapping associated with this cycle’s weaker solar polar fields. Overall, the results illustrate the importance of having accurate polar fields in synoptic maps used in solar wind forecast models. At the most fundamental level, they demonstrate the control of the solar polar fields over the high speed wind sources, and thus one specific connection between the solar dynamo and the solar wind character.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号