首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The atomic fractions Mg/(Mg + Fe) and the Mg-Fe distribution coefficient $$K_{{\text{D}}{\text{.Mg - Fe}}}^{{\text{Ca - am - Cum}}} \left( { = \tfrac{{[{\text{Mg/Fe]}}_{{\text{Ca - am}}} }}{{{\text{[Mg/Fe]}}_{{\text{Cum}}} }}} \right)$$ are calculated for 31 metamorphic cummingtonite-hornblende pairs. Data on 21 pairs are taken from the litterature, and new electron microprobe analyses and structural formulae are presented of nine pairs from Tydal, Sör-Tröndelag, Norway, and of one pair from Cooma, N.S.W., Australia (cf. Kisch, 1969). The electron microprobe methods used are described, particularly the use of mineral standards, and the variation of the mass absorption in substitution series. The hornblendes from the Tydal pairs are markedly pargasitic in composition, and contain minor proportions of the cummingtonite “molecule”. The Mg-Fe distributions in the cummingtonite-hornblende pairs — as plotted on a [Mg/(Mg + Fe)]Ca-am vs. [Mg/(Mg + Fe)]Cum diagram (Fig. 3) — differ significantly from the Mg-Fe distribution curve for cummingtonite-actinolite pairs from Quebec (Mueller, 1961). Whereas the actinolites have markedly higher Mg/Fe ratios than the co-existing cummingtonites (K D.Mg-Fe Ca-am-Cum ≈ 1.5–2.0), the cummingtonite-hornblende pairs diverge towards lower values from the distribution coefficient. In most of the metamorphic cummingtonite-hornblende pairs — including the nine pairs from Tydal — the Mg/Fe ratio of the hornblende is lower than in the co-existing cummingtonite, i.e K D.Mg-Fe Ca-am-Cum <1. A relation appears to exist between the Mg-Fe distribution and the Al content of the calcic amphibole phase. This is believed to be due to the non-random distribution of AlY among the octahedral lattice sites: in hornblende AlVI enters the M 1+M3 positions, in which Mg is preferred over Fe, rather than M 2, in which Fe is preferred (Ghose, 1965). Since the cummingtonites remain Al-poor, the over-all Mg/Fe ratio in the hornblende is reduced relative to the co-existing cummingtonite as a result. The variations of the Mg-Fe distribution in the cummingtonite-hornblende pairs can also be related directly to the presence and composition of the plagioclase and other Al-rich phases in the metamorphic mineral assemblage. In any range of Mg/Fe ratios, the cummingtonite-hornblende pairs associated with oligoclase have lower distribution coefficients (0.61–0.81; 12 pairs) than those associated with calcic plagioclase or plagioclase-free assemblages (0.97 to 1.89; 6 pairs); the pairs associated with andesine have intermediate Mg-Fe distributions (0.74–1.15; 6 pairs).  相似文献   

2.
Three new sets of mineral and rock chemical data on basic granulites confirm the trends in compositional relationships, with respect to magnesium and iron, among hornblende, orthopyroxene and calcic pyroxene advanced by Sen (1970) and Ray and Sen (1970). Analysing the interrelationships among magnesium-iron distribution coefficients between hornblende-orthopyroxene and hornblende-calcic pyroxene, tetrahedral aluminium contents of hornblendes, and temperature of equilibration, it can be shown that equilibrium temperatures are higher with the Mg/(Mg+Fe) ratios of hornblendes increasing. An application of these relations to ferromagnesian phases of some garnet-bearing basic granulites points to formation of garnets in response to decreasing temperature.  相似文献   

3.
Hornblende-orthopyroxene-calcic pyroxene-plagioclase (andesine-labradorite) — magnetite-ilmenite±quartz assemblages are evidently the most common granulite facies representatives of basic rocks throughout the world, and they must represent a variance of more than one. Ramberg (1948) invoked an additional degree of freedom arising out of unequal fractionation of Mg and Fe in the ferromagnesian silicates in such rocks. This is examined in detail on the basis of chemical data on twentytwo hornblende-orthopyroxenecalcic pyroxene triads, half of them from the type charnockite area near Madras.Theoretical consideration of a magnesium-iron distribution model shows that in quartz-bearing hornblende pyroxene granulites, the Mg/Mg+Fe ratios of hornblende, orthopyroxene and calcic pyroxene are uniquely determined by temperature at constant pressure. But these assemblages contain quartz rarely and Mg-Fe distribution among the three can be best described by three exchange equilibria where, at constant temperature, there is a fixed relation between the Mg/Mg+Fe ratios of the minerals. Among these, the exchange equilibria between hornblende-orthopyroxene and hornblende-calcic pyroxene appear to be interdependent; however, they are known to be significantly modified by varying tetrahedral aluminium contents of hornblendes. Comparison of molecular Mg/(Mg+Fe) ratios of hornblendes and parent rocks strongly points to an absence of Mg-Fe compositional variance in the total system, a petrologically important corollary being that the hornblendes in these rocks are highly unlikely to be secondary after pyroxenes. The general variance of the assemblages is also discussed.  相似文献   

4.
Assessment of groundwater quality is essential to ensure sustainable use of it for drinking, agricultural, and industrial purposes. The chemical quality of groundwater of Gaya region has been studied in detail in this work to delineate the potable groundwater zones. A total of 30 groundwater samples and 2 surface water samples were collected in and around Gaya district of Bihar. The major cations follow the trend: Ca2+?>?Mg2+?>?Na+?>?K+. The domination of calcium ions in the groundwater is due to weathering of rocks. The K+ ranged between 0.2 and 47.95 ppm, suggesting its abundance the below desired limit; but some samples were found to be above permissible limit. K+ weathering of potash silicate and the use of potash fertilizer could be the source. The major anions abundance followed the order HCO 3 ? ?>?Cl??>?SO 4 2? ?>?NO 3 ? ?>?PO 4 3? . Dissolution of carbonates and reaction of silicates with carbonic acid accounts for the addition of HCO 3 ? to the groundwater and oxidation of sulphite may be the source of SO 4 2? . Principal component analysis was utilized to reflect those chemical data with the greatest correlation and seven major principal components (PCs) representing >80 % of cumulative variance were able to interpret the most information contained in the data. PC1, PC2 and PC3 reflect the hydrogeochemical processes like mineral dissolution, weathering and anthropogenic sources. PC4, PC5, PC6 and PC7 show monotonic, random and independent relationships.  相似文献   

5.
Equilibria in the Sirf (Silica-Ilmenite-Rutile-Ferrosilite) system: $${\text{SiO}}_{\text{2}} + ({\text{Mg,Fe}}){\text{TiO}}_{\text{3}} {\text{ + (Mg,Fe)SiO}}_{\text{3}} $$ have been calibrated in the range 800–1100° C and 12–26 kbar using a piston-cylinder apparatus to assess the potential of the equilibria for geobarometry in granulite facies assemblages that lack garnet. Thermodynamic calculations indicate that the two end-member equilibria involving quartz + geikielite = rutile + enstatite, and quartz + ilmenite = rutile + ferrosilite, are metastable. We therefore reversed equilibria over the compositional range Fs40–70, using Ag80Pd20 capsules with \(f_{{\text{O}}_{\text{2}} } \) buffered at or near iron-wüstite. Ilmenite compositions coexisting with orthopyroxene are \(X_{{\text{MgTiO}}_{\text{3}} }^{{\text{Ilm}}} \) of 0.06 to 0.15 and \(X_{{\text{Fe}}_{\text{2}} {\text{O}}_{\text{3}} }^{{\text{Ilm}}} \) of 0.00 to 0.01, corresponding toK D values of 13.3, 10.2, 9.0 and 8.0 (±0.5) at 800, 900, 1000 and 1100° C, respectively, whereK D =(XMg/XFe)Opx/(XMg/XFe)Ilm. Pressures have been calculated using equilibria in the Sirf system for granulites from the Grenville Province of Ontario and for granulite facies xenoliths from central Mexico. Pressures are consistent with other well-calibrated geobarometers for orthopyroxeneilmenite pairs from two Mexican samples in which oxide textures appear to represent equilibrium. Geologically unreasonable pressures are obtained, however, where oxide textures are complex. Application of data from this study on the equilibrium distribution of iron and magnesium between ilmenite and orthopyroxene suggests that some ilmenite in deep crustal xenoliths is not equilibrated with coexisting pyroxene, while assemblages from exposed granulite terranes have reequilibrated during retrogression. The Sirf equilibria are sensitive to small changes in composition and may be used for determination of activity/composition (a/X) relations of orthopyroxene if an ilmenite model is specified. A symmetric regular solution model has been used for orthopyroxene in conjunction with activity models for ilmenite available from the literature to calculatea/X relations in orthopyroxene of intermediate composition. Data from this study indicate that FeSiO3?MgSiO3 orthopyroxene exhibits small, positive deviations from ideality over the range 800–1100°C.  相似文献   

6.
A new coexisting amphibole pair was recently found in the Jianshan iron deposit, Loufan of Shanxi Province, China. Electron microprobe analysis shows that the coexisting pair is composed of grünerite K0.001 (Na0.027 Ca0.073 Mn0.031 Fe 1.801 2+ )1.932 (Fe 2.948 2+ Mg1.964 Ti0.002 Al0.087)5Si8.069 O22.10(OH)2 and ferropargasite (K0.135 Na0.461)0.596 (Na0.088 Ca1.853 Mn0.005 Fe 0.072 2+ )2(Mn0.005Fe 2.789 2+ Mg0.875Ti0.021Fe 0.499 3+ Al0.812)5(Si6.103Al1.897)8O22.00(OH)2. The two kinds of amphiboles occur in amphibole schist not only as separate phenocrysts, but also are combined to form “single-crystal” phenocrysts in the form of topotactic intergrowths with the common c- and b-axes. The boundary between topotactic grünerite and ferropargasite is optically and chemically sharp. In comparison with the coexisting ferromagnesian amphibole and calcic amphibole pair discovered by predecessors, the newly discovered pair has lower Mg/Fe ratios and wider miscibility gaps.  相似文献   

7.
The partitioning of Fe and Mg between garnet and aluminous orthopyroxene has been experimentally investigated in the pressure-temperature range 5–30 kbar and 800–1,200° C in the FeO-MgO-Al2O3-SiO2 (FMAS) and CaO-FeO-MgO-Al2O3-SiO2 (CFMAS) systems. Within the errors of the experimental data, orthopyroxene can be regarded as macroscopically ideal. The effects of Calcium on Fe-Mg partitioning between garnet and orthopyroxene can be attributed to non-ideal Ca-Mg interactions in the garnet, described by the interaction term:W CaMg ga -W CaFe ga =1,400±500 cal/mol site. Reduction of the experimental data, combined with molar volume data for the end-member phases, permits the calibration of a geothermometer which is applicable to garnet peridotites and granulites: $$T(^\circ C) = \left\{ {\frac{{3,740 + 1,400X_{gr}^{ga} + 22.86P(kb)}}{{R\ln K_D + 1.96}}} \right\} - 273$$ with $$K_D = {{\left\{ {\frac{{Fe}}{{Mg}}} \right\}^{ga} } \mathord{\left/ {\vphantom {{\left\{ {\frac{{Fe}}{{Mg}}} \right\}^{ga} } {\left\{ {\frac{{Fe}}{{Mg}}} \right\}}}} \right. \kern-\nulldelimiterspace} {\left\{ {\frac{{Fe}}{{Mg}}} \right\}}}$$ and $$X_{gr}^{ga} = (Ca/Ca + Mg + Fe)^{ga} .$$ The accuracy and precision of this geothermometer are limited by largerelative errors in the experimental and natural-rock data and by the modest absolute variation inK D with temperature. Nevertheless, the geothermometer is shown to yield reasonable temperature estimates for a variety of natural samples.  相似文献   

8.
Feldspathic hornblende granulites from Doubtful Sound, New Zealand with the assemblage plagioclase+hornblende+clinopyroxene+orthopy-roxene +oxide+apatite are criss-crossed by a network of garnetiferous anorthosite veins and pegmatites. The feldspathic gneiss in contact with anorthosite has a reaction zone containing the assemblage plagioclase +garnet+clinopyroxene+quartz+rutile+apatite. The garnet forms distinctive coronas around clinopyroxene. The origin of these rocks is discussed in the light of mineral and whole rock chemical analyses and published experimental work.It is thought that under conditions leading up to 750 °C, 8 kb load pressure and 5 kb H2O pressure, partial melting occured in feldspathic hornblende granulites. The melt migrated into extensional fractures and eventually crystallised as anorthosite pegmatites and veins. The gneisses adjacent to the pegmatites from which the melt was extracted changed composition slightly, by the loss of H2O and Na2O, so that plagioclase reacted simultaneously with hornblende, orthopyroxene, and oxide to form garnet, clinopyroxene, quartz and rutile.  相似文献   

9.
几种镁铁矿物平衡共生的成分标志   总被引:3,自引:0,他引:3       下载免费PDF全文
阎月华 《地质科学》1997,32(3):267-274
本文以晋冀内蒙边界地区变质岩中主要镁铁质造岩矿物辉石,闪石为例,阐明镁铁矿物平衡共生的一条普遍规律,即平衡共生的正辉石,钙闪石之间有相同的镁铁比,其分配系数等于或接近于1.引用冀东,吉南,泰山和南极凯西站等地的实例,论证了此规律同时存在于黑云母与钙闪石,黑云母与正辉石之间,也存在于辉长岩和花岗岩等岩浆岩的橄榄石和正辉石,角闪石与黑云母等矿物对之间。这是判断镁铁矿物是否平衡的成分标志。  相似文献   

10.
A deep-level crustal section of the Cretaceous Kohistan arc is exposed in the northern part of the Jijal complex. The occurrence of mafic to ultramafic granulite-facies rocks exhibits the nature and metamorphic evolution of the lower crust. Mafic granulites are divided into two rock types: two-pyroxene granulite (orthopyroxene+clinopyroxene+plagioclase±quartz [1]); and garnet–clinopyroxene granulite (garnet+clinopyroxene+plagioclase+quartz [2]). Two-pyroxene granulite occurs in the northeastern part of the Jijal complex as a relict host rock of garnet–clinopyroxene granulite, where the orthopyroxene-rich host is transected by elongated patches and bands of garnet–clinopyroxene granulite. Garnet–clinopyroxene granulite, together with two-pyroxene granulite, has been partly replaced by amphibolite (hornblende±garnet+plagioclase+quartz [3]). The garnet-bearing assemblage [2] is expressed by a compression–dehydration reaction: hornblende+orthopyroxene+plagioclase=garnet+clinopyroxene+quartz+H2O↑. Subsequent amphibolitization to form the assemblage [3] is expressed by two hydration reactions: garnet+clinopyroxene+plagioclase+H2O=hornblende+quartz and plagioclase+hornblende+H2O=zoisite+chlorite+quartz. The mafic granulites include pod- and lens-shaped bodies of ultramafic granulites which consist of garnet hornblendite (garnet+hornblende+clinopyroxene [4]) associated with garnet clinopyroxenite, garnetite, and hornblendite. Field relation and comparisons in modal–chemical compositions between the mafic and ultramafic granulites indicate that the ultramafic granulites were originally intrusive rocks which dissected the protoliths of the mafic granulites and then have been metamorphosed simultaneously with the formation of garnet–clinopyroxene granulite. The results combined with isotopic ages reported elsewhere give the following tectonic constraints: (1) crustal thickening through the development of the Kohistan arc and the subsequent Kohistan–Asia collision caused the high-pressure granulite-facies metamorphism in the Jijal complex; (2) local amphibolitization of the mafic granulites occurred after the collision.  相似文献   

11.
In this study, the physicochemical parameters (Conductivity, pH, Cl?, HCO 3 ? , PO 4 3? , SO 4 2? , NO 3 ? , NO 2 ? , F?, TH, Ca2+, K+, Mg2+, Na+, and DS) were determined for 41 samples collected from fourteen places in Algeria. The temperature of the thermal water samples at collection sites varied from 26°C to 86°C. pH values varied from 6.5 to 8.5 (i.e., from slightly acidic to moderately alkaline); 90.24% of the samples exhibited relatively high salinity (DS?=?550–5,500 mg L?1). Total hardness measurements indicated these waters to be moderately hard. Forty-six percent of the samples are Na–Cl in character. The ratios Na+/Ca2+, Na+/Mg2+, and (Na+ + K+)/(Ca2+ + Mg2+) were high in 90.24% of the samples. This indicates the ion exchange process is important, which indicates that most of the Algerian thermal waters had developed over a long period at a depth sufficient to react with the rock. Statistical analyses of the physicochemical data gave positive correlation values, thereby enabling good interpretation of the results and revealing the composition of ions present in the thermal waters, as well as some information about their origin. The therapeutic properties associated with thermal waters encourage people at spas to drink the water they bathe in. Therefore, we examined the drinkability of these thermal waters. World Health Organization (WHO 1993) standards were used to evaluate the thermal water quality for drinking. With respect to hardness, the samples were classified as moderately hard (58.54% of the samples), very hard (36.58% of the samples), and soft (4.88% of the samples). The drinkability study shows that only 16 samples of the investigated waters were drinkable and thus could be consumed without special precaution.  相似文献   

12.
The effect of temperature, pressure, and dissolved H2O in the melt on the Fe2+–Mg exchange coefficient between orthopyroxene and rhyolite melt was investigated with a series of H2O fluid-saturated phase-equilibrium experiments. Experiments were conducted in a rapid-quench cold-seal pressure vessel over a temperature and pressure range of 785–850 °C and 80–185 MPa, respectively. Oxygen fugacity was buffered with the solid Ni–NiO assemblage in a double-capsule assembly. These experiments, when combined with H2O-undersaturated experiments in the literature, show that \( ^{{{\text{Fe}}^{2 + } {-}{\text{Mg}}}} K_{\text{D}} \) between orthopyroxene and rhyolite liquid increases strongly (from 0.23 to 0.54) as a function of dissolved water in the melt (from 2.7 to 5.6 wt%). There is no detectable effect of temperature or pressure over an interval of 65 °C and 100 MPa, respectively, on the Fe2+–Mg exchange coefficient values. The data show that Fe-rich orthopyroxene is favored at high water contents, whereas Mg-rich orthopyroxene crystallizes at low water contents. It is proposed that the effect of dissolved water in the melt on the composition of orthopyroxene is analogous to its effect on the composition of plagioclase. In the latter case, dissolved hydroxyl groups preferentially complex with Na+ relative to Ca2+, which reduces the activity of the albite component, leading to a more anorthite-rich (calcic) plagioclase. Similarly, it is proposed that dissolved hydroxyl groups preferentially complex with Mg2+ relative to Fe2+, thus lowering the activity of the enstatite component, leading to a more Fe-rich orthopyroxene at high water contents in the melt. The experimental results presented in this study show that reversely zoned pyroxene (i.e., Mg-rich rims) in silicic magmas may be a result of H2O degassing and not necessarily the result of mixing with a more mafic magma.  相似文献   

13.
The borate polyhedra BO 3 3? , B(OH)3, BO 4 5? , and B(OH) 4 ? are studied using the ab initio and multiple scattering Xα quantum mechanical methods. The ab initio self-consistent-field (SCF) molecular orbital (MO) method, at the minimum basis set level, predicts equilibrium B-O distances within 0.04 Å of their average values in solids so long as the polyhedron charge is small. Orbital energies from double zeta basis set ab initio calculations and analogies with isoelectric compounds are used to assign the X-ray spectra of BO 3 3? and to predict the valence region spectra of BO 4 5? . Contour maps of the difference between molecular and superimposed free atom electron densities show charge buildup along the B-O bond which is only slightly smaller than that observed in CO 3 2? .  相似文献   

14.
NMR shieldings (σ) and electric field gradients (eq) are calculated using ab initio methods at the O and T nuclei (where T=P, Si) in two different types of molecules-TH3 dimers, i.e. H3SiOSiH3 and H3POPH 3 2+ , and TO4 trimeric rings, i.e., Si3O 9 6- and P3O 9 3- , which serve as models for assessing the effects of polymerization, bond length and bond angle variation on the NMR properties of polymerized silicates and phosphates. In agreement with earlier ab initio studies on H3SiOSiH3 we confirm that σ(29Si), σ(31P), σ(17O) and eq(17O) all decrease as θ(SiOSi) decreases in the range from 180° to 100°. However, correction for artifacts due to distant core electrons leads to a considerably reduced value for the anisotropy in σ O, bringing it into better agreement with estimated experimental values. The qualitative change in σ(29Si) with θ(SiOSi) can be understood on the basis of changes in the energies of the highest energy occupied MO's and consequent variations in their contributions to the paramagnetic part of the shielding. For H3POPH 3 2+ we calculate a larger value of eqO than for the analog Si compound but the same type of variation of σ(17O) with θ(TOT). The change in σ(31P) with θ(POP) is, however, calculated to be much smaller than in the Si case and a maximum is predicted for intermediate angles. For the trimeric rings we obtain energy optimized geometries in good agreement with x-ray structural data, with T-O terminal distances systematically shorter than the T-O bridging distances. Calculated σ(T) anisotropies are also in good agreement with experiment and can be simply related to the calculated structure. After correction for distant core effects we obtain a change in σ(31P) between PO 4 3- and P3O 9 3- in reasonable agreement with experiment.  相似文献   

15.
李佳斌  吕增  陈振宇  刘小辉 《岩石学报》2023,39(9):2636-2650

基性麻粒岩作为高温变质作用产物, 其矿物组合能够较好地记录区域地壳热流的峰值范围, 是揭示造山带演化历史的重要窗口。本文报道了在东昆仑造山带东段大格勒地区金水口岩群副片麻岩中发现的基性二辉麻粒岩露头, 它们呈块状-片麻状构造, 斑状变晶-细粒变晶结构, 主要矿物为斜长石、斜方辉石、单斜辉石、黑云母和普通角闪石。斜方辉石与单斜辉石和高钙斜长石(An=74~81)的平衡结构以及斜方辉石中包裹残余普通角闪石和黑云母的结构表明这些岩石经历了较充分的麻粒岩相结晶作用。填隙状生长的普通角闪石和黑云母可能代表了冷却至固相线附近矿物-残余熔体发生反应的产物。根据二辉石温度计和相平衡模拟计算, 获得在0.4~0.7GPa压力条件下的麻粒岩相变质温度为840~910℃。详细的变斑晶斜长石和钛铁矿包体研究表明, 麻粒岩相变质之前可能存在一期低温高压变质作用, 形成的矿物组合为斜黝帘石+金红石+榍石+普通角闪石±阳起石+黑云母+石英, 相平衡模拟确定该阶段的温压条件为0.85~1.2GPa、500~640℃。斜黝帘石在减压阶段的早期转变为低钙斜长石(An=46-51), 同时角闪石转变为单斜辉石, 可能代表了低压角闪岩相阶段。通过LA-ICPMS锆石U-Pb测年以及锆石包体分析, 确定麻粒岩相变质年龄为411.4±2.9Ma(MSWD=1.05)。这些二辉麻粒岩是在金水口以外的东昆仑地区发现的首例晚古生代低压高温变基性岩, 其与围岩片麻岩构成一个麻粒岩地体。它们反映了泥盆纪早期东昆仑造山带的异常高温事件, 与后碰撞伸展阶段软流圈地幔上涌带来的区域高温热流有关。本研究对解析东昆仑造山带高级变质地体的精细结构以及古特提斯洋形成过程的深部动力学机制具有重要意义。

  相似文献   

16.
The voluminous Pleistocene—Recent Taupo rhyolites typically contain phenocrysts of plagioclase (oligoclase-labradorite), quartz, titanomagnetite, ilmenite, and ferromagnesian silicates. Ferromagnesian assemblages correlate with well defined Fe-Ti oxide equilibration temperature ranges and allow the rhyolites to be subdivided as follows: (1) Cummingtonite (c)—calcic hornblende (hb)—orthopyroxene (opx); 725–755°C, (2) Hb-opx, 750–825°C, (3) Biotite-hb-(c-opx), 720–765°C, (4) Opx-clinopyroxene (cpx), 860–915°C, (5) Fe olivine-opx-cpx, one sample with temperature of 900°C. Plagioclase and orthopyroxene phenocryst compositions typically exhibit a range of composition up to ~20 mol.%. Calculated average phenocryst equilibration pressures (P total) range between 0.5–4.9 kb, and average 2.2 kb (~7–8 km depth), indicating upper crustal crystallization. These calculations are very sensitive to variations in phenocryst composition. Calculated \(/_{{\text{H}}_2 {\text{O}}} \) for the amphibole and biotite-bearing rhyolites indicate phenocryst equilibration under \(P_{{\text{H}}_2 {\text{O}}} \simeq P_{{\text{total}}} \) , with \(X_{{\text{H}}_2 {\text{O}}} \) ~0.17–0.24 (5–8 wt. %). The precipitation of cummingtonite is thus temperature dependent, the upper limit being close to 760°C. Eruptive mechanisms of the lavas, pumices, and ash-flow deposits are evidently not primarily controlled by temperature, P total, \(P_{{\text{H}}_2 {\text{O}}} \) , or crystal content of the magmas, and explanations must lie in kinetic and fluid dynamic behavior of the magmas. For the Taupo rhyolites, it is suggested that the critical size of a magma body (i.e. Rayleigh number) is a controlling factor in that it will influence the convective regime; fully turbulent convection is deduced to have occurred within the larger magma bodies. One consequence is intense vesiculation, prior to eruption, within the uppermost zones of these magma chambers, and the voluminous pumice deposits are believed to emanate from such chambers. Oscillatory compositional zoning within pyroxene phenocrysts is consistent with magma convection.  相似文献   

17.
The equilibrium between spinel lherzolite and garnet lherzolite has been experimentally determined in the CaO-MgO-Al2O3-SiO2 system between 800° and 1,100° C. In confirmation of earlier work and predictions from thermodynamic data, it was found that theP-T slope of the reaction was close to zero, the equilibrium ranging from 16.1 kb at 800° C to 18.7 kb at 1,100° C (±0.3 kb). The addition of Cr2O3 to the system raised the stability field of spinel to higher pressures. It was found that the pressure at which both garnet and spinel could exist with olivine+orthopyroxene+clinopyroxene in the system CMAS ?Cr2O3 could best be described by the empirical relationship: $$P = P^{\text{O}} + \alpha X_{{\text{Cr}}}^{s{\text{p}}} $$ whereP 0 is the equilibrium pressure for the univariant reaction in the Cr2O3-free system,α is a constant apparently independent of temperature with a value of 27.9 kilobars, andX Cr sp is the mole fraction of chromium in spinel. Use was made of the extensive literature on Mg-Fe2+ solid solutions to quantitatively derive the effect of Fe2+ on the equilibrium. The effect of other components (Fe3+, Na) was also considered. The equilibrium can be used as a sensitive geobarometer for rocks containing the five phases ol+opx+cpx+gt+sp, and thus provides the only independent check presently available for the more widely applicable geobarometer which uses the alumina content of orthopyroxene in equilibrium with garnet.  相似文献   

18.
Experimental data combined with data from natural rocks have been used to calibrate a geothermometer based on the distribution of Fe2+ and Mg between coexisting garnets and phengites. The pressure effect on the K D -value appears to be considerable. The calculated thermometer is expressed as $$T(K) = \frac{{3685 + 77.1P(kb)}}{{InK_D + 3.52}}.$$ The use of this \(K_{D_{(FeO/MgO)} }^{ga + ph}\) geothermometer on eclogites with low Fe2O3 content, gives P-T values which are in good accordance with those obtained by other methods. The problems that arise when Fe3+ is present in larger amounts, are discussed.  相似文献   

19.
Garnet growth in high‐pressure, mafic garnet granulites formed by dehydration melting of hornblende‐gabbronorite protoliths in the Jijal complex (Kohistan palaeo‐island arc complex, north Pakistan) was investigated through a microstructural EBSD‐SEM and HRTEM study. Composite samples preserve a sharp transition in which the low‐pressure precursor is replaced by garnet through a millimetre‐sized reaction front. A magmatic foliation in the gabbronorite is defined by mafic‐rich layering, with an associated magmatic lineation defined by the shape‐preferred orientation (SPO) of mafic clusters composed of orthopyroxene (Opx), clinopyroxene (Cpx), amphibole (Amp) and oxides. The shape of the reaction front is convoluted and oblique to the magmatic layering. Opx, Amp and, to a lesser extent, Cpx show a strong lattice‐preferred orientation (LPO) characterized by an alignment of [001] axes parallel to the magmatic lineation in the precursor hornblende‐gabbronorite. Product garnet (Grt) also displays a strong LPO. Two of the four 〈111〉 axes are within the magmatic foliation plane and the density maximum is subparallel to the precursor magmatic lineation. The crystallographic relationship 〈111〉Grt // [001]Opx,Cpx,Amp deduced from the LPO was confirmed by TEM observations. The sharp and discontinuous modal and compositional variations observed at the reaction front attest to the kinetic inhibition of prograde solid‐state reactions predicted by equilibrium‐phase diagrams. The PT field for the equilibration of Jijal garnet granulites shows that the reaction affinities are 5–10 kJ mol.?1 for the Grt‐in reaction and 0–5 kJ mol.?1 for the Opx‐out reaction. Petrographic and textural observations indicate that garnet first nucleated on amphibole at the rims of mafic clusters; this topotactic replacement resulted in a strong LPO of garnet. Once the amphibole was consumed in the reaction, the parallelism of [001] axes of the mafic‐phase reactants favoured the growth of garnet crystals with similar orientations over a pyroxene substrate. These aggregates eventually sintered into single‐crystal garnet. In the absence of deformation, the orientation of mafic precursor phases conditioned the nucleation site and the crystallographic orientation of garnet because of topotaxial transformation reactions and homoepitaxial growth of garnet during the formation of high‐pressure, mafic garnet‐granulite after low‐pressure mafic protoliths.  相似文献   

20.
Lithian ferrian enstatite with Li2O = 1.39 wt% and Fe2O3 7.54 wt% was synthesised in the (MgO–Li2O–FeO–SiO2–H2O) system at P = 0.3 GPa, T = 1,000°C, fO2 = +2 Pbca, and a = 18.2113(7), b = 8.8172(3), c = 5.2050(2) Å, V = 835.79(9) Å3. The composition of the orthopyroxene was determined combining EMP, LA-ICP-MS and single-crystal XRD analysis, yielding the unit formula M2(Mg0.59Fe 0.21 2+ Li0.20) M1(Mg0.74Fe 0.20 3+ Fe 0.06 2+ ) Si2O6. Structure refinements done on crystals obtained from synthesis runs with variable Mg-content show that the orthopyroxene is virtually constant in composition and hence in structure, whereas coexisting clinopyroxenes occurring both as individual grains or thin rims around the orthopyroxene crystals have variable amounts of Li, Fe3+ and Mg contents. Structure refinement shows that Li is ordered at the M2 site and Fe3+ is ordered at the M1 site of the orthopyroxene, whereas Mg (and Fe2+) distributes over both octahedral sites. The main geometrical variations observed for Li-rich samples are actually due to the presence of Fe3+, which affects significantly the geometry of the M1 site; changes in the geometry of the M2 site due to the lower coordination of Li are likely to affect both the degree and the kinetics of the non-convergent Fe2+-Mg ordering process in octahedral sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号