共查询到20条相似文献,搜索用时 4 毫秒
1.
2.
Galaxy spectra are a rich source of kinematical information since the shapes of the absorption lines reflect the movement of stars along the line-of-sight. We present a technique with which to build directly a dynamical model for a galaxy by fitting model spectra, calculated from a dynamical model, to the observed galaxy spectra. Using synthetic spectra from a known galaxy model we demonstrate that this technique indeed recovers the essential dynamical characteristics of the galaxy model. Moreover, the method allows a statistically meaningful error analysis on the resulting dynamical quantities. 相似文献
3.
4.
5.
6.
F. C. Wachlin & S. Ferraz-Mello 《Monthly notices of the Royal Astronomical Society》1998,298(1):22-32
We present an application of the frequency map analysis to an elliptical galaxy which is represented by a generalization of a double-power-law spherical mass model. The density distribution of this model varies as r −γ close to the centre and as r −4 at large radii. We study the case with γ = 1, which is known as the 'weak-cusp' model and which represents well the density profile of the 'core' galaxies observed by the Hubble Space Telescope . The final objective of our work is to improve our understanding of the dynamics of elliptical galaxies in a similar way to Merritt &38; Fridman, finding the regions of stochasticity, looking for resonances that might play an important role in sustaining the triaxial morphology, and analysing the diffusion of orbits. To this end, we use the frequency map analysis of Laskar, which has been applied widely in the field of celestial mechanics but which is a relatively new technique in the area of galactic dynamics. Finally, we show some useful features of this method in understanding the global dynamical structure of the system. 相似文献
7.
8.
9.
N. W. Evans C. M. Carollo P. T. de Zeeuw 《Monthly notices of the Royal Astronomical Society》2000,318(4):1131-1143
This paper presents the properties of a family of scale-free triaxial haloes. We adduce arguments to suggest that the velocity ellipsoids of such models are aligned in conical coordinates. We provide an algorithm to find the set of conically aligned velocity second moments that support a given density against the gravity field of the halo. The case of the logarithmic ellipsoidal model – the simplest triaxial generalization of the familiar isothermal sphere – is examined in detail. The velocity dispersions required to hold up the self-consistent model are analytic. The velocity distribution of the dark matter can be approximated as a triaxial Gaussian with semiaxes equal to the velocity dispersions.
There are roughly 20 experiments worldwide that are searching for evidence of scarce interactions between weakly interacting massive-particle dark matter (WIMP) and detector nuclei. The annual modulation signal, caused by the Earth's rotation around the Sun, is a crucial discriminant between WIMP events and the background. The greatest rate is in June, the least in December. We compute the differential detection rate for energy deposited by the rare WIMP–nucleus interactions in our logarithmic ellipsoidal halo models. Triaxiality and velocity anisotropy change the total rate by up to ∼40 per cent, and have a substantial effect on the amplitude of the annual modulation signal. The overall rate is greatest, but the amplitude of the modulation is weakest, in our radially anisotropic halo models. Even the sign of the signal can be changed. Restricting attention to low energy events, the models predict that the maximum rate occurs in December, and not in June. 相似文献
There are roughly 20 experiments worldwide that are searching for evidence of scarce interactions between weakly interacting massive-particle dark matter (WIMP) and detector nuclei. The annual modulation signal, caused by the Earth's rotation around the Sun, is a crucial discriminant between WIMP events and the background. The greatest rate is in June, the least in December. We compute the differential detection rate for energy deposited by the rare WIMP–nucleus interactions in our logarithmic ellipsoidal halo models. Triaxiality and velocity anisotropy change the total rate by up to ∼40 per cent, and have a substantial effect on the amplitude of the annual modulation signal. The overall rate is greatest, but the amplitude of the modulation is weakest, in our radially anisotropic halo models. Even the sign of the signal can be changed. Restricting attention to low energy events, the models predict that the maximum rate occurs in December, and not in June. 相似文献
10.
11.
12.
Robert N. Proctor Duncan A. Forbes Aaron J. Romanowsky Jean P. Brodie Jay Strader † Max Spolaor J. Trevor Mendel Lee Spitler 《Monthly notices of the Royal Astronomical Society》2009,398(1):91-108
We detail an innovative new technique for measuring the two-dimensional (2D) velocity moments (rotation velocity, velocity dispersion and Gauss–Hermite coefficients h 3 and h 4 ) of the stellar populations of galaxy haloes using spectra from Keck DEIMOS (Deep Imaging Multi-Object Spectrograph) multi-object spectroscopic observations. The data are used to reconstruct 2D rotation velocity maps.
Here we present data for five nearby early-type galaxies to ∼three effective radii. We provide significant insights into the global kinematic structure of these galaxies, and challenge the accepted morphological classification in several cases. We show that between one and three effective radii the velocity dispersion declines very slowly, if at all, in all five galaxies. For the two galaxies with velocity dispersion profiles available from planetary nebulae data we find very good agreement with our stellar profiles. We find a variety of rotation profiles beyond one effective radius, i.e. rotation speed remaining constant, decreasing and increasing with radius. These results are of particular importance to studies which attempt to classify galaxies by their kinematic structure within one effective radius, such as the recent definition of fast- and slow-rotator classes by the Spectrographic Areal Unit for Research on Optical Nebulae project. Our data suggest that the rotator class may change when larger galactocentric radii are probed. This has important implications for dynamical modelling of early-type galaxies. The data from this study are available on-line. 相似文献
Here we present data for five nearby early-type galaxies to ∼three effective radii. We provide significant insights into the global kinematic structure of these galaxies, and challenge the accepted morphological classification in several cases. We show that between one and three effective radii the velocity dispersion declines very slowly, if at all, in all five galaxies. For the two galaxies with velocity dispersion profiles available from planetary nebulae data we find very good agreement with our stellar profiles. We find a variety of rotation profiles beyond one effective radius, i.e. rotation speed remaining constant, decreasing and increasing with radius. These results are of particular importance to studies which attempt to classify galaxies by their kinematic structure within one effective radius, such as the recent definition of fast- and slow-rotator classes by the Spectrographic Areal Unit for Research on Optical Nebulae project. Our data suggest that the rotator class may change when larger galactocentric radii are probed. This has important implications for dynamical modelling of early-type galaxies. The data from this study are available on-line. 相似文献
13.
Orbit classification in arbitrary 2D and 3D potentials 总被引:1,自引:0,他引:1
Daniel D. Carpintero & Luis A. Aguilar 《Monthly notices of the Royal Astronomical Society》1998,298(1):1-21
A method of classifying generic orbits in arbitrary 2D and 3D potentials is presented. It is based on the concept of spectral dynamics introduced by Binney &38; Spergel that uses the Fourier transform of the time series of each coordinate. The method is tested using a number of potentials previously studied in the literature and is shown to distinguish correctly between regular and irregular orbits, to identify the various families of regular orbits (boxes, loops, tubes, boxlets, etc.), and to recognize the second-rank resonances that bifurcate from them. The method returns the position of the potential centre and, for 2D potentials, the orientation of the principal axes as well, should this be unknown. A further advantage of the method is that it has been encoded in a FORTRAN program that does not require user intervention, except for 'fine tuning' of search parameters that define the numerical limits of the code. The automatic character makes the program suitable for classifying large numbers of orbits. 相似文献
14.
15.
Chigurupati Murali & Scott Tremaine 《Monthly notices of the Royal Astronomical Society》1998,296(3):749-762
We determine the response of a self-similar isothermal stellar system to small adiabatic gravitational perturbations. For odd spherical harmonics the response is identical to the response of the analogous isothermal fluid system. For even spherical harmonics the response can be regarded as an infinite series of wavetrains in log r , implying alternating compression and rarefaction in equal logarithmic radius intervals. Partly because of the oscillatory nature of the solutions, tidal fields from external sources are not strongly amplified by an intervening isothermal stellar system, except at radii ≲10−3.5 times the satellite radius; at some radii the stellar system can even screen the external tidal field in a manner analogous to Debye screening. As Weinberg has pointed out, individual resonances in a stellar system can strongly amplify external tidal fields over a limited radial range, but we cannot address this possibility because we examine only adiabatic perturbations. We also discuss the application of our method to the halo response caused by the slow growth of an embedded thin disc. 相似文献
16.
Luca Ciotti Giacomo Giampieri † 《Monthly notices of the Royal Astronomical Society》2007,376(3):1162-1168
We show how the complex-shift method developed by Appell to study the gravitational field of a point mass (and used in electrodynamics by, among others, Newman, Carter, Lynden-Bell, and Kaiser to determine some remarkable properties of the electromagnetic field of rotating charged configurations) can be extended to obtain new and explicit density–potential pairs for self-gravitating systems departing significantly from spherical symmetry. The rotational properties of two axisymmetric baroclinic gaseous configurations derived with the proposed method are illustrated. 相似文献
17.
Mir Abbas Jalali 《Monthly notices of the Royal Astronomical Society》1999,310(1):97-104
The bifurcations of orbit-averaged dynamics are studied in a class of razor-thin discs with central black holes. The model used here consists of a perturbed harmonic oscillator Hamiltonian augmented with a GM r potential. Through a sequence of conformal and canonical transformations, we reduce the phase-space flows of the system to a set of non-linear differential equations on a sphere. Based on the critical points of the averaged system, we classify orbit families and reveal the existence of six types of periodic motions: circular , long - and short-axis elliptical , long - and short-axis radial and inclined radial orbits. Long-axis elliptical orbits and their surrounding tubes have significant features: whilst they keep stars away from the centre, they elongate in the same direction as the density profile. These properties are helpful in the construction of self-consistent equilibria. 相似文献
18.
Luca Ciotti Federico Marinacci 《Monthly notices of the Royal Astronomical Society》2008,387(3):1117-1125
In a previous paper, the complex-shift method has been applied to self-gravitating spherical systems, producing new analytical axisymmetric density–potential pairs. We now extend the treatment to the Miyamoto–Nagai disc and the Binney logarithmic halo, and we study the resulting axisymmetric and triaxial analytical density–potential pairs; we also show how to obtain the surface density of shifted systems from the complex shift of the surface density of the parent model. In particular, the systems obtained from Miyamoto–Nagai discs can be used to describe disc galaxies with a peanut-shaped bulge or with a central triaxial bar, depending on the direction of the shift vector. By using a constructive method that can be applied to generic axisymmetric systems, we finally show that the Miyamoto–Nagai and the Satoh discs, and the Binney logarithmic halo cannot be obtained from the complex shift of any spherical parent distribution. As a by-product of this study, we also found two new generating functions in closed form for even and odd Legendre polynomials, respectively. 相似文献
19.
20.
Remco C. E. van den Bosch Glenn van de Ven † 《Monthly notices of the Royal Astronomical Society》2009,398(3):1117-1128
We investigate how well the intrinsic shape of early-type galaxies can be recovered when both photometric and two-dimensional stellar kinematic observations are available. We simulate these observations with galaxy models that are representative of observed oblate fast-rotator to triaxial slow-rotator early-type galaxies. By fitting realistic triaxial dynamical models to these simulated observations, we recover the intrinsic shape (and mass-to-light ratio), without making additional (ad hoc) assumptions on the orientation.
For (near) axisymmetric galaxies, the dynamical modelling can strongly exclude triaxiality, but the regular kinematics do not further tighten the constraint on the intrinsic flattening significantly, so that the inclination is nearly unconstrained above the photometric lower limit even with two-dimensional stellar kinematics. Triaxial galaxies can have additional complexity in both the observed photometry and kinematics, such as twists and (central) kinematically decoupled components, which allows the intrinsic shape to be accurately recovered. For galaxies that are very round or show no significant rotation, recovery of the shape is degenerate, unless additional constraints such as from a thin disc are available. 相似文献
For (near) axisymmetric galaxies, the dynamical modelling can strongly exclude triaxiality, but the regular kinematics do not further tighten the constraint on the intrinsic flattening significantly, so that the inclination is nearly unconstrained above the photometric lower limit even with two-dimensional stellar kinematics. Triaxial galaxies can have additional complexity in both the observed photometry and kinematics, such as twists and (central) kinematically decoupled components, which allows the intrinsic shape to be accurately recovered. For galaxies that are very round or show no significant rotation, recovery of the shape is degenerate, unless additional constraints such as from a thin disc are available. 相似文献