首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The sequential growth of biotite, garnet, staurolite, kyanite, andalusite, cordierite and fibrolitic sillimanite, their microstructural relationships, foliation intersection axes preserved in porphyroblasts (FIAs), geochronology, P–T pseudosection (MnNCKFMASH system) modelling and geothermobarometry provide evidence for a P–T–t–D path that changes from clockwise to anticlockwise with time for the Balcooma Metamorphic Group. Growth of garnet at ~530 °C and 4.6 kbar during the N–S‐shortening event that formed FIA 1 was followed by staurolite, plagioclase and kyanite growth. The inclusions of garnet in staurolite porphyroblasts that formed during the development of FIAs 2 and 3 plus kyanite growth during FIA 3 reflect continuous crustal thickening from c. 443 to 425 Ma during an Early Silurian Benambran Orogenic event. The temperature and pressure increased during this time from ~530 °C and 4.6 kbar to ~630 °C and 6.2 kbar. The overprinting of garnet‐, staurolite‐ and kyanite‐bearing mineral assemblages by low‐pressure andalusite and cordierite assemblages implies ~4‐kbar decompression during Early Devonian exhumation of the Greenvale Province.  相似文献   

2.
Amphibolite facies metasedimentary schists within the Yukon‐Tanana terrane in the northern Canadian Cordillera reveal a two‐stage, polymetamorphic garnet growth history. In situ U‐Th‐Pb Sensitive High Resolution Ion Microprobe dating of monazite provide timing constraints for the late stages of garnet growth, deformation and subsequent decompression. Distinct textural and chemical growth zoning domains, separated by a large chemical discontinuity, reveal two stages of garnet growth characterized in part by: (i) a syn‐kinematic, inclusion‐rich stage‐1 garnet core; and (ii) an inclusion‐poor, stage‐2 garnet rim that crystallized with syn‐ to post‐kinematic staurolite and kyanite. Phase equilibria modelling of garnet molar and compositional isopleths suggest stage‐1 garnet growth initiated at ~600 °C, 8 kbar along a clockwise P–T path. Growth of the compositionally distinct, grossular‐rich, pyrope‐poor inner portion of the stage‐2 overgrowth is interpreted to have initiated at higher pressure and/or lower temperature than the stage‐1 core along a separate P–T loop, culminating at peak P–T conditions of ~650–680 °C and 9 kbar. Stage‐2 metamorphism and the waning development of a composite transposition foliation (ST) are dated at c. 118 Ma from monazite aligned parallel to ST, and inclusions in syn‐ to post‐ST staurolite and kyanite. Slightly younger ages (c. 112 Ma) are obtained from Y‐rich monazite that occurs within resorbed areas of both stage‐1 and stage‐2 garnet, together with retrograde staurolite and plagioclase. The younger ages obtained from these texturally and chemically distinct grains are interpreted, with the aid of phase equilibria calculations, to date the growth of monazite from the breakdown of garnet during decompression at c. 112 Ma. Evidence for continued near‐isothermal decompression is provided by the presence of retrograde sillimanite, and cordierite after staurolite, which indicates decompression below ~4–5 kbar prior to cooling below ~550 °C. As most other parts of the Yukon‐Tanana terrane were exhumed to upper crustal levels in the Early Jurassic, these data suggest this domain represents a tectonic window revealing a much younger, high‐grade tectono‐metamorphic core (infrastructure) within the northern Cordilleran orogen. This window may be akin to extensional core complexes identified in east‐central Alaska and in the southeastern Canadian Cordillera.  相似文献   

3.
The North Qilian Orogen (NQO) in northwest China underwent oceanic subduction and subsequent continental collision. Metasedimentary rocks from a deep borehole in the Dingxi Basin, NQO, contain garnet, biotite, plagioclase, quartz and minor cummingtonite and chlorite in the matrix, with inclusions of kyanite and staurolite in garnet. The mineral textures and compositions define clockwise pressure–temperature evolution with peak conditions of ~10.5 kbar and ~670°C, followed by isothermal decompression down to ~6.5 kbar. Age and Hf isotope data of detrital zircon support the formation of the sedimentary protolith in an arc setting at ~460 Ma, and the age and rare earth element characteristics of metamorphic monazite reflect exhumation at ~425 Ma. These results indicate a complete cycle of depositionburialexhumation for the sedimentary rocks, and directly constrain the continental collision process in NQO to yield a geotherm of ~21°C/km and to culminate before 425 Ma.  相似文献   

4.
Eclogite boudins occur within an orthogneiss sheet enclosed in a Barrovian metapelite‐dominated volcano‐sedimentary sequence within the Velké Vrbno unit, NE Bohemian Massif. A metamorphic and lithological break defines the base of the eclogite‐bearing orthogneiss nappe, with a structurally lower sequence without eclogite exposed in a tectonic window. The typical assemblage of the structurally upper metapelites is garnet–staurolite–kyanite–biotite–plagioclase–muscovite–quartz–ilmenite ± rutile ± silli‐manite and prograde‐zoned garnet includes chloritoid–chlorite–paragonite–margarite, staurolite–chlorite–paragonite–margarite and kyanite–chlorite–rutile. In pseudosection modelling in the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH) using THERMOCALC, the prograde path crosses the discontinuous reaction chloritoid + margarite = chlorite + garnet + staurolite + paragonite (with muscovite + quartz + H2O) at 9.5 kbar and 570 °C and the metamorphic peak is reached at 11 kbar and 640 °C. Decompression through about 7 kbar is indicated by sillimanite and biotite growing at the expense of garnet. In the tectonic window, the structurally lower metapelites (garnet–staurolite–biotite–muscovite–quartz ± plagioclase ± sillimanite ± kyanite) and amphibolites (garnet–amphibole–plagioclase ± epidote) indicate a metamorphic peak of 10 kbar at 620 °C and 11 kbar and 610–660 °C, respectively, that is consistent with the other metapelites. The eclogites are composed of garnet, omphacite relicts (jadeite = 33%) within plagioclase–clinopyroxene symplectites, epidote and late amphibole–plagioclase domains. Garnet commonly includes rutile–quartz–epidote ± clinopyroxene (jadeite = 43%) ± magnetite ± amphibole and its growth zoning is compatible in the pseudosection with burial under H2O‐undersaturated conditions to 18 kbar and 680 °C. Plagioclase + amphibole replaces garnet within foliated boudin margins and results in the assemblage epidote–amphibole–plagioclase indicating that decompression occurred under decreasing temperature into garnet‐free epidote–amphibolite facies conditions. The prograde path of eclogites and metapelites up to the metamorphic peak cannot be shared, being along different geothermal gradients, of about 11 and 17 °C km?1, respectively, to metamorphic pressure peaks that are 6–7 kbar apart. The eclogite–orthogneiss sheet docked with metapelites at about 11 kbar and 650 °C, and from this depth the exhumation of the pile is shared.  相似文献   

5.
Eclogite, felsic orthogneiss and garnet–staurolite metapelite occur in a 5 km long profile in the area of Mi?dzygórze in the Orlica–?nie?nik dome (Bohemian Massif). Petrographic observations and mineral equilibria modelling, in the context of detailed structural work, are used to document the close juxtaposition of high‐pressure and medium‐pressure rocks. The structural succession in all lithologies shows an early shallow‐dipping fabric, S1, that is folded by upright folds and overprinted by a heterogeneously developed subvertical foliation, S2. Late recumbent folds associated with a weak shallow‐dipping axial‐plane cleavage, S3, occur locally. The S1 fabric in the eclogite is defined by alternation of garnet‐rich (grs = 22–29 mol.%) and omphacite‐rich (jd = 33–36 mol.%) layers with oriented muscovite (Si = 3.26–3.31 p.f.u.) and accessory kyanite, zoisite, rutile and quartz, indicating conditions of ~19–22 kbar and ~700–750 °C. The assemblage in the retrograde S2 fabric is formed by amphibole, plagioclase, biotite and relict rutile surrounded by ilmenite and sphene that is compatible with decompression and cooling from ~9 kbar and ~730 °C to 5–6 kbar and 600–650 °C. The S3 fabric contains in addition domains with albite, chlorite, K‐feldspar and magnetite indicating cooling to greenschist facies conditions. The metapelites are composed of garnet, staurolite, muscovite, biotite, quartz, ilmenite and chlorite. Chemical zoning of garnet cores that contain straight ilmenite and staurolite inclusion trails oriented perpendicular to the external S2 fabric indicates prograde growth, from ~5 kbar and ~520 °C to ~7 kbar and ~610 °C, during the formation of the S1 fabric. Inclusion trails parallel with the S2 fabric at garnet and staurolite rims are interpreted to be a continuation of the prograde path to ~7.5 and ~630 °C in the S2 fabric. Matrix chlorite parallel to the S2 foliation indicates that the subvertical fabric was still active below 550 °C. The axial planar S2 fabrics developed during upright folding are associated with retrogression of the eclogite under amphibolite facies conditions, and with prograde evolution in the metapelites, associated with their juxtaposition. The shared part of the eclogite and metapelite PT paths during the development of the subvertical fabric reflects their exhumation together.  相似文献   

6.
A section of the orogenic middle crust (Orlica‐?nie?nik Dome, Polish/Czech Central Sudetes) was examined to constrain the duration and significance of deformation (D) and intertectonic (I) phases. In the studied metasedimentary synform, three deformation events produced an initial subhorizontal foliation S1 (D1), a subsequent subvertical foliation S2 (D2) and a late subhorizontal axial planar cleavage S3 (D3). The synform was intruded by pre‐, syn‐ and post‐D2 granitoid sheets. Crystallization–deformation relationships in mica schist samples document I1–2 garnet–staurolite growth, syn‐D2 staurolite breakdown to garnet–biotite–sillimanite/andalusite, I2–3 cordierite blastesis and late‐D3 chlorite growth. Garnet porphyroblasts show a linear Mn–Ca decrease from the core to the inner rim, a zone of alternating Ca–Y‐ and P‐rich annuli in the inner rim, and a Ca‐poor outer rim. The Ca–Y‐rich annuli probably reflect the occurrence of the allanite‐to‐monazite transition at conditions of the staurolite isograd, whereas the Ca‐poor outer rim is ascribed to staurolite demise. The reconstructed PT path, obtained by modelling the stability of parageneses and garnet zoning, documents near‐isobaric heating from ~4 kbar/485 °C to ~4.75 kbar/575 °C during I1–2. This was followed by a progression to 4–5 kbar/580–625 °C and a subsequent pressure decrease to 3–4 kbar during D2. Pressure decrease below 3 kbar is ascribed to I2–3, whereas cooling below ~500 °C occurred during D3. In the dated mica schist sample, garnet rims show strong Lu enrichment, oscillatory Lu zoning and a slight Ca increase. These features are also related to allanite breakdown coeval with staurolite appearance. As Lu‐rich garnet rims dominate the Lu–Hf budget, the 344 ± 3 Ma isochron age is ascribed to garnet crystallization at staurolite grade, near the end of I1–2. For the dated sample of amphibole–biotite granitoid sheet, a Pb–Pb single zircon evaporation age of 353 ± 1 Ma is related to the onset of plutonic activity. The results suggest a possible Devonian age for D1, and a Carboniferous burial‐exhumation cycle in mid‐crustal rocks that is broadly coeval with the exhumation of neighbouring HP rocks during D2. In the light of published ages, a succession of telescoping stages with time spans decreasing from c. 10 to 2–3 Ma is proposed. The initially long period of tectonic quiescence (I1–2 phase, c. 10 Ma) inferred in the middle crust contrasts with contemporaneous deformation at deeper levels and points to decoupled PTD histories within the orogenic wedge. An elevated gradient of ~30 °C km?1 and assumed high heating rates of c. 20 °C Ma?1 are explained by the protracted intrusion of granitoid sheets, with or without deformation, whereas fast vertical movements (2–3 Ma, D2 phase) in the crust require the activity of deformation phases.  相似文献   

7.
Mineralogical and mineral chemical evidence for prograde metamorphism is rarely preserved in rocks that have reached ultrahigh‐temperature (UHT) conditions (>900 °C) because high diffusion and reaction rates erase evidence for earlier assemblages. The UHT, high‐pressure (HP) metasedimentary rocks of the Leverburgh belt of South Harris, Scotland, are unusual in that evidence for the prograde history is preserved, despite having reached temperatures of ~955 °C or more. Two lithologies from the belt are investigated here and quantitatively modelled in the system NaO–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O: a garnet‐kyanite‐K‐feldspar‐quartz gneiss (XMg = 37, A/AFM = 0.41), and an orthopyroxene‐garnet‐kyanite‐K‐feldspar quartzite (XMg = 89 A/AFM = 0.68). The garnet‐kyanite gneiss contains garnet porphyroblasts that grew on the prograde path, and captured inclusion assemblages of biotite, sillimanite, plagioclase and quartz (<790 °C, <9.5 kbar). These porphyroblasts preserve spectacular calcium zonation features with an early growth pattern overgrown by high‐Ca rims formed during high‐P metamorphism in the kyanite stability field. In contrast, Fe‐Mg zonation in the same garnet porphyroblasts reflects retrograde re‐equilibration, as a result of the relatively faster diffusivity of these ions. Peak PT are constrained by the occurrence of coexisting orthopyroxene and aluminosilicate in the quartzite. Orthopyroxene porphyroblasts [y(opx) = 0.17–0.22] contain sillimanite inclusions, indicative of maximum conditions of 955 ± 45 °C at 10.0 ± 1.5 kbar. Subsequently, orthopyroxene, kyanite, K‐feldspar and quartz developed in equilibrated textures, constraining the maximum pressure conditions to 12.5 ± 0.8 kbar at 905 ± 25 °C. P–T–X modelling reveals that the mineral assemblage orthopyroxene‐kyanite‐quartz is compositionally restricted to rocks of XMg > 84, consistent with its very rare occurrence in nature. The preservation of unusual high P–T mineral assemblages and chemical disequilibrium features in these UHT HP rocks is attributed to a rapid tectonometamorphic cycle involving arc subduction and terminating in exhumation.  相似文献   

8.
The Meatiq basement, which is exposed beneath late Proterozoic nappes of supracrustal rocks in the Central Eastern Desert of Egypt, was affected by three metamorphic events. The ophiolite cover nappes show only the last metamorphic overprint. The M1 metamorphic event (T ≥750 °C) is restricted to migmatized amphibolite xenoliths within the Um Ba′anib orthogneiss in the structurally lowest parts of the basement. Typical upper amphibolite facies M2 mineral assemblages include Grt–Zn-rich Spl–Qtz±Bt, Grt–Zn-rich Spl–Ms–Kfs–Bt–Sil–Qtz and locally kyanite in metasedimentary rocks. The mineral assemblages Ms–Qtz–Kfs–Sil in the matrix and Sil–Grt in garnet cores indicate that peak M2 P–T conditions exceeded muscovite and staurolite stabilities. Diffusional equilibration at M2 peak temperature conditions caused homogeneous chemical profiles across M2 garnets. Abundant staurolite in garnet rims and the matrix indicates a thorough equilibration during M2 at decreasing temperature conditions. M2 P–T conditions ranged from 610 to 690 °C at 6–8 kbar for the metamorphic peak and 530–600 °C at about 5.8 kbar for the retrograde stage. However, relic kyanite indicates pressures above 8 kbar, preceeding the temperature peak. A clockwise P–T path is indicated by abundant M2 sillimanite after relic kyanite and by andalusite after sillimanite. M2 fluid inclusions, trapped in quartz within garnet and in the quartz matrix show an array of isochores. Steepest isochores (water-rich H2O-CO2±CH4/N2 inclusions) pass through peak M2 P–T conditions and flatter isochores (CO2-rich H2O-CO2±CH4/N2 inclusions) are interpreted to represent retrograde fluids which is consistent with a clockwise P–T path for M2. The M3 assemblage Grt–Chl in the uppermost metasedimentary sequence of the basement limits temperature to 460 to 550 °C. M3 temperature conditions within the ophiolite cover nappes are limited by the assemblage Atg–Trem–Tlc to<540 °C and the absence of crysotile to >350 °C. The polymetamorphic evolution in the basement contrasts with the monometamorphic ophiolite nappes. The M1 metamorphic event in the basement occurred prior to the intrusion of the Um Ba′anib granitoid at about 780 Ma. The prograde phase of the M2 metamorphic event took place during the collision of an island arc with a continent. The break-off of the subducting slab increased the temperature and resulted in the peak M2 mineral assemblages. During the rise of the basement domain retrograde M2 mineral assemblages were formed. The final M3 metamorphic event is associated with the updoming of the basement domain at about 580 Ma along low-angle normal faults.  相似文献   

9.
Phase equilibria modelling, laser‐ablation split‐stream (LASS)‐ICP‐MS petrochronology and garnet trace‐element geochemistry are integrated to constrain the P–T–t history of the footwall of the Priest River metamorphic core complex, northern Idaho. Metapelitic, migmatitic gneisses of the Hauser Lake Gneiss contain the peak assemblage garnet + sillimanite + biotite ± muscovite + plagioclase + K‐feldspar ± rutile ± ilmenite + quartz. Interpreted P–T paths predict maximum pressures and peak metamorphic temperatures of ~9.6–10.3 kbar and ~785–790 °C. Monazite and xenotime 208Pb/232Th dates from porphyroblast inclusions indicate that metamorphism occurred at c. 74–54 Ma. Dates from HREE‐depleted monazite formed during prograde growth constrain peak metamorphism at c. 64 Ma near the centre of the complex, while dates from HREE‐enriched monazite constrain the timing of garnet breakdown during near‐isothermal decompression at c. 60–57 Ma. Near‐isothermal decompression to ~5.0–4.4 kbar was followed by cooling and further decompression. The youngest, HREE‐enriched monazite records leucosome crystallization at mid‐crustal levels c. 54–44 Ma. The northernmost sample records regional metamorphism during the emplacement of the Selkirk igneous complex (c. 94–81 Ma), Cretaceous–Tertiary metamorphism and limited Eocene exhumation. Similarities between the Priest River complex and other complexes of the northern North American Cordillera suggest shared regional metamorphic and exhumation histories; however, in contrast to complexes to the north, the Priest River contains less partial melt and no evidence for diapiric exhumation. Improved constraints on metamorphism, deformation, anatexis and exhumation provide greater insight into the initiation and evolution of metamorphic core complexes in the northern Cordillera, and in similar tectonic settings elsewhere.  相似文献   

10.
Kyanite and staurolite occur in the Tananao Metamorphic Complex as submicron inclusions in almandine‐rich garnet from a metamorphosed palaeosol weathering horizon, near Hoping, eastern Taiwan. Quartz, rutile/brookite and zircon are also found as associated submicron inclusions in garnet. Employing the reaction ilmenite+kyanite+quartz=almandine+rutile, and the breakdown of staurolite and quartz as thermobarometers, these submicron‐scale minerals formed at >8.3–8.8 kbar and < 660–690 °C. This P–T estimate is different from that (i.e. 5–7 kbar and 530–550 °C) derived from matrix minerals, which include almandine‐rich garnet, muscovite, chlorite, chloritoid, plagioclase, quartz and ilmenite. These results suggest that submicron inclusions in garnet‐like materials may record portions of the otherwise undocumented prograde path or provide information about previous metamorphic events and thus yield new insights into orogenic belts.  相似文献   

11.
Alpine metamorphism, related to the development of a metamorphic core complex during Cretaceous orogenic events, has been recognized in the Veporic unit, Western Carpathians (Slovakia). Three metamorphic zones have been distinguished in the metapelites: 1, chloritoid + chlorite + garnet; 2, garnet + staurolite + chlorite; 3, staurolite + biotite + kyanite. The isograds separating the metamorphic zones have been modelled by discontinuous reactions in the system K2O–FeO–MgO–Al2O3–SiO2–H2O (KFMASH). The isograds are roughly parallel to the north‐east‐dipping foliation related to extensional updoming along low‐angle normal faults. Thermobarometric data document increasing PT conditions from c. 500 °C and 7–8 kbar to c. 620 °C and 9–10 kbar, reflecting a coherent metamorphic field gradient from greenschist to middle amphibolite facies. 40Ar/39Ar data obtained by high spatial resolution in situ ultraviolet (UV) laser ablation of white micas from the rock slabs constrain the timing of cooling and exhumation in the Late Cretaceous. Mean dates are between 77 and 72 Ma; however, individual white mica grains record a range of apparent 40Ar/39Ar ages indicating that cooling below the blocking temperature for argon diffusion was not instantaneous. The reconstructed metamorphic PTt path is ‘clockwise’, reflecting post‐burial decompression and cooling during a single Alpine orogenic cycle. The presented data suggest that the Veporic unit evolved as a metamorphic core complex during the Cretaceous growth of the Western Carpathian orogenic wedge. Metamorphism was related to collisional crustal shortening and stacking, following closure of the Meliata Ocean. Exhumation was accomplished by synorogenic (orogen‐parallel) extension and unroofing in an overall compressive regime.  相似文献   

12.
Abstract The Port aux Basques gneisses comprise three lithostratigraphic units separated by major fault zones: the Grand Bay Complex; the Port aux Basques Complex; and the Harbor le Cou Group. A similar regionally developed polyphase history of penetrative deformation characterizes each of these units. Thickening during D1 produced rare recumbent folds (F1) and an axial planar schistosity (S1), overprinted by D2 recumbent folds (F2), and transposed during development of a locally penetrative, differentiated crenulation cleavage (S2). In western sectors of the area, D2 was associated with NW-directed reverse shearing. The NE-trending structural grain reflects D3 transpression, partitioned into dextral transcurrent movement along major shear zones and development of upright-to-steeply inclined, periclinal folds (F3) and a variably penetrative schistosity (S3). Amphibolite facies metamorphism increases in grade from west to east across the area. Microstructures, including porphyroblast-matrix foliation relations and internal textural unconformities in garnet, indicate episodic porphyroblast nucleation and growth, which reflect a prograde traverse sequentially across univariant reactions during syntectonic metamorphism. Garnet, kyanite and staurolite porphyroblasts are wrapped by the S2 foliation, but each may contain trails of inclusions that define S1; commonly these trails preserve early stages of S2 crenulation cleavage development. Progressive and sequential reaction out of kyanite, staurolite and muscovite in favour of sillimanite, garnet, biotite and K-feldspar, and the development of an increasing volume of anatectic migmatite in south-eastern sectors of the area record syn- to late-D2 peak metamorphic conditions. Microstructural relationships and petrogenetic grid considerations indicate clockwise trajectories in P-T space for units of the Port aux Basques gneisses. Peak metamorphic conditions are estimated to have been 620–650° C at ≤8kbar in the west and 700–750° C at ≤8 kbar in the east. Titanite from an upper amphibolite facies calc-silicate gneiss yields U-Pb ages of c. 420 Ma, interpreted to date cooling shortly after the thermal peak in these gneisses. Variable D3 strain was associated with some recrystallization of hornblende and micas. 40Ar/39Ar hornblende plateau isotope correlation ages range from c. 419 to c. 393 Ma, from east to west across the area, and are interpreted to record cooling through c. 500° C coeval with or soon after D3 deformation. The range in ages may record the effects of heterogeneous D3 deformation and differential uplift from south-east to north-west associated with displacement on major shear zones. 40Ar/39Ar muscovite plateau ages cluster at c. 390 Ma, and date cooling through c. 375° C during regional exhumation. Cooling rates are moderate to fast and may indicate a component of tectonic exhumation. The Port aux Basques gneisses are a product of Silurian collisional tectonics. The higher grade of metamorphism in comparison with adjacent areas of the Canadian Appalachians is interpreted to reflect greater thickening due to juxtaposition of the St Lawrence promontory (Laurentian margin) with the Cabot promontory (Avalonian margin) during closure of the Iapetus Ocean.  相似文献   

13.
It is generally thought that garnet in metapelites is produced by continuous reactions involving chlorite or chloritoid. Recent publications have suggested that the equilibrium temperatures of garnet‐in reactions may be significantly overstepped in regionally metamorphosed terranes. The growth of small spessartine–almandine garnet crystals on Mn‐siderite at the garnet isograd in graphitic metapelites in the Proterozoic Black Hills orogen, South Dakota, demonstrates that Mn‐siderite was the principal reactant that produced the initial garnet in the schists. Moreover, the positions of garnet compositions in isobaric, T–(C/H) pseudosections for the schists show that the temperature of the garnet‐in reaction from Mn‐siderite was overstepped minimally at the most. In the Black Hills, garnet was initially produced during regional metamorphism beginning at c. 1755 Ma due to the collision of Wyoming and Superior cratons, and was subsequently partially or fully re‐equilibrated at more elevated temperatures and pressures during intrusion of the Harney Peak Granite (HPG) at c. 1715 Ma. Garnet occurs in graphitic schists in garnet, staurolite and sillimanite zones, the latter being a product of contact metamorphism by HPG. During metamorphism, coexisting fluid contained both CO2 and CH4. In the garnet zone, garnet crystals contain petrographically distinct cores with inclusions of quartz, graphite and other minerals. Centres of the cores have distinctly elevated Y concentrations that mark the positions of garnet nucleation. The elevated Y is thought to have come from the Mn‐siderite onto which Y was probably absorbed during precipitation in an ocean. In the upper garnet and staurolite zones, the cores were overgrown by inclusion‐poor mantles. Mantles are highly zoned and have more elevated Fe and Mg and lower Mn and Ca than cores. The growth of mantles is attributed to late‐orogenic heating by leucogranite magmas and attendant influx of H2O that caused consumption of graphite in rock matrices. A portion of the Proterozoic terrane that includes the HPG is surrounded by four large faults. In this ‘HPG block’, garnet is inclusion‐poor and its composition does not preserve its early growth history. This garnet appears to have re‐equilibrated by internal diffusion of its major components and/or recrystallization of an earlier inclusion‐rich garnet. It has equilibrated within the kyanite stability range, and together with remnant kyanite in the high‐strain aureole of the HPG, indicates that the HPG block had a ≥6 kbar history. The HPG block has undergone decompression during emplacement of the HPG. The decompression is evident in occurrences of retrograde andalusite and cordierite in the thermal aureole of the HPG. The data support a polybaric metamorphic history of the Black Hills orogen with different segments of the orogen having their own clockwise P–T–t paths.  相似文献   

14.
Thermodynamic modelling of metamorphic rocks increases the possibilities of deciphering prograde paths that provide important insights into early orogenic evolution. It is shown that the chloritoid–staurolite transition is not only an indicator of temperature on prograde P–T paths, but also a useful indicator of pressure. The approach is applied to the Moravo‐Silesian eastern external belt of the Bohemian Massif, where metamorphic zones range from biotite to staurolite‐sillimanite. In the staurolite zone, inclusions of chloritoid occur in garnet cores, while staurolite is included at garnet rims and is widespread in the matrix. Chloritoid XFe = 0.91 indicates transition to staurolite at 5 kbar and 550 °C and consequently, an early transient prograde geothermal gradient of 29 °C km?1. The overall elevated thermal evolution is then reflected in the prograde transition of staurolite to sillimanite and in the achievement of peak temperature of 660 °C at a relatively low pressure of 6.5 kbar. To the south and to the west of the studied area, high‐grade metamorphic zones record a prograde path evolution from staurolite to kyanite and development of sillimanite on decompression. Transition of chloritoid to staurolite was reported in two places, with chloritoid XFe = 0.75–0.80, occurring at 8–10 kbar and 560–580 °C, and indicating a transient prograde geothermal gradient of 16–18 °C km?1. These data show variable barric evolutions along strike and across the Moravo‐Silesian domain. Elevated prograde geothermal gradient coincides with areas of Devonian sedimentation and volcanism, and syn‐ to late Carboniferous intrusions. Therefore, we interpret it as a result of heat inherited from Devonian rifting, further fuelled by syntectonic Carboniferous intrusions.  相似文献   

15.
The Soursat metamorphic complex (SMC) in northwestern Iran is part of the Sanandaj-Sirjan metamorphic belt.The complex is composed of different metamorphic and plutonic rocks,but is dominated by metape...  相似文献   

16.
Geothermometry and mineral assemblages show an increase of temperature structurally upwards across the Main Central Thrust (MCT); however, peak metamorphic pressures are similar across the boundary, and correspond to depths of 35–45 km. Garnet‐bearing samples from the uppermost Lesser Himalayan sequence (LHS) yield metamorphic conditions of 650–675 °C and 9–13 kbar. Staurolite‐kyanite schists, about 30 m above the MCT, yield P‐T conditions near 650 °C, 8–10 kbar. Kyanite‐bearing migmatites from the Greater Himalayan sequence (GHS) yield pressures of 10–14 kbar at 750–800 °C. Top‐to‐the‐south shearing is synchronous with, and postdates peak metamorphic mineral growth. Metamorphic monazite from a deformed and metamorphosed Proterozoic gneiss within the upper LHS yield U/Pb ages of 20–18 Ma. Staurolite‐kyanite schists within the GHS, a few metres above the MCT, yield monazite ages of c. 22 ± 1 Ma. We interpret these ages to reflect that prograde metamorphism and deformation within the Main Central Thrust Zone (MCTZ) was underway by c. 23 Ma. U/Pb crystallization ages of monazite and xenotime in a deformed kyanite‐bearing leucogranite and kyanite‐garnet migmatites about 2 km above the MCT suggest crystallization of partial melts at 18–16 Ma. Higher in the hanging wall, south‐verging shear bands filled with leucogranite and pegmatite yield U/Pb crystallization ages for monazite and xenotime of 14–15 Ma, and a 1–2 km thick leucogranite sill is 13.4 ± 0.2 Ma. Thus, metamorphism, plutonism and deformation within the GHS continued until at least 13 Ma. P‐T conditions at this time are estimated to be 500–600 °C and near 5 kbar. From these data we infer that the exhumation of the MCT zone from 35 to 45 km to around 18 km, occurred from 18 to 16 to c. 13 Ma, yielding an average exhumation rate of 3–9 mm year?1. This process of exhumation may reflect the ductile extrusion (by channel flow) of the MCTZ from between the overlying Tibetan Plateau and the underthrusting Indian plate, coupled with rapid erosion.  相似文献   

17.
Jadeite‐bearing kyanite eclogite has been discovered in the Iratsu body of the Sanbagawa belt, SW Japan. The jadeite + kyanite assemblage is stable at higher pressure–temperature (PT) conditions or lower H2O activity [a(H2O)] than paragonite, although paragonite‐bearing eclogite is common in the Sanbagawa belt. The newly discovered eclogite is a massive metagabbro with the peak‐P assemblage garnet + omphacite + jadeite + kyanite + phengite + quartz + rutile. Impure jadeite is exclusively present as inclusions in garnet. The compositional gap between the coexisting omphacite (P2/n) and impure jadeite (C2/c) suggests relatively low metamorphic temperatures of 510–620 °C. Multi‐equilibrium thermobarometry for the assemblage garnet + omphacite + kyanite + phengite + quartz gives peak‐P conditions of ~2.5 GPa, 570 °C. Crystallization of jadeite in the metagabbro is attributed to Na‐ and Al‐rich effective bulk composition due to the persistence of relict Ca‐rich clinopyroxene at the peak‐P stage. By subtracting relict clinopyroxene from the whole‐rock composition, pseudosection modelling satisfactorily reproduces the observed jadeite‐bearing assemblage and mineral compositions at ~2.4–2.5 GPa, 570–610 °C and a(H2O) >0.6. The relatively high pressure conditions derived from the jadeite‐bearing kyanite eclogite are further supported by high residual pressures of quartz inclusions in garnet. The maximum depth of exhumation in the Sanbagawa belt (~80 km) suggests decoupling of the slab–mantle wedge interface at this depth.  相似文献   

18.
Four amphibolite facies pelitic gneisses from the western Mongolian Altai Range exhibit multistage aluminosilicate formation and various chemical‐zoning patterns in garnet. Two of them contain kyanite in the matrix and sillimanite inclusions in garnet, and the others have kyanite inclusions in garnet with sillimanite or kyanite in the matrix. The Ca‐zoning patterns of the garnet are different in each rock type. U–Th–Pb monazite geochronology revealed that all rock units experienced a c. 360 Ma event, and three of them were also affected by a c. 260 Ma event. The variations in the microstructures and garnet‐zoning profiles are caused by the differences in the (i) whole‐rock chemistry, (ii) pressure conditions during garnet growth at c. 360 Ma and (iii) equilibrium temperatures at c. 260 Ma. The garnet with sillimanite inclusions records an increase in pressure at low‐P (~5.2–7.2 kbar) and moderate temperature conditions (~620–660 °C) at c. 360 Ma. The garnet with kyanite inclusions in the other rock types was also formed during an increase in pressure but at higher pressure conditions (~7.0–8.9 kbar at ~600–640 °C). The detrital zircon provenance of all the rock types is similar and is consistent with that from the sedimentary rocks in the Altai Range, suggesting that the provenance of all the rock types was a surrounding accretionary wedge. One possible scenario for the different thermal gradient is Devonian ridge subduction beneath the Altai Range, as proposed by several researchers. The subducting ridge could have supplied heat to the accretionary wedge and elevated the geotherm at c. 360 Ma. The differences in the thermal gradients that resulted in varying prograde P–T paths might be due to variations in the thermal regimes in the upper plate that were generated by the subducting ridge. The c. 260 Ma event is characterized by a relatively high‐T/P gradient (~25 °C km?1) and may be due to collision‐related granitic activity and re‐equilibrium at middle crustal depths, which caused the variations in the aluminosilicates in the matrix between the rock units.  相似文献   

19.
A combined metamorphic and isotopic study of lit‐par‐lit migmatites exposed in the hanging wall of the Main Central Thrust (MCT) from Sikkim has provided a unique insight into the pressure–temperature–time path of the High Himalayan Crystalline Series of the eastern Himalaya. The petrology and geochemistry of one such migmatite indicates that the leucosome comprises a crystallized peraluminous granite coexisting with sillimanite and alkali feldspar. Large garnet crystals (2–3 mm across) are strongly zoned and grew initially within the kyanite stability field. The melanosome is a biotite–garnet pelitic gneiss, with fibrolitic sillimanite resulting from polymorphic inversion of kyanite. By combining garnet zoning profiles with the NaCaMnKFMASHTO pseudosection appropriate to the bulk composition of a migmatite retrieved from c. 1 km above the thrust zone, it has been established that early garnet formed at pressures of 10–12 kbar, and that subsequent decompression caused the rock to enter the melt field at c. 8 kbar and c. 750 °C, generating peritectic sillimanite and alkali feldspar by the incongruent melting of muscovite. Continuing exhumation resulted in resorption of garnet. Sm–Nd growth ages of garnet cores and rim, indicate pre‐decompression garnet growth at 23 ± 3 Ma and near‐peak temperatures during melting at 16 ± 2 Ma. This provides a decompression rate of 2 ± 1 mm yr?1 that is consistent with exhumation rates inferred from mineral cooling ages from the eastern Himalaya. Simple 1D thermal modelling confirms that exhumation at this rate would result in a near‐isothermal decompression path, a result that is supported by the phase relations in both the melanosome and leucosome components of the migmatite. Results from this study suggest that anatexis of Miocene granite protoliths from the Himalaya was a consequence of rapid decompression, probably in response to movement on the MCT and on the South Tibetan detachment to the north.  相似文献   

20.
Migmatites with sub‐horizontal fabrics at the eastern margin of the Variscan orogenic root in the Bohemian Massif host lenses of eclogite, kyanite‐K‐feldspar granulite and marble within a matrix of migmatitic paragneiss and amphibolite. Petrological study and pseudosection modelling have been used to establish whether the whole area experienced terrane‐wide exhumation of lower orogenic crust, or whether smaller portions of higher‐pressure lower crust were combined with a lower‐pressure matrix. Kyanite‐K‐feldspar granulite shows peak conditions of 16.5 kbar and 850 °C with no clear indications of prograde path, whereas in the eclogite the prograde path indicates burial from 10 kbar and 700 °C to a peak of 18 kbar and 800 °C. Two contrasting prograde paths are identified within the host migmatitic paragneiss. The first path is inferred from the presence of staurolite and kyanite inclusions in garnet that contains preserved prograde zoning that indicates burial with simultaneous heating to 11 kbar and 800 °C. The second path is inferred from garnet overgrowths of a flat foliation defined by sillimanite and biotite. Garnet growth in such an assemblage is possible only if the sample is heated at 7–8 kbar to around 700–840 °C. Decompression is associated with strong structural reworking in the flat fabric that involves growth of sillimanite in paragneiss and kyanite‐K‐feldspar granulite at 7–10 kbar and 750–850 °C. The contrasting prograde metamorphic histories indicate that kilometre‐scale portions of high‐pressure lower orogenic crust were exhumed to middle crustal levels, dismembered and mixed with a middle crustal migmatite matrix, with the simultaneous development of a flat foliation. The contrasting PT paths with different pressure peaks show that tectonic models explaining high‐pressure boudins in such a fabric cannot be the result of heterogeneous retrogression during ductile rebound of the whole orogenic root. The PT paths are compatible with a model of heterogeneous vertical extrusion of lower crust into middle crust, followed by sub‐horizontal flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号