首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
使用LAS系统测量显热通量   总被引:1,自引:0,他引:1  
1前言干旱是影响我省西部发展的一个重要问题。一般在干旱地区,土壤的干湿主要取决于降水和蒸散。降水量大于蒸散量为湿润,反之为干燥。研究水份平衡时,要直接测量蒸散量是非常困难的,为了通过间接计算得到蒸散量,最常用的方法是能量平衡法,即Rn=H A LE(1)式中Rn是净辐射,H是显热通量,A是土壤热通量,LE是蒸散消耗的能量。在一般情况下,一整天中A的数值很小,Rn是常规测量值,只要测出H值,就可以计算出蒸散量。H值可以通过公式H=ρCpωθ来计算。其中ρ是空气密度,Cp是定压比热,ω是垂直气流速度,θ是温度脉动值。…  相似文献   

2.
刘煜  刘蓉  王欣  王作亮 《高原气象》2022,41(1):58-67
干旱指数一直以来是评估一个地区地表干湿状态的有效标准.为了认识青藏高原若尔盖地区在极端干旱和湿润条件下的水汽空间分布格局,本文基于地面观测资料计算月尺度的标准化降水蒸散指数,提取2000-2017年青藏高原若尔盖地区的极端干旱和湿润状况,利用拉格朗日后向轨迹模型模拟该地区极端干湿条件下的水汽输送路径,并评估潜在水汽源地...  相似文献   

3.
冬小麦农田日蒸散量的计算   总被引:10,自引:0,他引:10  
本文从小气候观测资料着手,采用彭曼法、能量平衡法、波温比法和空气动力学等方法,对处于抽穗至乳熟期的冬小麦农田日蒸散量做了尝试性计算。着重考虑了彭曼公式的修正,并以水量平衡法为标准,对以上各方法的精度做了评价与误差分析。结果表明,订正后的彭曼公式可较为准确地计算各种能量、水分供应条件下有作物覆盖农田的日蒸散量,其它方法则存在较明显的不确定性误差。  相似文献   

4.
根据南京地区粳稻、籼稻两个品种水稻分别在干旱、水层条件下的逐时、逐日蒸散量观测资料,采用Penman-Monteith模型(以下简称PM模型)对水稻蒸散量进行模拟,并对比模拟蒸散值与观测蒸散值。通过计算,对PM模型的可靠性进行验证。结果表明:(1)水层条件下PM模型的精度比干旱条件下高。(2)模拟值乘以作物系数后,与蒸散实际测量值更加接近。(3)通过敏感性分析可知,使用PM模型进行蒸散量模拟时,方程中各个因子取值的准确性对模拟结果的精确度有较大影响,计算时要合理确定各个因子值。(4)水层条件下稻田的蒸散量明显大于干旱条件下的蒸散量。  相似文献   

5.
任雪塬  张强  岳平  杨金虎  王胜 《气象学报》2022,80(2):304-321
鲍恩比能够综合反映陆面气候状态的物理特性,是有效刻画生态系统水热分配的关键参数之一.本研究利用安装在定西和庆阳的涡动相关系统开展了黄土高原半干旱和半湿润农田生态系统能量分配特征观测试验,研究了生态环境因子对鲍恩比的影响机理,揭示了干、湿条件下生理生态因子对水热交换的响应规律.结果表明,处于半干旱区的定西年内感热通量是可...  相似文献   

6.
近46年青藏高原干湿气候区动态变化研究   总被引:5,自引:0,他引:5  
毛飞  唐世浩  孙涵 《大气科学》2008,32(3):499-507
利用青藏高原62个气象站1961~2006年逐日气象资料, 用世界粮农组织 (FAO) 在1998年推荐的、并唯一承认的Penman-Menteith模式计算潜在蒸散量; 比较了降水量、积温降水比、气温降水比、蒸散降水比和降水蒸散比5种湿润度指标在青藏高原的适用性, 用常规统计方法和墨西哥帽小波变换分析青藏高原各气候区干湿状况及其界线的动态变化。结果表明: 5种指标中, 用降水蒸散比得到的青藏高原湿润、半湿润、半干旱、干旱和极端干旱气候区的分区结果比较合理; 近46年来青藏高原大部分地区湿润度和每个气候区的平均湿润度均呈增加趋势, 半干旱和半湿润气候区的界线呈向西北推进趋势, 气候在向暖湿方向发展。  相似文献   

7.
冯洪君 《气象》1991,17(4):2-2
干湿球同值,从气象学角度来看,无非有两种情况,一是湿度很大,达到饱和状态。二是湿球无水。在这两种情况下,干湿球同值才有可能。 但我站在1990年7月22日8时观测时,发现干湿球同值,且经复读无误。当时湿度较小,只有69%左右。查看湿球水杯中的水是满满的,仔细看,在水杯盖上部到湿球球部的纱布都是干的。这就出现了干湿球同值的情况。后来把湿球纱布浸入水杯中湿润一下,到下一次观测时,水杯盖上部的纱布仍是干的。 据我站30多年的老测报员说:从来未碰  相似文献   

8.
利用"内蒙古微气象观测蒸发试验"的观测资料,对6种地表土壤热通量计算方法(Plate Cal法、TDEC法、谐波法、热传导对流法、振幅法和相位法)进行比较,检验了6种方法在不同干湿地表状况下的适用性,并研究了6种方法计算地表土壤热通量的差异以及对地表能量闭合度的影响。结果表明:一般情况下,Plate Cal法计算的2 cm土壤热通量与观测值最接近,计算结果的均方差为6.9 W/m2。在不同干湿地表状况下,干燥和降水条件下适合使用Plate Cal法,计算结果的均方差分别为14.0 W/m2和30.1 W/m2;湿润条件下适合使用谐波法,计算结果的均方差为21.4 W/m2。6种方法计算的地表土壤热通量存在明显差别,最大相差178.6 W/m2,不同方法计算地表土壤热通量的最大差值超过25 W/m2的时次占样本的96.3%。不同方法计算地表土壤热通量的差异对地表能量闭合度的大小有明显影响,但不影响近地层能量闭合度随湍流混合增强而增大的规律。  相似文献   

9.
那是5月份的一个晴朗干燥的下午,温度较高,天气特别干燥。14时正点观测得到的一些数据如下,风向NNW,风速3m/s,干球温度26.5℃,湿球温度18.1℃,查算出来的相对湿度U为40,本站气压为1011.9hPa,而湿度计上的读数U_#为16。湿度计读数与干湿球查算得到的相对湿度误差达到24,这是罕见的现象。因为根据经验,U与U_#的误差从来没有超过20的。这里面肯定存在问题!我马上回到观测场,首先观察湿度计,没有发现异常现象;再去观察干球温度表,也一切正常;再看湿球温度表,水杯杯口与球部距离为3cm,这也是正确的;但是球部的上半部已经完全干燥、颜色发白了,下半部仍保持着湿润,再仔细一看,湿球下部包扎纱布的线扎得过紧。原因终于找到了,由于湿球下部扎得过紧,导致水分从水杯向湿球输送的速度减慢,而今天下午由于湿度小、气温高,湿球表面水分蒸发的速度相当大,超过了水分输送速度,因此出现了湿球上部、下部湿的情况,影响了相对湿度的准确度。  相似文献   

10.
非均匀陆面条件下区域蒸散量计算的遥感模型   总被引:23,自引:0,他引:23  
非均匀陆面条件下的区域蒸散计算是一个复杂的问题。文中首先在利用遥感资料求取地表特征参数 (如植被覆盖度、地表反照率等 )的基础上 ,建立了裸露地表条件下的裸土蒸发和全植被覆盖条件下植被蒸腾计算模型 ,然后结合植被覆盖度 (植被的垂直投影面积与单位面积之比 )给出非均匀陆面条件下的区域蒸散计算方法。实测资料验算表明该模型具有较高的计算精度。文章最后利用该模型对中国北方地区的蒸散量进行了计算 ,并对该研究区蒸散的特点进行了分析  相似文献   

11.
近30年安徽省地表干湿时空变化及对农业影响   总被引:5,自引:2,他引:5       下载免费PDF全文
采用FAO Penman-Monteith模型, 并利用安徽省辐射观测资料对其净辐射项进行修正, 计算近30年安徽省的参考作物蒸散量。用此计算值和相应时段的降水量计算干燥度 (Ia), 并进行了基于干燥度指标不同时间尺度的区域地表干湿状况变化分析。分析表明:1971—2000年安徽省年干燥度平均值Ia=1的等值线为湿润区和半湿润区的分界线, 该分界线与1000 mm的年雨量线有很好的一致性, 同时也具有清晰的农业意义。20世纪70—90年代Ia=1的等值线南北波动, 其波动区域正是安徽省江淮分水岭易旱区。在此基础上分析了半湿润区、波动区域和湿润区降水量、参考作物蒸散量和干燥度年代际、年际和半年际的变化趋势及变异率以及逐月干旱频率及其对农业的影响。  相似文献   

12.
在用干湿球测湿工作中,若对湿球纱布包扎或溶冰等操作不当,则会造成湿度不准,常见的有如下几种情况:①湿球球部下端的纱布包扎得太紧,水杯里的水不能顺利地向上渗透,球部的纱布不能保持充分的湿润,造成湿球温度偏高,查算出的湿度值偏大。具体表现为湿度自记迹线明显下降,干湿球读数查算出的湿度值变化不大,甚至上升。②溶冰操作不当造成的误差。每小时观测一次的台站,冬季天气较冷,湿球短纱布一直结冰,溶冰时没有把冰溶化,或用水杯浸一下球部就算溶冰,造成球部的冰层愈积愈厚,当气温有较大的变化时,湿球的灵敏度下降,滞后…  相似文献   

13.
中国干湿状况和干湿气候界限变化研究   总被引:13,自引:2,他引:11  
选取全国616个地面气象台站1975-2004年的地面资料,通过Penman-Monteith公式计算的参考蒸散确定湿润指数(W),按W为0.03、0.2、0.5和1.0把中国分为极干旱、干旱、半干旱、半湿润和湿润5个干湿区,给出了湿润指数的变化趋势和变异状况的地理分布,讨论了湿润指数的年代际变化特征。结果表明:湿润状况显著增加的地区主要为新疆西北部和中国的西南部,干旱化显著的地区主要在青海的东部、甘肃的南部和四川北部;干湿状况变化从中国的东部向西部逐渐增大,中国的西南地区干湿状况最为稳定;20世纪80年代初全国的平均干湿状况发生变化,由干旱趋向湿润,30a来半湿润、湿润地区干湿状况年际变化大,半干旱区和湿润区增多,半湿润区减少。  相似文献   

14.
使用1961—2020年的观测数据和2021—2080年的模式预估数据,首先分析了云南初夏干燥度指数(aridity index,AI)的演变特征和影响因子相对贡献,然后采用国际耦合模式比较计划第六阶段(CMIP6)中的20个全球模式,对SSP1-2.6、SSP2-4.5以及SSP5-8.5情景下云南初夏未来干湿变化进行了预估研究。结果表明:(1) 1961—2020年云南初夏气候整体湿润,但为变干燥的趋势,有明显的年代际变化特征,1960s、1970s以及2000s气候相对湿润,其余年代相对干燥,2000s(2010s)为1961年以来最湿润(干燥)的10年。(2) 2021—2080年在3种排放情景下,云南初夏气候较1995—2014年均为变干燥的趋势,SSP1-2.6、SSP2-4.5以及SSP5-8.5情景下,AI分别减少13.9%、17.9%以及24.9%,西南部将可能是湿润度降幅最大值中心。(3) 1961—2020年,降水对云南初夏气候干湿变化的贡献大于潜在蒸散量;而2021—2080年,潜在蒸散量对气候变干燥的贡献大于降水量,且随排放情景的增高和时间推移,其贡献将逐渐增大。  相似文献   

15.
数字摄像能见度观测系统中实用黑体技术的应用   总被引:2,自引:3,他引:2       下载免费PDF全文
在数字摄像能见度观测系统 (DPVS) 中, 目标物的自身亮度难以实时测量, 给观测结果带来的不确定性不可忽略, 采用实用黑体技术可以大大减小乃至消除其造成的误差。作者对非黑体目标引起的测量误差进行了分析, 结果表明相对误差随着目标物反射率的增加和能见度的升高而增大, 为了保证测量精度, 需要采用反射率足够低的目标物。对于长方体结构的实用黑体腔, 采用多次反射法计算了其近轴向的半球-方向反射率与其特性参数之间的关系。在没有观测到侧壁的前提下, 其轴向反射率最大, 随着偏离轴线角度的增加, 反射率逐渐减小。轴向反射率随腔体长度与开口边长比值的增加而迅速减小, 而腔体宽度增加引起的变化不明显。另外, 作者还推导了在考虑弥散成像时对实用黑体开口尺寸最小需求的计算公式, 也给出了符合一定条件的实用黑体轴向反射率的近似计算公式, 从而提供了DPVS中实用黑体参数选择的基本原则。最后, 给出了DPVS采用非黑体和实用黑体目标计算能见度的对比试验结果, 充分说明了在DPVS中采用实用黑体技术的必要性和可行性。  相似文献   

16.
进入冬季,特别在严寒天气的溶冰观测中,有时会遇到这样一种情况:当你在干湿球读数后用铅笔轻轻触动湿球纱布,湿球示度会突然迅速上升,出现湿球示度不稳定。是什么“能量”引起湿球示度如此迅速上升呢?为了弄清这个问题,有必要对冬季湿球溶冰过程作些分析。我们知道,溶冰的目的是为了湿球纱布  相似文献   

17.
利用2006年南京地区边界层外场观测资料对摩擦速度(u*)和摩擦温度(θ*)的几种计算方案进行了比较.u*计算方案的比较结果表明:在不稳定条件下,Pleim方案计算结果同实测值相比,二者在量值及变化趋势上都有较好的一致性;而在稳定条件下,计算结果较差,为此本文给出了一个新的计算方案,结果表明,改进方案有效的提高了u*计算精度,平均相对误差由56%降低到21%.θ*计算方案的比较结果表明:基于动力粗糙度和热力粗糙度相等的Lee方案计算误差较大,而引入阻尼项的Wesely方案计算结果较前者有明显改进.  相似文献   

18.
相对湿度自动与人工观测的差异分析   总被引:5,自引:1,他引:4  
苑跃  赵晓莉  王小兰  游泳 《气象》2010,36(2):102-108
利用四川135个站自动与人工第二年平行观测相对湿度(下文简称湿度)资料,就自动与人工观测相对湿度的差异及引起差异的原因进行了分析。结果表明:相对湿度自动与人工观测相比,日平均值平均偏低2.7270%、月平均值平均偏低2.7970%、年平均值平均偏低2.7472%。56.35%的时次自动观测湿度值与人工观测湿度值的差值在5%以内,86.66%的时次自动观测湿度值与人工观测湿度值的差值在10%以内,2.61%的时次自动观测湿度值与人工观测湿度值的差值在20%以上。自动与人工观测湿度的差值无明显地域性差异。湿球纱布包扎不规范、纱布不清洁,干湿球温度表人工读数误差,干湿球温度表的通风状态,观测时间的不一致,自动观测在高湿状况下的非线性以及其他原因均会导致自动与人工观测湿度产生差异,甚至是显著差异。  相似文献   

19.
陆面模式中土壤和植被经验参数随机误差的传播研究   总被引:3,自引:1,他引:2  
梁晓  戴永久 《大气科学》2010,34(2):457-470
数据质量问题和模式参数化方案的非完备性是陆面模拟中不确定性的主要来源。本文将高斯误差传播原理 (Gaussian Error Propagation, GEP) 应用于通用陆面模式 (the Common Land Model, CoLM), 研究关键的植被和土壤属性参数随机误差在模式中的传播, 确定由此类误差导致的CoLM模拟的不确定性。结果表明: (1) 基于本研究给定的土壤和植被参数的不确定性, CoLM模拟的表层土壤温度、 土壤湿度和植被蒸散通量 (植冠蒸腾+地表蒸发) 的相对误差分别为0.11%、 34.07%和5.58%; 砂土和稀疏森林上模拟效果最差。土壤参数随机误差对CoLM模拟的影响高于植被参数, 而土壤水文参数 (孔隙率、 饱和基质势、 气孔尺寸分布指数和饱和导水率) 对各模拟量不确定性的贡献率均远大于热力参数 (饱和反照率和热容)。对于本研究涉及的所有模拟变量而言, 最关键的参数均是气孔尺寸分布指数b, 这可能与描述基质势与体积水含量关系的函数有关, 其次重要的是砂土的孔隙度和粘土的饱和导水率。混交森林上的根深分布和苔原上的动力学粗糙度对蒸散通量贡献显著。本身相对误差大的经验参数对CoLM模拟不确定性的贡献不一定多。 (2) 干燥条件下 (表层液态水饱和度小于0.1) 土壤温度的不确定性大; 相变发生时刻附近 (表层土壤温度在0℃附近且表层液态水含量大于0) 土壤湿度不确定性显著; 蒸散通量的不确定性随本身绝对值的增大而增大, 在相对温暖干燥环境中 (表层土壤温度高于280 K且表层液态水饱和度小于0.3) 其不确定性最高。研究证实, GEP能够辨识CoLM中需优先提高观测精度的关键参数和关键参数化过程, 对陆面模拟的参数选定、 不确定性评估和模式完善具有重要意义。  相似文献   

20.
在土壤水分蒸散量测量仪器研制中,首次在蒸渗计的原状土柱与反滤层接触部分安装了自动补(抽)水设备,使土桶内原状土柱与大田内的土壤水分保持一致。提出了传感器的参数选用原则和蒸渗计标定方法。经过安装和标定使用,GQZ—Z1蒸渗计的精度达到设计和观测0.1mm的要求,能够有效提高农田蒸散量的观测精度,其测定值能很好地反映植物在短时段内的蒸散变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号