首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Process length variation of cysts of the dinoflagellate Protoceratium reticulatum (Claparède et Lachmann) Bütschli in surface sediments from the North Pacific was investigated. The average process length showed a significant inverse relation to annual seawater density: σt annual = ?0.8674 × average process length + 1029.3 (R2 = 0.84), with a standard error of 0.78 kg m?3. A sediment trap study from Effingham Inlet in British Columbia revealed the same relationship between average process length and local seawater density variations. In the Baltic–Skagerrak region, the average process length variation was related significantly to annual seawater density: σt annual = 3.5457 × average process length ? 993.28 (R2 = 0.86), with a standard error of 3.09 kg m?3. These calibrations cannot be reconciled, which accentuates the regional character of the calibrations. This can be related to variations in molecular data (small subunit, long subunit and internal transcribed spacer sequences), which show the presence of several genotypes and the occurrence of pseudo‐cryptic speciation within this species. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
The Baltic Sea is an intra‐continental brackish water body. Low saline surface water, the so‐called Baltic outflow current, exits the Baltic Sea through the Kattegat into the Skagerrak. Ingressions of saline oxygen‐rich bottom water enter the Baltic Sea basins via the narrow and shallow Kattegat and are of great importance for the ecological and ventilation state of the Baltic Sea. Over recent decades, progress has been made in studying Holocene changes in saline water inflow. However, reconstructions of past variations in Baltic Sea outflow changes are sparse and hampered because of the lack of suitable proxies. Here, we used the relative proportion of tetra‐unsaturated C37 ketones (C37:4 %) in long‐chain alkenones produced by coccolithophorids as a proxy for outflowing Baltic Sea water in the Skagerrak. To evaluate the applicability of the proxy, we compared the biomarker results with grain‐size records from the Kattegat and Mecklenburg Bay in addition to previously published salinity reconstructions from the Kattegat over the last 5000 years. All Skagerrak records showed an increase in C37:4 % that is accompanied by enhanced bottom water currents in the Kattegat and western Baltic Sea over the past 3500 cal. a BP, indicating an increase in Baltic Sea outflow. This probably reflects higher precipitation in the Baltic Sea catchment area owing to a re‐organization of North Atlantic atmospheric circulation with an increased influence of wintertime Westerlies over the Baltic catchment from the mid‐ to the late Holocene.  相似文献   

3.
Holocene sea-surface salinity in the Skagerrak–Kattegat is reconstructed using weighted averaging regression and calibration (WA) of diatom data from core Skagen 3. Diatom data from surface sediments together with 10-yr mean values of salinity and water temperature were used as a modern training set. Canonical correspondence analysis (CCA) was used to identify statistically significant directions of variation within the training set. The results of forward selection of the environmental variables and associated Monte Carlo permutation tests of the statistical significance of each variable, the canonical coefficients, and the intraset correlations of the environmental variables with the CCA axes suggest that summer and winter sea-surface salinities (SSS, WSS) are potentially reconstructable from fossil diatom assemblages. The changes in sea-surface salinity during the Holocene can be correlated with changes in climate of the circum-Baltic area, the current patterns of the Skagerrak–Kattegat, and the development of the Baltic Sea. Generally low SSS and large differences between WSS and SSS (ΔSw-s) during 9000–6000 yr BP might have resulted from a climate with higher precipitation than today in the circum-Baltic area and its catchment, or a climate with maximum precipitation in late spring or early summer. The mechanism behind these patterns may be the combination of the northward shift of the jet stream and a stronger surface westerly penetration into the continent caused by a reduced latitudinal insolation gradient and enhanced land–sea contrast in the early to middle Holocene. It was, however, complicated by local events such as changes in the strength of various currents in the Skagerrak–Kattegat, successions of Baltic brackish and freshwater phases, and hydrodynamic conditions in the circum-Baltic area. © 1998 John Wiley & Sons, Ltd.  相似文献   

4.
Early to late Holocene sediments from core F80, Fårö Deep, Baltic Sea, are investigated for their palynomorph composition and dinoflagellate cyst record to map variations in sea‐surface‐water salinity and palaeoproductivity during the past 6000 years. The F80 palynomorph assemblages are subdivided into four Assemblage Zones (AZs) named A to D. The transition from the stratigraphically oldest AZ A to B reflects a marked increase in palaeoproductivity and a gradual increase in surface‐water salinity over the ~1500 years between the Initial Littorina (former Mastogloia Sea Stage) and Littorina Sea Stage. A period with maximum sea‐surface salinity is recorded within the overlying AZ C from 7200 to 5200 cal. a BP, where the process length of Operculodinium centrocarpum indicates that average salinities were probably the highest (~15–17 versus 7.5 psu today) since the last glaciation. The change from AZ C to D correlates with a shift from laminated to non‐laminated sediments, and the dinoflagellate cyst assemblages suggest that the surface‐ and the deep‐water environment altered from c. 5250 cal. a BP, with less productivity in the surface water and more oxygenated conditions in the deep water. Here we demonstrate that past regional changes in surface salinity, primary productivity and deep‐water oxygenation status in the Baltic Sea can be traced by mapping overall palynomorph composition, dinoflagellate cyst assemblages and variations in the process length of O. centrocarpum in relation to periods of laminated/non‐laminated sedimentation and proportion of organic‐matter in the sediments. An understanding of past productivity changes is particularly important to better understand present‐day environmental changes within the Baltic Sea region.  相似文献   

5.
Diatom data from the Skagerrak–Kattegat show that large amounts of meltwater were discharged into the Kattegat–Skagerrak from the Baltic Ice Lake during the Younger Dryas interval. Strong meltwater discharge greatly freshened surface-water salinity in the Kattegat and areas along the Swedish west coast and possibly changed the directions of sea-surface salinity gradients from north–south to east–west or northwest–southeast. It resulted in a markedly stratified water column in salinity in the Kattegat, which complicates the environmental interpretation based on different types of microfossils. The meltwater influence on the large area of the Skagerrak during the Younger Dryas was, however, restricted along the Norwegian coast where it flowed into the Norwegian Sea.  相似文献   

6.
Knudsen, K. L., Jiang, H., Kristensen, P., Gibbard, P. L. & Haila, H. 2011: Early Last Interglacial palaeoenvironments in the western Baltic Sea: benthic foraminiferal stable isotopes and diatom‐based sea‐surface salinity. Boreas, 10.1111/j.1502‐3885.2011.00206.x. ISSN 0300‐9483. Stable isotopes from benthic foraminifera, combined with diatom assemblage analysis and diatom‐based sea‐surface salinity reconstructions, are used for the interpretation of changes in bottom‐ and surface‐water conditions through the early Eemian at Ristinge Klint in the western Baltic Sea. Correlation of the sediments with the Eemian Stage is based on a previously published pollen analysis that indicates that they represent pollen zones E2–E5 and span ~3400 years. An initial brackish‐water phase, initiated c. 300 years after the beginning of the interglacial, is characterized by a rapid increase in sea‐surface and sea‐bottom salinity, followed by a major increase at c. 650 years, which is related to the opening of the Danish Straits to the western Baltic. The diatoms allow estimation of the maximum sea‐surface salinity in the time interval of c. 650–1250 years. After that, slightly reduced salinity is estimated for the interval of c. 1250–2600 years (with minimum values at c. 1600–2200 years). This may be related to a period of high precipitation/humidity and thus increased freshwater run‐off from land. Together with a continuous increase in the water depth, this may have contributed to the gradual development of a stratified water column after c. 1600 years. The stratification was, however, particularly pronounced between c. 2600 and 3400 years, a period with particularly high sea‐surface temperature, as well as bottom‐water salinity, and thus a maximum influence of Atlantic water masses. The freshwater run‐off from land may have been reduced as a result of particularly high summer temperatures during the climatic optimum.  相似文献   

7.
To detect climatic linkages between the Baltic Sea, the Skagerrak and the Nordic Seas, we present multi‐proxy reconstructions covering the last 4500 years from three sediment cores taken in the Skagerrak and along the SW Norwegian margin. Foraminiferal assemblages at all three sites show a distinct change at c. 1700 years BP, associated with a transition from absence and rare occurrence of Brizalina skagerrakensis during c. 4500–2300 years BP to its subsequent abundance increase, suggesting a stronger influence of nutrient‐rich water‐masses during the last c. 1700 years. Increased nutrient availability, which probably stimulated higher primary productivity, is further supported by an increase in diatoms, total organic carbon and benthic foraminiferal species indicative of high productivity and carbon fluxes during the last c. 1700 years as compared to c. 4500–2300 years BP. The amplitude of the B. skagerrakensis signal is largest in the central Skagerrak and gradually becomes smaller towards the Norwegian Sea suggesting that the dominant source of the nutrient‐rich water was the brackish outflow from the Baltic Sea. The generally lower abundances of planktonic foraminifera since c. 1700 years BP support the hypothesis of less saline surface water conditions in the Skagerrak. These results agree with other studies, which suggest a stronger Baltic outflow over the last 1700 years coinciding with a general cooling, increased wintertime westerlies bringing more winter precipitation to northern Europe, increased river runoff and higher frequency of floods. The increase in outflow also occurs during deposition of laminated sediments in the deep Baltic Sea. Leakage of dissolved inorganic phosphorus from anoxic sediments, as well as enhanced erosion due to deforestation in combination with higher runoff from Norway, coastal upwelling and more vigorous frontal dynamics may all have contributed to higher nutrient availability within the adjacent Skagerrak during the last 1700 years BP as compared to c. 4500–2300 years BP, when low productivity prevailed in the study area.  相似文献   

8.
Heikkilä, M. & Seppä, H. 2010: Holocene climate dynamics in Latvia, eastern Baltic region: a pollen‐based summer temperature reconstruction and regional comparison. Boreas, Vol. 39, pp. 705–719. 10.1111/j.1502‐3885.2010.00164.x. ISSN 0300‐9483. A pollen‐based summer temperature (Tsummer) reconstruction reveals the Holocene climate history in southeastern Latvia and contributes to the limited understanding of past climate behaviour in the eastern sector of northern Europe. Notably, steady climate warming of the early Holocene was interrupted c. 8350–8150 cal. yr BP by the well‐known 8.2 ka cold event, recorded as a decrease of 0.9 to 1.8 °C in Tsummer. During the Holocene Thermal Maximum, c. 8000–4000 cal. yr BP, the reconstructed summer temperature was ~2.5–3.5 °C higher than the modern reconstructed value, and subsequently declined towards present‐day values. Comparison of the current reconstruction with other pollen‐based reconstructions in northern Europe shows that the 8.2 ka event is particularly clearly reflected in the Baltic region, possibly as a result of distinct climatic and ecological gradients and the sensitivity of the vegetation growth pattern to seasonal temperature change. The new reconstruction also reveals that the Holocene Thermal Maximum was warmer in Latvia than in central Europe and Fennoscandia. In fact, a gradient of increasing positive temperature anomalies is detected from northernmost Fennoscandia towards the south and from the Atlantic coast in Norway towards the continental East European Plain. The dynamics of the temperate broadleaved tree species Tilia and Quercus in Latvia and adjacent northern Europe during the mid‐Holocene give complementary information on the multifaceted climatic and environmental changes in the region.  相似文献   

9.
Anjar, J., Larsen, N. K., Björck, S., Adrielsson, L. & Filipsson, H. L. 2010: MIS 3 marine and lacustrine sediments at Kriegers Flak, southwestern Baltic Sea. Boreas, 10.1111/j.1502‐3885.2010.00139.x. ISSN 0300‐9483. Sediment cores from the Kriegers Flak area in the southwestern Baltic Sea show a distinct lithological succession, starting with a lower diamict that is overlain by a c. 10 m thick clay unit that contains peat, gyttja and other organic remains. On top follows an upper diamict that is inter‐layered with sorted sediments and overlain by an upward‐coarsening sequence with molluscs. In this paper we focus on the clay unit, which has been subdivided into three subunits: (A) lower clay with benthic foraminifera and with diamict beds in the lower part; (B) thin beds of gyttja and peat, which have been radiocarbon‐dated to 31–35 14C kyr BP (c. 36–41 cal. kyr BP); and (C) upper clay unit. Based on the preliminary results we suggest the following depositional model: fine‐grained sediments interbedded with diamict in the lower part (subunit A) were deposited in a brackish basin during a retreat of the Scandinavian Ice Sheet, probably during the Middle Weichselian. Around 40 kyr BP the area turned into a wetland with small ponds (subunit B). A transgression, possibly caused by the damming of the Baltic Basin during the Kattegat advance at 29 kyr BP, led to the deposition of massive clay (subunit C). The data presented here provide new information about the paleoenvironmental changes occurring in the Baltic Basin following the Middle Weichselian glaciation.  相似文献   

10.
Alkenone unsaturation ratios of sedimentary lipids are used as a geochemical proxy for sea surface temperatures, and interest is growing in their potential as indicators of different water masses and possibly of salinity. We analyzed the abundance of unsaturated C37 to C38 ketones in lipid extracts of 57 surface sediment (0-1 cm) samples along a salinity gradient from 8 to 33 psu in the transition from the Skagerrak to the Baltic Sea (NW Europe). In addition to surface sediments, we analyzed alkenones in suspended particulate matter at 13 stations—over a gradient in salinity from 25 to 33 psu—during a bloom of the coccolithophore Emiliania huxleyi. Alkenones were detected in all samples (suspended matter and sediment) with variable contributions of the tetra-unsaturated C37 alkenone compound (%C37:4; range from 2 to 10% of total C37 alkenone content). Comparing the alkenone unsaturation index (U37K′) and %C37:4 data to climatological sea surface temperature and sea surface salinity data sets revealed that SST estimated from U37K′ of saline end members (samples from the Skagerrak) is in the general range of modern SST during bloom periods of haptophytes. At salinities below ∼30 psu %C37:4 increases to above 5% and the unsaturation ratios cease to be related to climatological annual or seasonal sea surface temperatures. On the other hand, the %C37:4 appears to be inversely and significantly correlated to salinity: Highest C37:4 proportions in the inner Baltic Sea are caused by an unidentified organism, but in the transition area at salinities down to 10 psu, the producer apparently is E. huxleyi. The suspended matter data together with those from the water column support the hypothesis of changing biosynthesis of alkenones under salt stress by the coccolithophore E. huxleyi, but constrain the maximum of %C37:4 attributable to salt stress to 10% of all C37 alkenones.  相似文献   

11.
From stratigraphic investigations of 38 piston and vibro cores, four fine-grained Late Weichselian sediment units can be defined in the southern Kattegat. A continuous stratigraphic record of the Late Weichselian sediments cannot be established from single cores due to the uneven distribution of the units, but by compilation of relative stratigraphies a composite record can be determined for sediments deposited between approximately 13,500 and 10,000 BP. The sediments contain both lithological and biostratigraphical evidence that the Baltic Ice Lake was suddenly drained through the Öresund Strait at about 12,700 BP. This drainage route appears to have been unchanged until about 10,300 BP when a passage opened in south central Sweden through which the final drainage of the Baltic Ice Lake took place. The Younger Dryas cold event appears to have had only marginal effects on the marine benthic life in the region. The data also indicate that drainage of fresh Baltic water through the Öresund Strait was the driving force for an inflow of marine water from the Skagerrak North Atlantic Ocean into the southern Kattegat, as occurring at the present. This paper is a contribution to IGCP 253, Termination of the Pleistocene .  相似文献   

12.
Twelve palaeogeographical reconstructions illustrate environmental changes at the southwest rim of the Scandinavian Ice Sheet 40–15 kyr BP. Synchronised land, sea and glacier configurations are based on the lithostratigraphy of tills and intertill sediments. Dating is provided by optically stimulated luminescence and calibrated accelerator mass spectrometry radiocarbon. An interstadial sequence ca. 40–30 kyr BP with boreo‐arctic proglacial fjords and subarctic flora and occasional glaciation in the Baltic was succeeded by a Last Glacial Maximum sequence ca. 30–20 kyr BP, with the closure of fjords and subsequent ice streams in glacial lake basins in Kattegat and the Baltic. Steadily flowing ice from Sweden bordered the Norwegian Channel Ice Stream. A deglaciation sequence ca. 20–15 kyr BP indicates the transgression of arctic waters, retreat of the Swedish ice and advance of Baltic ice streams succeeded by a return to interstadial conditions. When ameliorated ice‐free conditions prevailed in maritime regions, glaciers advanced through the Baltic and when interstadial regimes dominated the Baltic, glaciers expanded off the Norwegian coast. The largest glacier extent was reached in the North Sea around 29 kyr BP, about 22 kyr BP in Denmark and ca. 18 kyr BP in the Baltic. Our model provides new data for future numerical and qualitative landform‐based models. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
The Baltic Sea has experienced a complex geological history, with notable swings in salinity driven by changes to its connection with the Atlantic and glacio‐isostatic rebound. Sediments obtained during International Ocean Drilling Program Expedition 347 allow the study of the effects of these changes on the ecology of the Baltic in high resolution through the Holocene in areas where continuous records had not always been available. Sites M0061 and M0062, drilled in the Ångermanälven Estuary (northern Baltic Sea), contain records of Holocene‐aged sediments and microfossils. Here we present detailed records of palaeoecological and palaeoenvironmental changes to the Ångermanälven Estuary inferred from diatom, palynomorph and organic‐geochemical data. Based on diatom assemblages, the record is divided into four zones that comprise the Ancylus Lake, Littorina Sea, Post‐Littorina Sea and Recent Baltic Sea stages. The Ancylus Lake phase is initially characterized as oligotrophic, with the majority of primary productivity in the upper water column. This transition to a eutrophic state continues into the Initial Littorina Sea stage. The Initial Littorina Sea stage contains the most marine phase recorded here, as well as low surface water temperatures. These conditions end before the Littorina Sea stage, which is marked by a return to oligotrophic conditions and warmer waters of the Holocene Thermal Maximum. Glacio‐isostatic rebound leads to a shallowing of the water column, allowing for increased benthic primary productivity and stratification of the water column. The Medieval Climate Anomaly is also identified within Post‐Littorina Sea sediments. Modern Baltic sediments and evidence of human‐induced eutrophication are seen. Human influence upon the Baltic Sea begins c. 1700 cal. a BP and becomes more intense c. 215 cal. a BP.  相似文献   

14.
This study formulates a comprehensive depositional model for hydromagnesite–magnesite playas. Mineralogical, isotopic and hydrogeochemical data are coupled with electron microscopy and field observations of the hydromagnesite–magnesite playas near Atlin, British Columbia, Canada. Four surface environments are recognized: wetlands, grasslands, localized mounds (metre‐scale) and amalgamated mounds composed primarily of hydromagnesite [Mg5(CO3)4(OH)2·4H2O], which are interpreted to represent stages in playa genesis. Water chemistry, precipitation kinetics and depositional environment are primary controls on sediment mineralogy. At depth (average ≈ 2 m), Ca–Mg‐carbonate sediments overlay early Holocene glaciolacustrine sediments indicating deposition within a lake post‐deglaciation. This mineralogical change corresponds to a shift from siliciclastic to chemical carbonate deposition as the supply of fresh surface water (for example, glacier meltwater) ceased and was replaced by alkaline groundwater. Weathering of ultramafic bedrock in the region produces Mg–HCO3 groundwater that concentrates by evaporation upon discharging into closed basins, occupied by the playas. An uppermost unit of Mg‐carbonate sediments (hydromagnesite mounds) overlies the Ca–Mg‐carbonate sediments. This second mineralogical shift corresponds to a change in the depositional environment from subaqueous to subaerial, occurring once sediments ‘emerged’ from the water surface. Capillary action and evaporation draw Mg–HCO3 water up towards the ground surface, precipitating Mg‐carbonate minerals. Evaporation at the water table causes precipitation of lansfordite [MgCO3·5H2O] which partially cements pre‐existing sediments forming a hardpan. As carbonate deposition continues, the weight of the overlying sediments causes compaction and minor lateral movement of the mounds leading to amalgamation of localized mounds. Radiocarbon dating of buried vegetation at the Ca–Mg‐carbonate boundary indicates that there has been ca 8000 years of continuous Mg‐carbonate deposition at a rate of 0·4 mm yr?1. The depositional model accounts for the many sedimentological, mineralogical and geochemical processes that occur in the four surface environments; elucidating past and present carbonate deposition.  相似文献   

15.
In order to constrain spatial variability in watermass conditions within the European Epicontinental Seaway prior to, during and after the Toarcian Oceanic Anoxic Event, carbon (δ13Cbel, δ13Ccarb) and oxygen (δ18Obel, δ18Ocarb) isotope records were obtained from three sections in the Grands Causses Basin (southern France). These data were then compared with similar records along a north–south transect across the European Epicontinental Seaway. As the conclusions reached here strongly depend on the reliability of belemnite calcites as archives of palaeoceanographic changes, an attempt was made to improve the understanding of isotope signals recorded in belemnite calcite. Intra‐rostral carbon and oxygen‐isotope data from six belemnite specimens belonging to the genus Passaloteuthis were collected. Intra‐rostral carbon‐isotopes are influenced by vital effects, whereas oxygen‐isotopes reflect relative changes in temperature and salinity. Palaeotemperatures calculated from δ18Obel‐isotope records from the Grands Causses Basin confirm relatively low temperatures throughout the Late Pliensbachian. Similar cool water conditions have previously been shown in Germany, England, Spain and Portugal. A temperature increase of up to 6 °C is observed across the Pliensbachian–Toarcian boundary. A pronounced negative shift of at least ?3‰ (Vienna‐Pee Dee Belemnite) is recorded in bulk carbonate carbon during the lower Harpoceras serpentinum zone, typical of the Toarcian Oceanic Anoxic Event. Before and after the Toarcian Oceanic Anoxic Event, a good correlation between δ13Ccarb and δ13Cbel exists, indicating well‐ventilated bottom‐waters and normal marine conditions. Instead, data for the Toarcian Oceanic Anoxic Event indicate the development of a strong north–south gradient in salinity stratification and surface‐water productivity for the Western Tethyan realm. This study thus lends further support to a pronounced regional overprint on carbon and oxygen‐isotope records in epicontinental seaways.  相似文献   

16.
Erbs‐Hansen, D. R., Knudsen, K. L., Gary, A. C., Jansen, E., Gyllencreutz, R., Scao, V. & Lambeck, K. 2011: Late Younger Dryas and early Holocene palaeoenvironments in the Skagerrak, eastern North Atlantic: a multiproxy study. Boreas, 10.1111/j.1502‐3885.2011.00205.x. ISSN 0300‐9843 A high‐resolution study of palaeoenvironmental changes through the late Younger Dryas and early Holocene in the Skagerrak, the eastern North Atlantic, is based on multiproxy analyses of core MD99‐2286 combined with palaeowater depth modelling for the area. The late Younger Dryas was characterized by a cold ice‐distal benthic foraminiferal fauna. After the transition to the Preboreal (c. 11 650 cal. a BP) this fauna was replaced by a Cassidulina neoteretis‐dominated fauna, indicating the influence of chilled Atlantic Water at the sea floor. Persisting relatively cold bottom‐water conditions until c. 10 300 cal. a BP are presumably a result of an outflow of glacial meltwater from the Baltic area across south‐central Sweden, which led to a strong stratification of the water column at MD99‐2286, as also indicated by C. neoteretis. A short‐term peak in the C/N ratio at c. 10 200 cal. a BP is suggested to indicate input of terrestrial material, which may represent the drainage of an ice‐dammed lake in southern Norway, the Glomma event. After the last drainage route across south‐central Sweden closed, c. 10 300 cal. a BP, the meltwater influence diminished, and the Skagerrak resembled a fjord with a stable inflow of waters from the North Atlantic through the Norwegian Trench and a gradual increase in boreal species. Full interglacial conditions were established at the sea floor from c. 9250 cal. a BP. Subsequent warm stable conditions were interrupted by a short‐term cooling around 8300–8200 cal. a BP, representing the 8.2 ka event.  相似文献   

17.
Marine sediments from the Integrated Ocean Drilling Project (IODP) Site U1314 (56.36°N, 27.88°W), in the subpolar North Atlantic, were studied for their planktonic foraminifera, calcium carbonate content, and Neogloboqudrina pachyderma sinistral (sin.) δ13C records in order to reconstruct surface and intermediate conditions in this region during the Mid‐Pleistocene Transition (MPT). Variations in the palaeoceanography and regional dynamics of the Arctic Front were estimated by comparing CaCO3 content, planktonic foraminiferal species abundances, carbon isotopes and ice‐rafted debris (IRD) data from Site U1314 with published data from other North Atlantic sites. Site U1314 exhibited high abundances of the polar planktonic foraminifera N. pachyderma sin. and low CaCO3 content until Marine Isotope Stage (MIS) 26, indicating a relatively southeastward position of the Arctic Front (AF) and penetration of colder and low‐salinity surface arctic water‐masses. Changing conditions after MIS 25, with oscillations in the position of the AF, caused an increase in the northward export of the warmer North Atlantic Current (NAC), indicated by greater abundances of non‐polar planktonic foraminifera and higher CaCO3. The N. pachyderma sin. δ13C data indicate good ventilation of the upper part of the intermediate water layer in the eastern North Atlantic during both glacial and interglacial stages, except during Terminations 24/23, 22/21 and 20/1. In addition, for N. pachyderma (sin.) we distinguished two morphotypes: non‐encrusted and heavily encrusted test. Results indicate that increases in the encrusted morphotype and lower planktonic foraminiferal diversity are related to the intensification of glacial conditions (lower sea‐surface temperatures, sea‐ice formation) during MIS 22 and 20.  相似文献   

18.
We present elemental concentrations and magnetic susceptibility data from a new 270‐cm‐long sediment core collected from the western part of palaeolake Babicora and infer millennial‐scale hydrological variations over the last 27 cal. ka in the western Chihuahua Desert. Variations in the available water content at the sediment–air interface of the watershed, lake salinity and lake productivity are inferred from values of the chemical index of alteration (CIA), CaCO 3 and Corg, respectively. An abrupt increase in runoff at c. 24 cal. ka BP appears correlative with the Heinrich 2 (H2) event. Except for this event, diminished runoff between c. 27 and 19 cal. ka BP indicates lower annual precipitation (weak summer rainfall) during the Last Glacial Maximum. The deposition of chemically altered sediments between c. 25 and 22 cal. ka BP results from the higher sediment–water interaction in the watershed owing to lower evaporation, cooler conditions and higher precipitation during the H2 event. Since 19 cal. ka BP the runoff has been characterized by high‐amplitude fluctuations with intervals of reduced precipitation identified at c. 19, 18, 17.5, 13–14, 11.5, 10, 7.5 and 3 cal. ka BP.  相似文献   

19.
The Bujinhei Pb–Zn deposit is located in the southern Great Xing'an Range metallogenic belt. It is a representative medium‐ to high‐temperature hydrothermal vein type deposit controlled by fractures, and orebodies hosted in the Permian Shoushangou Formation. The hydrothermal mineralization is classified into three stages: pyrite ± arsenopyrite–quartz (Stage 1), polymetallic sulfide–quartz (Stage 2), and polymetallic sulfide–calcite (Stage 3). Fluid inclusion petrography, laser Raman analyses and microthermometry indicate that the liquid‐rich aqueous inclusions (L) and vapor‐rich CO2 ± CH4–H2O inclusions (C) occur in the Stage 1 and as medium‐ to high‐ temperature and low‐ to medium‐salinity NaCl–H2O–CO2–CH4 hydrothermal fluids. The liquid‐rich (L) and rare vapor‐rich CO2 ± CH4–H2O inclusions (C) occur in the Stage 2 with medium‐temperature and low‐salinity NaCl–H2O ± CO2 ± CH4 hydrothermal fluids. The exclusively liquid‐rich (L) fluid inclusions are observed in the Stage 3, and the hydrothermal fluid belongs to medium‐temperature and low‐salinity NaCl–H2O hydrothermal fluids. The results of hydrogen and oxygen isotope analyses indicate that ore‐forming fluids were initially derived from the magmatic water and mixed with local meteoric water in the late stage (δ18OH2O‐SMOW = 6.0 to 2.2‰, δDSMOW = ?103 to ?134‰). The carbon isotope compositions (?18.4‰ to ?26.5‰) indicate that the carbon in the fluid was derived from the surrounding strata. The sulfur isotope compositions (5.7 to 15.2‰) indicate that the ore sulfur was also primarily derived from the strata. The ore vein No. 1 occurs in fractures and approximately parallel to the rhyolite porphyry; orebodies have a close spatial and temporal relationship with the rhyolite porphyry. The rhyolite porphyry yielded a crystallization age of 122.9  ± 2.4 Ma, indicating that the Bujinhei deposit may be related to the Early Cretaceous magmatic event. Geochemical analyses reveal that the Bujinhei rhyolite porphyry is high in K2O and peraluminous, and derived from an acidic liquid as a result of strong interaction with hydrothermal fluid during the late magmatic stage; it is similar to A2‐type granites, and formed in a backarc extensional environment. These results indicate that the Bujinhei Pb–Zn deposit was a vein type system that formed in Early Cretaceous and influenced by the Paleo‐Pacific tectonic system. Bujinhei deposit is a representative hydrothermal vein type deposit on the genetic types, and occurs on the western slope of the southern Great Xing'an Range. The ore‐forming fluids were medium‐ to high‐temperature and low‐to medium‐salinity NaCl–H2O–CO2–CH4 hydrothermal fluids, which became medium‐temperature and low‐salinity NaCl–H2O hydrothermal fluids in later stages, and came from magmatic water and mixed with meteoric water, whereas the ore‐forming materials were mainly derived from the surrounding strata. The LA–ICP–MS zircon U–Pb dating indicates that the Bujinhei deposit formed at the period of late Early Cretaceous, potentially in a backarc extensional environment influenced by the Paleo‐Pacific tectonic system.  相似文献   

20.
The Skagerrak is a key region for our understanding of the Late Quaternary history of the East North Sea, of the entire Baltic basin and of the adjacent Scandinavian land areas. The depositional history of the postglacial Skagerrak began after the ice margin withdrew from Jutland to close to the modern Norwegian coast around 14 ka B.P. to 13 ka B.P. The Skagerrak was immediately filled by marine waters from the Norwegian Sea, but retained a fjord-like shape until approximately 10.2 ka B.P., when a connection opened across central Sweden to the Baltic Ice Lake. This seaway closed around 9 ka B.P., but a new seaway to the Baltic basin opened subsequently (probably close to 8.5 ka B.P.) through the Danish Belts. At about 10 ka B.P. the Skagerrak 'fjord' also started to change shape due to the flooding of the large former land area under the modern North Sea. Paleo-geography and -bathymetry of these changes can now be quantified in great detail. The young Quaternary sediments of the Skagerrak consist of fine-grained clays with minor amounts of silty and sandy material and are mostly of terrigenous origin, whereas biogenic components in general make up only a minor proportion of the bulk sediment. Prior to 10 ka B.P. a major portion of these deposits originated from the Fennoscandian regions N and E of the Skagerrak, while ice-rafting contributed coarse terrigenous components to the usually fine-grained sediments and while it was filled by brackish surface and cold polar bottom waters. At approximately 10 ka B.P., more temperate waters started to fill the Skagerrak and a good portion of the sediment seems to have originated from areas to the South. The Norwegian Coastal Current can only be documented for the past 7 ka; subtle changes of the pelagic and benthic environments could also be documented for later intervals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号