首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article is a detailed pollen analysis and accurate AMS chronology of the Lateglacial of two coastal sites in western Norway. The area was deglaciated around 14 600 cal. yr BP or shortly before. The earliest vegetation was open, with a pioneer mosaic of vegetation on mineral soils, including snowbed communities, and plants on wind-blown ridges. Later, more stable vegetation developed with Empetrum as an important constituent. Scattered tree birches were established in the area in the last part of the Bølling/Allerød (GI-1). The pollen record from Vassnestjern indicates three short-lasting cold periods: c . 14 050 to 13 900, 13 800 to 13 700 and 13 150 to 13 000 cal. yr BP. It has been suggested that the last-mentioned period, detected at both sites, corresponds with the Gerzensee/Killarney Oscillation. From about 12 750 cal. yr BP, the vegetation was affected by the Younger Dryas (GS-1) cooling, which caused the vegetation to break up and humus-soil communities to disappear. In the early Holocene, the humus-soil communities re-established and open birch forests developed. This Lateglacial vegetation development is broadly similar to the reconstructed vegetation development in other parts of southwestern Norway.  相似文献   

2.
By using heavy coring equipment in two high-altitudinal lakes (1253 and 1316 m a.s.l.) at Dovre, Central Norway, 1–1.5 m of unsorted coarsely minerogenic sediments were retrieved below the Holocene organic sediments. The minerogenic sequence contained well-preserved pollen and chironomid remains, revealing new and detailed palaeoenvironmental knowledge of the mountains in Central Norway during the last 5–6000 years of the Lateglacial (LG) period. However, the LG chronology is based on biostratigraphical correlations and not on 14C-dates, due to low organic content in the minerogenic sediments. The emerging LG nunataks, probably indicating a thin and multi-domed Scandinavian ice-sheet, was rapidly inhabited by immigrating species which could explain the present centric distributions of certain arctic-alpine plants. The LG vegetation development included a pre-interstadial dominated by mineral-soil pioneers, an interstadial dominated by shrubs and dwarf-shrubs, and the Younger Dryas cold period with recurring dominance of pioneers. Pollen and stomata of Pinus and Picea indicate their local LG presence at Dovre. LG climate oscillations are indicated by pollen stratigraphy and for the later part of LG also by chironomids. These oscillations could correspond to Heinrich event 1, GI-1d, GI-1b, and the Younger Dryas cold events. The LG interstadial reached July mean temperatures of more than 7–8 °C, similar to the present. Chironomids colonized the lake already during the onset of the interstadial, albeit at very low richness and abundances. Starting from YD, there are sufficient chironomid head capsules to perform a temperature reconstruction. The Holocene warming of about 2 °C initiated a vegetation closure from snow beds and dwarf-shrub tundra to shrubs and forests. Birch-forests established about 10 ka cal BP, slightly earlier than pine forests. Alnus expanded ca 9.2 ka cal BP and a thinning of the local forests occurred from ca 7 ka cal BP. Two short-lasting climate deteriorations found in the pollen record and the chironomid record may represent the Preboreal Oscillation and the 8.2 event. The Holocene Thermal Maximum is indicated around ca 7.8–7.3 ka cal BP showing a chironomid-inferred July mean of at least 11 °C. This is ca 3 °C warmer than today.  相似文献   

3.
Birks, H. H. & van Dinter, M. 2010: Lateglacial and early Holocene vegetation and climate gradients in the Nordfjord–Ålesund area, western Norway. Boreas, Vol. 39, pp. 783–798. 10.1111/j.1502‐3885.2010.00161.x. ISSN 0300‐9483. Modern climate in western Norway shows a strong west–east gradient in oceanicity–continentality (coast to inner fjord) and altitudinal temperature gradients that control the regional and altitudinal zonation of vegetation. To discover if similar gradients existed during the Lateglacial and early Holocene, plant‐macrofossil analyses were made from five lacustrine sediment sequences in the Nordfjord–Ålesund region selected to sample the present climatic gradients. The macrofossil assemblages could be interpreted as analogues of the present vegetation, thus allowing reconstruction of past vegetation and climates. When the five sites were compared, climatic gradients could be detected. During the Lateglacial interstadial, mid‐alpine assemblages with Salix herbacea and S. polaris occurred at the lowland coast and upland inland sites, whereas the inland lowland site had low‐alpine dwarf‐shrub heath dominated by Betula nana, demonstrating a strong west–east gradient in temperature and precipitation and an altitudinal gradient inland. During the Younger Dryas stadial, assemblages at the lowland coast and upland inland sites resembled high‐alpine vegetation, whereas the inland lowland site was warmer with mid‐alpine vegetation, demonstrating west–east and altitudinal temperature gradients. Gradients became less pronounced in the Holocene. The early abundance of Betula nana in the inner fjord sites but its rarity at the coast is striking and reflects the oceanicity gradient. All sites became forested with Betula pubescens a few centuries into the Holocene. This forest was probably close to tree line at 370 m a.s.l. at the coast. Inland, there was no detectable altitudinal gradient, with the tree line well above 400 m a.s.l. reflecting the present pattern of tree‐line elevation.  相似文献   

4.
《Quaternary Science Reviews》2003,22(5-7):453-473
Lateglacial and early Holocene (ca 14–9000 14C yr BP; 15–10,000 cal yr BP) pollen records are used to make vegetation and climate reconstructions that are the basis for inferring mechanisms of past climate change and for validating palaeoclimate model simulations. Therefore, it is important that reconstructions from pollen data are realistic and reliable. Two examples of the need for independent validation of pollen interpretations are considered here. First, Lateglacial-interstadial Betula pollen records in northern Scotland and western Norway have been interpreted frequently as reflecting the presence of tree-birch that has strongly influenced the resulting climate reconstructions. However, no associated tree-birch macrofossils have been found so far, and the local dwarf-shrub or open vegetation reconstructed from macrofossil evidence indicates climates too cold for tree-birch establishment. The low local pollen production resulted in the misleadingly high percentage representation of long-distance tree-birch pollen. Second, in the Minnesotan Lateglacial Picea zone, low pollen percentages from thermophilous deciduous trees could derive either from local occurrences of the tree taxa in the Picea/Larix forest or from long-distance dispersal from areas further south. The regionally consistent occurrence of low pollen percentages, even in sites with local tundra vegetation, and the lack of any corresponding macrofossil records support the hypothesis that the trees were not locally present. Macrofossils in the Picea zone represent tundra vegetation or Picea/Larix forest associated with typically boreal taxa, suggesting it was too cold for most thermophilous deciduous trees to grow. Any long-distance tree pollen is not masked by the low pollen production of tundra and Picea and Larix and therefore it is registered relatively strongly in the percentage pollen spectra.Many Lateglacial pollen assemblages have no recognisable modern analogues and contain high representations of well-dispersed ‘indicator’ taxa such as Betula or Artemisia. The spectra could have been derived from vegetation types that do not occur today, perhaps responding to the different climate that resulted from the different balance of climate forcing functions then. However, the available contemporaneous plant-macrofossil assemblages can be readily interpreted in terms of modern vegetation communities, suggesting that the pollen assemblages could have been influenced by mixing of locally produced pollen with long-distance pollen from remote vegetation types that are then over-represented in situations with low local pollen production. In such situations, it is important to validate the climate reconstructions made from the pollen data with a macrofossil record.  相似文献   

5.
This paper presents the first unambiguous terrestrial palaeoecological record for the late glacial “Bølling warming” in Denmark. Pollen and macrofossil stratigraphies from pre-Bølling to 10,800 cal yr BP are presented from a small kettle hole in Southwest Denmark, during which the lake basin developed from an immature stage after the deglaciation to complete infilling in the early Holocene. Results show that the recently deglaciated landscape bore a discontinuous vegetation of pioneer plants. After the Bølling warming, an open Dryas octopetala-Betula nana community developed with Helianthemum oelandicum. Subarctic species were dominant and local successions were probably delayed by relatively unstable and infertile soils. There is no indication of a climate cooling during the period corresponding to the Older Dryas, but the occurrence of several drought tolerant and steppe species indicates that the period was relatively dry. In the Allerød period the Dryas-B. nana vegetation was initially replaced by an open Salix and grass dominated vegetation and some 400 years later, the first tree birches were documented presumably occupying moist and sheltered soils while drier land remained open. In the Younger Dryas period trees disappeared and the vegetation became open again and dominated by subarctic species. Following climate warming at the Younger Dryas–Holocene transition a shrub community of Empetrum and Juniperus developed. After approximately 200 years it was replaced by birch forest. Overall, the late-glacial vegetation cover had a more open and patchy character than inferred from previous pollen studies as assessment of the vegetation succession based on macrofossil evidence is essential. The inferred general vegetation development corresponds well with results of other studies in the region. Canonical ordinations (RDA) indicate that vegetation changes at the landscape scale during the Lateglacial period were driven by changes in climate, soils and competition for light.  相似文献   

6.
Radiocarbon-dated pollen profiles are presented from two basins in Prato Spilla, near Val Parma in the northern Apennines. One basin contains a complete Holocene succession, the other a full Lateglacial to mid-Holocene record. The data provide the most comprehensive Lateglacial-early Holocene pollenstratigraphic succession yet reported from the northern Apennines accompanied by an internally consistent radiocarbon chronology. They provide fresh impetus for (a) a discussion of the strength of the Younger Dryas 'signal' in pollen-stratigraphic profiles from southern Europe, (b) an assessment of the palaeovegetation of northern Italy during the last glacial-interglacial transition, and (c) the altitude of the snowline in the region during the Younger Dryas.  相似文献   

7.
8.
The last glacial–interglacial transition encompassed rapid climate oscillations that affected both hemispheres. At low latitudes, the pattern of oscillations is not well established. To address this issue, pollen analysis was performed at Ciénega San Marcial, a monsoon‐influenced site located on the southeastern edge of the Sonoran Desert at the limit of the tropical thornscrub. The pollen record covers the Late Wisconsinan glacial termination II, from 15 650 to 13 400 cal. a BP, including GS‐2 and the Lateglacial interstadial, and a recent historical period (AD c. 1919 to 2004). We applied the modern analogue technique, in which pollen taxa are assigned to plant functional types (PFTs), to reconstruct the past climates. At the end of GS‐2, a Juniperus–Pinus woodland is indicative of annual temperatures 10±2 °C colder than present and higher annual precipitation dominated by winter rains. The onset of the Lateglacial interstadial occurs at c. 15 500 cal. a BP, resulting in a lower sedimentation rate and the spread of a xeric grassland. This period is associated with an increase in summer insolation. A weak signal of summer monsoon intensification is dated to 14 825 cal. a BP but is associated with colder winter temperatures. A wider spread of tropical taxa occurs after 13 800 cal. a BP, along with the loss of Juniperus, suggesting a temperature increase of approximately 3 °C. In spite of the earlier Lateglacial warming, the transition from glacial to interstadial conditions seems to be related to North Atlantic atmospheric variations. We conclude that during the last glacial–interglacial transition, the Sonoran Desert at 28.5° latitude was sensitive to climate variations originating in northern latitudes. The recent historical sequence displays summer‐dominant precipitation and additional drivers of climate change, including anthropogenic factors and El Niño, thus showing a stronger Pacific circulation influence in the subrecent period.  相似文献   

9.
Pollen analysis of a 33.21 m deep sediment core from Surinsar lake in Jammu region has revealed that between 9,500 and 7,700 yr BP (Pollen zone SL-I), the mixed oak-broad-leaved/chirpine forest occurred in the region under a warm and humid climate. The record of aquatic plants viz. Potamogeton, Typha and freshwater alga Botryococcus in appreciable numbers denotes the existence of the lake since the Early Holocene. Subsequently, mixed chirpine/oak-broad-leaved forests appeared in the area around 7,700 to 6,125 yr BP (Pollen zone SL-II) with the dominance of chirpine (Pinus cf. roxburghii) by the onset of cool and dry climate, attributed to decrease in monsoon rainfall. The expansion of oak and its broad-leaved associates between 6,125 and 4,330 yr BP (Pollen zone SL-III) suggests that the climate turned moderately humid and warm, presumably due to enhanced monsoonal effect. The region has witnessed a brief spell of pluvial environment between 4,330 and 4,000 yr BP (Pollen zone SL-IV) as evidenced by the presence of sandy layer at 15.4–14 m depths. The period of 4,000 to 2,100 yr BP (Pollen zone SL-V) is marked by the prevalence of cool and dry climate as depicted by a sharp decline in oak (Quercus cf. incana) and other broad-leaved taxa and a concurrent increase in chirpine. From 2,100 to 800 yr BP (Pollen zone SL-VI) no palaeofloristic inferences could be drawn due to paucity of pollen, however, the presence of sandy deposit at the corresponding level in lithocolumn implies a pluvial episode by this time. Since 800 yr BP to Present (Pollen zone SL-VII) the slight advance in the oak reflects the ameliorating trend of climate, despite the existing cool and dry climate.  相似文献   

10.
Absolute (APF) and relative surface pollen spectra from 67 moderate-sized lakes in Finland and Finnmark are presented as pollen diagrams and isopoll maps and analysed by multidimensional scaling. The results are applicable to problems of regional vegetational history through comparisons of pollen spectra and the use of R-values. It is shown that relative spectra can discriminate the major vegetational regions. APFs give better resolution among northern forest regions and low APFs characterize tundra. Gradients of tree-pollen percentages in south and central Finland are related quantitatively to the major forest gradients, which are azonal, mainly related to soils, and affected but not obscured by human influence. Forest clearance is reflected in frequencies of various non-tree pollen types. Non-tree pollen and spores also provide vegetational and climatic information in the far north.  相似文献   

11.
The Landscape Reconstruction Algorithm (LRA) with the two models REVEALS and LOVE is developed to transform pollen percentage data to vegetation cover. This paper presents the first study to evaluate LRA in a region with large topographic variations within a short distances. The REVEALS model estimates regional vegetation abundance based on pollen assemblages from large lakes (100–500 ha). Pollen surface samples from one large and 28 small lakes are used together with a combination of regionally derived pollen productivity estimates and available estimates from other regions of Europe. The results show a good relationship between REVEALS‐estimated forest cover and vegetation abundance based on the CORINE land‐cover data. The REVEALS results using various sets of pollen assemblages from small lakes were comparable to those using one large lake. Local vegetation abundance using the LOVE model was estimated around 26 lakes. For common taxa, such as Pinus and Poaceae, the LOVE‐based estimates of plant abundance match well with the distance‐weighted plant abundances based on vegetation maps. Our results indicate that the LRA approach is effective for reconstruction of long‐term vegetation changes in western Norway and other regions with high topographic relief when no major gradients exist in the pollen data.  相似文献   

12.
A relative and absolute (pollen concentration) diagram is presented from Østervatnet, southern Varanger peninsula, north of the Main sub-stage (Tromsø-Lyngen) moraines. The pollen assemblage zones are correlated biostratigraphically with chronozones from Bølling to Middle Flandrian. Sediment analyses (loss on ignition and particle size) and implied sedimentation rates support this chronology. The three 14 C-dates are considered too old by 1000–2000 years because of hard water error. Redeposited Tertiary palynomorphs were encountered in the lower, mineral sediments; their source is unknown. Pollen spectra and pollen deposition rates indicate tundra throughout the Late Weichselian, with Artemisia -grass steppe predominant during Older and Younger Dryas. Rapid vegetational changes began at around 10,000 B.P., followed by successive immigration and establishment of tree birch (with accompanying floristic change) and Juniperus. Ericales were conspicuously unimportant and the pollen diagram records a herb flora rich in basiphilous species  相似文献   

13.
Vegetation dynamics during the earliest part of the Holocene (11,250-10,250 cal yr BP) have been reconstructed from a lacustrine sequence on Sandoy, the Faroe Islands, using detailed plant macrofossil and pollen evidence. The plant macrofossils suggest the initial vegetation was sparse herb and shrub tundra, with Salix herbacea and open-ground species, followed by the development of a denser and more species-rich arctic heathland after 11,150 cal yr BP. Despite high pollen values for Betula nana, macrofossils are rare. The bulk of the macrofossils recorded are S. herbacea and Empetrum leaves with numerous herb taxa and an abundance of Racomitrium moss. Conditions start to change around 10,800 cal yr BP, with increased catchment erosion and sediment delivery to the lake from ca. 10,600 cal yr BP, and a transition to alternating Cyperaceae and Poaceae communities between ca. 10,450 and 10,250 cal yr BP. This vegetation change, which has been recorded throughout the Faroes, has previously been interpreted as a retrogressive shift from woody shrubs to a herbaceous community. The detailed plant macrofossil data show the shift is the replacement of an Empetrum arctic heathland by grassland and moist sedge communities. These taxa dominate the modern landscape.  相似文献   

14.
The new pollen record from the upper 12.75 m of a sediment core obtained in Lake Ladoga documents regional vegetation and climate changes in northwestern Russia over the last 13.9 cal. ka. The Lateglacial chronostratigraphy is based on varve chronology, while the Holocene stratigraphy is based on AMS 14C and OSL dates, supported by comparison with regional pollen records. During the Lateglacial (c. 13.9–11.2 cal. ka BP), the Lake Ladoga region experienced several climatic fluctuations as reflected in vegetation changes. Shrub and grass communities dominated between c. 13.9 and 13.2 cal. ka BP. The increase in Picea pollen at c. 13.2 cal. ka BP probably reflects the appearance of spruce in the southern Ladoga region at the beginning of the Allerød interstadial. After c. 12.6 cal. ka BP, the Younger Dryas cooling caused a significant decrease in spruce and increase in Artemisia with other herbs, indicative of tundra‐ and steppe‐like vegetation. A sharp transition from tundra‐steppe habitats to sparse birch forests characterizes the onset of Holocene warming c. 11.2 cal. ka BP. Pine forests dominated in the region from c. 9.0 to 8.1 cal. ka BP. The most favourable climatic conditions for deciduous broad‐leaved taxa existed between c. 8.1 and 5.5 cal. ka BP. Alder experiences an abrupt increase in the local vegetation c. 7.8 cal. ka BP. The decrease in tree pollen taxa (especially Picea) and the increase in herbs (mainly Poaceae) probably reflect human activity during the last 2.2 cal. ka. Pine forests have dominated the region since that time. Secale and other Cerealia pollen as well as ruderal herbs are permanently recorded since c. 0.8 cal. ka BP.  相似文献   

15.
新疆乌鲁木齐地区上石炭亚系祁家沟组地层出露较完整,沉积序列清晰,古生物化石丰富,但一直以来对祁家沟组的时代多有争论,且介形类研究薄弱。笔者在新疆乌鲁木齐地区祁家沟剖面上石炭亚系祁家沟组中鉴定出的介形类共计11属19种,并系统研究了这些介形类的组合面貌、地层分布,探讨了其古环境和古地理意义。结果表明: (1)根据介形类的组合面貌推断,祁家沟剖面祁家沟组的时代应为晚石炭亚纪莫斯科期—卡西莫夫期; (2)祁家沟组介形类生态类型属于古足目类和光滑速足目类的混合集群,符合构造活动区域的介形类OA1-OA3组合特征; (3)根据介形类的生态组合变化以及沉积学的证据,推断祁家沟剖面祁家沟组整体为滨、浅海沉积,存在海退序列; (4)祁家沟组介形类面貌与同时期的塔里木、准噶尔、中天山以及俄罗斯乌拉尔地区等产出的介形类最为相近,与北美、西欧和华北等板块的介形类也较为相似,表明晚石炭亚纪准噶尔、塔里木等块体聚集,并且距离劳俄大陆较近,所以其可与欧洲、北美板块的介形类进行属种交流。研究结果不仅进一步丰富了祁家沟组的化石材料,也对探索古亚洲洋演化特征和区域矿产开发具有重要的意义。  相似文献   

16.
Pollen analysis, macrosubfossil determinations and radiocarbon datings from a 0.95 m thick peat deposit resting on sand and buried by a 1.3 m thick beach ridge at Haramsøy (an outer-arc island off the coast of Møre og Romsdal province), reveal changes in the local vegetation and in the groundwater level of the landward lagoon-like area. These are considered to reflect the relative shore-level changes between late Preboreal and early Atlantic times: an initial section with a high groundwater level reflecting the early Boreal high shore level, an intervening section with a low groundwater level, from the time of the Boreal regression minimum, and a final section, with a rising groundwater level, reflecting the late Boreal eustatic rise in sea level, which led to complete burial of the peat and the formation of an extensive Tapes beach ridge. Radiocarbon dates reveal that the basal sand (approx. 8 m above sea level) rose above sea level at approx. 9500 B. P. and that the top of the peat (approx. 9 m above sea level) was transgressed by the sea at approx. 7300 B. P. The spread of alder ( Alnus ) within the area may have been delayed by a thousand years compared with other regions in south Norway.  相似文献   

17.
18.
An occurrence of quartz-calcite-albite veins in a conglomerate is described. These veins occur almost exclusively in pebbles, and vein mineralogy is seen to be dependent partly on the lithology of the host pebble and partly on the matrix lithology. A suggested mode of vein emplacement is presented and textural features are described briefly in the light of creep mechanism hypotheses.
Zusammenfassung Ein Vorkommen von Quarz-Kalzit-Albit-Gängen in einem Konglomerat wird beschrieben. Diese Gänge treten fast ausschließlich in den Komponenten auf, und ihre Mineralogie hängt zum Teil von der Lithologie des Gastgesteines, zum Teil von der Lithologie der Matrix ab. Die Mechanik der Gangöffnung wird zu erklären versucht und das Gefüge wird kurz im Zusammenhang mit Hypothesen über Kriechmechanismus beschrieben.

Résumé L'apparition de veines de quartz-calcite-albite dans un conglomerat est décrite. Ces veines apparaissent presque exclusivement dans des cailloux, et leur minéralogie est dépendante en partie de la lithologie des cailloux hôtes, en partie de la lithologie de matrix. Un mode suggéré pour la mise en place des veines est présenté, et des propriétés texturelles sont décrites en bref, en considérant des hypothèsende creep méchanisme.

- (, ). , . .
  相似文献   

19.
A high-resolution Younger Dryas–late Holocene record of climate and environment from the Malangen fjord has been established on the basis of two marine sediment cores. Five pollen-spore assemblage zones have been defined covering the period c . 11 500 cal. yr BP (10 200 14C yr BP) to c . 1600 cal. yr BP (1600 14C yr BP) with a hiatus of c . 2000 cal. years between c . 10 200 and 8100 cal. yr BP (9000 and 7300 14C yr BP). The Holocene vegetation development from pioneer vegetation to forest development, identified in the marine pollen record, correlates well with pollen records from terrestrial sections of northern Norway. The marine pollen record was also correlated directly with marine proxy records of the bottom water temperature investigated in the same sediment cores. Correlation between the marine and terrestrial proxies suggests that changes in the influx of warm Atlantic Water to the fjord led to an instant change in the vegetation of the surrounding land area. The results thus support a strong link between marine and atmospheric mean climatic states in the North Atlantic region throughout the Holocene.  相似文献   

20.
Lake sediment records from the Weerterbos region, in the southern Netherlands, were studied to reconstruct summer temperature and environmental changes during the Weichselian Lateglacial Interstadial. A sediment core obtained from a small lacustrine basin was analysed for multiple proxies, including lithological changes, oxygen isotopes of bulk carbonates, pollen and chironomids. It was found that the oxygen isotope record differed strongly from the other proxies. Based on a comparison with three additional lake sediment records from the same region, it emerged that the oxygen isotope records were strongly affected by local environmental conditions, impeding the distinction of a regional palaeoclimate signal. The chironomid‐inferred July air temperature reconstruction produced inferred interstadial temperatures ranging between ~15° and 18°C, largely consistent with previously published results from the northern part of the Netherlands. A temporary regressive phase in the pollen record, which can be tentatively correlated with the Older Dryas, preceded the expansion of birch woodland. Despite differences between the four pollen records from the Weerterbos region, a comparable regressive vegetation phase that was possibly the result of a shift to drier conditions could be discerned in all of the profiles. In addition, a temporary temperature decline of ~1.5°C was inferred from the chironomid record during this regressive phase. The multi‐proxy approach used here enabled a direct comparison of inferred changes in temperature, vegetation and environmental conditions at an individual site, while the multi‐site approach provided insight into the factors influencing the pollen and isotope records from these small‐scale depressions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号