首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this work a method for estimating parameters of practical ship manoeuvring models based on the combination of RANSE computations and System Identification procedure is investigated, considering as test case a rather slender twin screw and two rudders ship. The approach consists in the estimation of the hydrodynamic coefficients applying System Identification to a set of free running manoeuvres obtained from an in-house unsteady RANS equations solver, which substitute the usually adopted experimental tests at model or full scale. In this alternative procedure the numerical quasi-trials (in terms of kinematic parameters time histories and, if needed, forces time histories) are used as input for the System Identification procedure; the aim of this approach is to reduce external disturbances that, if not properly considered in the mathematical model, may compromise the identification results, or at least amplify the well-known “cancellation effects”. Furthermore, the CFD results provide information both in terms of flow field variables and hydrodynamic forces on the manoeuvring ship. These data may be adopted for a better understanding of the complex flow during manoeuvres, especially at stern, providing also additional information about the interaction between the various appendages (including rudders) and the hull. The identification procedure is based on an off-line genetic algorithm used for minimizing the discrepancy between the reference manoeuvres from CFD and those simulated with the system based modular model. The discrepancy was measured considering different metric functions and simplified formulations which consider only the main macroscopic parameters of the manoeuvre; the metrics have been analyzed in terms of their capability in reproducing the time histories and in limiting the cancellation effect of the hydrodynamic derivatives.  相似文献   

2.
Seakeeping qualities are one of the most important aspects for passenger ships, since a collateral effect of seakeeping, the seasickness, can avoid the use of ships and ferries among passengers who can choose a different way of transport. Therefore, it is important for ship designers and ship owners to predict and evaluate the seasickness effects at the design stage.In this paper, a review of the seasickness causes and effects is made, and a mathematical model that includes several human factors is proposed. This model is applicable especially in big passenger ships where different kind of spaces or activities for the passengers can be found inside the ship.The way to present the large amount of information obtained in seakeeping calculations is important, and it is useful to detect the most conflictive parts of the ship's general arrangement. Calculations for an example ferry are presented.  相似文献   

3.
The ship routing problem can be known as a multi-objective problem. Since the operation strategy is influenced by ocean environments, e.g. wind, waves or ocean currents, it is therefore weather routed. In this study, the three-dimensional modified isochrone (3DMI) method utilizing the recursive forward technique and floating grid system for the ship tracks is applied to globally search for the optimum route. The proposed method considers two types of routing strategies, i.e. ETA (Estimated Time of Arrival) routing and FUEL (FUEL-saving) routing, with different constraints, such as land boundaries, significant wave heights, engine revolution speeds and roll responses. As a result, it is verified that the robustness of the proposed method appears to be a practical tool by adjusting the safety threshold for the trade-off of ship efficiency and economics.  相似文献   

4.
Ship motions after damage are difficult to evaluate since they are affected by complex phenomena regarding fluid and structures interactions. The possibility to better understand how ship behavior in damage is influenced by these phenomena is important for improving ship safety, especially for passenger vessel.In this paper an experimental campaign is carried out on a passenger ferry hull, to show the effects of the water dynamics across damage openings on ship motions. Novel aspects of this research include the study of the effects of the damage position on the ship roll response. The study is carried out for still water and for beam regular waves at zero speed.Results from the experiments carried out underline that the roll behavior of a damaged ship is affected by the position of damage opening and not only by its size. Assuming the same final equilibrium conditions after flooding but characterized by different damage openings it is possible to observe how motions RAOs and roll decay characteristics modify according to the opening locations.  相似文献   

5.
L. Rusu 《Ocean Engineering》2011,38(10):1174-1183
A study of the wave propagation and of the consequences of the influence of currents on waves in the Tagus estuary is performed in the present work. For this purpose a high-resolution SWAN domain was coupled to a wave prediction system based on the two state of the art phase averaged wave models, WAM for wave generation and SWAN for nearshore wave transformation. The most important factors affecting the incoming waves are the local currents and the wind. These influences were evaluated by performing SWAN simulations in the target area with and respectively without considering the tide level and tide induced currents. The model results were compared with wave measurements, validating in this way the results of the wave prediction system developed herewith.  相似文献   

6.
This paper proposes a Computational Fluid Dynamics (CFD) based unsteady RANS model which enables the prediction of the effect of marine coatings and biofouling on ship resistance and presents CFD simulations of the roughness effects on the resistance and effective power of the full-scale 3D KRISO Container Ship (KCS) hull.Initially, a roughness function model representing a typical coating and different fouling conditions was developed by using the roughness functions given in the literature. This model then was employed in the wall-function of the CFD software and the effects of a typical as applied coating and different fouling conditions on the frictional resistance of flat plates representing the KCS were predicted for a design speed of 24 knots and a slow steaming speed of 19 knots using the proposed CFD model. The roughness effects of such conditions on the resistance components and effective power of the full-scale 3D KCS model were then predicted at the same speeds. The resulting frictional resistance values of the present study were then compared with each other and with results obtained using the similarity law analysis. The increase in the effective power of the full-scale KCS hull was predicted to be 18.1% for a deteriorated coating or light slime whereas that due to heavy slime was predicted to be 38% at a ship speed of 24 knots. In addition, it was observed that the wave resistance and wave systems are significantly affected by the hull roughness and hence viscosity.  相似文献   

7.
Emin Korkut   《Ocean Engineering》2006,33(2):205-218
A case study for the energy saving in the powering characteristics of a river going general cargo ship has been carried out. Two different hull forms were generated from the original hull form of the vessel to optimise the stern flow of the vessel. A possible energy saving concept, such as partial wake equalizing duct was investigated in this manner. Resistance, self-propulsion and flow visualization measurements were performed with the hull models to explore the effect of partial wake equalizing ducts on the powering characteristics of the hull form. Analysis of the results indicates that the partial wake equalizing duct concept with an appropriate stern design affect not only the flow characteristics at aft-end, but also the propulsion characteristics. In order to identify effect of each component (partial wake equalizing duct and stern form) a further investigation is needed.  相似文献   

8.
This paper presents an integrated investigation of physical processes generating impulsive pressures under the action of plunging breakers impinging on gravel beaches. This work is an extension of a recent investigation which suggested that wave impacts from plunging breakers acting on gravel beaches may be a key mechanism to enhance sediment mobilisation. In particular, comparisons of full scale laboratory measurements against model results from a well-validated phase/depth-resolving numerical model based on the Reynolds–Averaged Navier–Stokes (RANS) equations are presented. This represents the first attempt at comparison with such a tool against observed hydrodynamics on steep (slope~1/8) gravel beaches at prototype scale. In order to understand how impulsive pressures are generated under plunging waves, the numerical model is used to carry out a detailed investigation to examine the role of each of the acceleration terms in the momentum balance. Consistent with prior studies, numerical results show that under plunging breakers the local acceleration (∂u/∂t) alone cannot be used as a proxy for pressure gradients. However, the contribution of the third term (wu/∂z) of total acceleration is recognized for the first time and indicates that this term has an important role in both the induced pressure gradient and sediment mobilisation as induced by this particular type of breaking. Furthermore, results suggest that a parameterisation of the pressure gradient in terms of ∂u/∂t+uu/∂x, may not suffice when dealing with plunging breakers and hence there is a lack of a suitable parameterisation of this process in the present literature. Thus, for different types of breaking it may be necessary to consider a different characterisation of the pressure gradient toward the parameterisation of sediment transport inside the surf zone.  相似文献   

9.
Berms deployed at the toe of conventional rubble mound breakwaters can be very effective in improving the stability of the armor layer. Indeed, their design is commonly tackled by paying attention to armor elements dimensioning. Past research studies showed how submerged berms can increase the stability of the armor layer if compared to straight sloped conventional breakwaters without a berm. To fill the gap of knowledge related to the interaction between breakwaters with submerged berm, waves and soil, this research aims to evaluate how submerged berms configuration influences the seabed soil response and momentary liquefaction occurrences around and beneath breakwaters foundation, under dynamic wave loading. The effects of submerged berms on the incident waves transformation have been evaluated by means of a phase resolving numerical model for simulating non-hydrostatic, free-surface, rotational flows. The soil response to wave-induced seabed pressures has been evaluated by using an ad-hoc anisotropic poro-elastic soil solver. Once the evaluation of the seabed consolidation state due to the presence of the breakwater has been performed, the dynamic interaction among water waves, soil and structure has been analyzed by using a one-way coupling boundary condition. A parametric study has been carried out by varying the berm configuration (i.e. its height and its length), keeping constant the offshore regular wave condition, the berm and armor layer porosity values, the water depth and the elastic properties of the soil. Results indicate that the presence of submerged berms tends to mitigate the liquefaction probability if compared to straight sloped conventional breakwater without a berm. In addition, it appears that the momentary liquefaction phenomena are more influenced by changing the berm length rather than the berm height.  相似文献   

10.
This study proposes a ship weather-routing algorithm based on the composite influence of multi-dynamic elements for determining the optimized ship routes. The three-dimensional modified isochrone (3DMI) method utilizing the recursive forward technique and floating grid system for the ship tracks is adopted. The great circle sailing (GCR) is considered as the reference route in the earth coordinate system. Illustrative optimized ship routes on the North Pacific Ocean have been determined and presented based on the realistic constraints, such as the presence of land boundaries, non-navigable sea, seaway influences, roll response as well as ship speed loss. The proposed calculation method is effective for optimizing results by adjusting the weighting factors in the objective functions. The merits of the proposed method can be summarized as: (1) the navigability of the route can be analyzed dynamically to acquire the optimal route; (2) adopting multi-dynamic elements as weighting factors has the benefits in energy efficiency, time-saving and minimum voyage distance; and (3) an ability to enhance speed performance and to incorporate safety concern in a dynamic environment.  相似文献   

11.
The prediction of ship stability during the early stages of the design process is very important from the point of a vessel's safety. Hence, in this study, a formula is presented to estimate cross curves of fishing vessels to predict initial stability at the preliminary design stage. For this purpose, 175 fishing vessel forms have been generated from Doust trawler hull series. The predictive technique is established by regression analysis of systematically varied fishing vessel series data. The mathematical model is constructed as a function of main design parameters such as length to beam ratio LWL/BWL, beam to draft ratio BWL/T, moulded depth to draft ratio D/T and block coefficient CB. This prediction is also used to determine the effect of specific hull form parameters and load conditions on the stability of the fishing vessel. Some basic considerations on how the proposed method can be applied to a new fishing vessel are presented.  相似文献   

12.
Stability of the marine vessels in different conditions is one of the most important problems in the design of a planing vessel. In this research, the effects of some important design parameters (mass, longitudinal center of mass, deadrise angle, and length) of DTMB 62 model 4667-1 planing hull on the drag and also on the longitudinal dynamic stability (porpoising) are investigated in the velocity range of 2.12–8.486 m/s in calm water. In this paper, both numerical simulation of Reynolds Average Naiver Stokes (RANS) equations and semi-empirical formulas of Savitsky are used to analyze the motion of a 4667 planing vessel in calm water with two degrees of freedom (2DOF). For this purpose a finite volume, ANSYS-FLUENT, code is used to solve the Navier-Stokes equations for the simulation of the flow field around the vessel. In addition, an explicit VOF scheme and SST- Kω model is used with dynamic mesh scheme to capture the interface of a two-phase flow and to model the turbulence respectively, in 2DOF model (heave and pitch). Also, the results of both methods are compared with each other. According to the present results, changing the aspect ratio of the vessel and also the longitudinal center of gravity have the most effect on the porpoising region.  相似文献   

13.
通过紫外分光光度计测定了海洋微生物需钠弧菌 Vibrio natriegens 的生长曲线,通过扫描电镜和原子力显微镜观测了该细菌在船舶用结构钢(DH32)钢样表面成膜过程及试样腐蚀形貌,探讨了生物膜的形成过程及其对材料表面腐蚀的影响。结果表明,生物膜的形成过程与微生物生命活动关系密切。根据对比暴露在菌液和无菌培养基中的试样表面形貌,发现细菌的附着及成膜过程的不均匀性,改变了DH32钢样表面的物理和化学状态。细菌附着区与周围形成的氧浓差电池,以及细菌新陈代谢主要产物对金属离子的络合,共同促进了试样局部腐蚀加速。  相似文献   

14.
The influence of the aerosol component on the total transmission of sounding IR radiation is analyzed. The emissions of both industrial and natural origins into the atmosphere were regarded as the medium. It is noted that, in studying the radiative transport through gas-aerosol mixtures, it is necessary to take into account both molecular absorption and scattering from aerosol particles. It is shown that there are certain boundary values of the microphysical parameters of aerosol where it is sufficient to take into account only one of the above-mentioned factors of radiation extinction. The quantitative values of the parameters of an aerosol medium, on the basis of which the solution of the transport equation can be significantly simplified, are given.  相似文献   

15.
全驱动船舶轨迹跟踪初始位置影响分析   总被引:1,自引:0,他引:1  
邱荷珍  王磊 《海洋工程》2015,33(4):86-93
船舶轨迹跟踪属于广义上的船舶动力定位,具体来说是船舶在规定的时间内,通过轨迹跟踪系统的控制到达原本设定的位置。以某一全驱动船舶为例,分别对预定轨迹为直线和圆进行船舶轨迹跟踪时域模拟研究,通过分析船舶时域模拟轨迹与预设轨迹的水平位置偏差与艏向角偏差研究轨迹跟踪精度,并分析船舶初始位置对轨迹跟踪的影响。研究表明,船舶初始水平位置偏离设定轨迹起点越大,船舶调整至轨迹的时间越长,但最终能回到预设轨迹上;船舶初始艏向如偏离过大,会导致船舶远离预设轨迹。在实际工程应用中,可利用动力定位将船舶定位至轨迹跟踪起点,调整船舶艏向,再开始轨迹跟踪。  相似文献   

16.
开展储层参数和开采参数对天然气水合物开采产能影响的研究有助于其实际开采场址和开采方法的选择。以中国南海神狐海域SH7站位的地质参数为背景,采用TOUGH+HYDRATE软件系统地分析了储层压力、温度、孔隙度、水合物饱和度、渗透率、上覆层和下伏层渗透率等储层参数,以及降压幅度、降压井长度和出砂堵塞(通过改变井周网格渗透率反映出砂堵塞)等开采参数对天然气水合物降压开采产能的影响。数值模拟结果表明:①随着储层渗透率的增大,产气量有明显的增加;随着储层压力、孔隙度的增大以及上覆层和下伏层渗透率的减小,产气量有较大的增加;随着储层温度的增大,产气量有一定的增加;产气量随饱和度的增大先增大后减小。因此,实际开采时可优先选择渗透率大、上覆层和下伏层渗透率小、孔隙度大、温度较高、水合物饱和度适中的储层。②随着降压幅度的增大以及降压井长度增大,产气量有明显的增加;而随着出砂堵塞程度的加剧,产气量有非常明显的减少。因此,实际开采时可以通过增大降压幅度和降压井长度以及采取减轻出砂堵塞的措施来提高产气量。研究结果可以为我国将来天然气水合物开采区域及开采方式的选择和确定提供参考。  相似文献   

17.
Littoral sediment transport is the main reason for coastal erosion and accretion. Therefore, various types of structures are used in shore protection and littoral sediment trapping studies. Offshore breakwaters are one of these structures. Construction of offshore breakwaters is one of the main countermeasures against beach erosion. In this paper, offshore protection process is studied on the effect of offshore breakwater parameters (length, distance and gap), wave parameters (height, period and angle) and on sediment accumulation ratio, one researched in a physical model. In addition to the experimental studies, numerical model in which the formulae of the sediment discharge (i.e. the formulae of CERC and Kamphuis), was used was developed and employed. The results of the experimental and numerical studies were compared with each other.  相似文献   

18.
This paper analyzes the hydrodynamic performance of a planing craft with a fixed hydrofoil in regular waves. Numerical simulations are carried out based on a RANS-VOF solver to study the hydrodynamic performance of the planing craft and the influence of the fixed hydrofoil on its seakeeping. To validate the numerical method, a series of hydrodynamic experiments of a bare planing craft without the hydrofoil were carried out, from which the seakeeping performance of the planing craft was recorded, the numerical method based on overset grid was compared with the experiment and verified reliable. Eight hydrofoil design cases were then studied, whereby, their seakeeping performance in regular wave conditions were predicted through the numerical method which has been verified reliable and compared with each other. Effects of hydrofoil parameters, such as angle of attack and installation height, on the seakeeping performance were investigated. Finally, the suitable installation parameters which can optimize the performance of hydrofoil and reduce the negative influence are verified. The influence of the speed on the effect of the hydrofoil and the flow field around the planing craft are also investigated.  相似文献   

19.
Steel catenary risers (SCRs) are usually cost-effective solutions in the development of offshore fields and the transferring of the hydrocarbons from the seabed to the floating facilities. These elements are subjected to the fatigue loads particularly in the touchdown zone (TDZ), where the oscillating SCR is exposed to cyclic contact with the seabed. The slug-induced oscillation is a significant contributor to the fatigue loads in the TDZ. The cyclic seabed soil softening under the wave-induced riser oscillations and the gradual penetration of the SCR into the seabed are widely accepted to have a significant influence on SCR fatigue performance. However, this has never been investigated for slug-induced oscillations due to the lack of integrated access to comprehensive numerical models enabling the simulation of the riser slugging and nonlinear hysteretic riser-seabed interaction at the same time. In this paper, an advanced interface was developed and verified using the multi-point moving tie constraint in order to examine the influence of cyclic seabed soil softening on slug-induced oscillations of SCR. The interface was integrated with a pre-developed user subroutine for modeling of the nonlinear hysteretic riser-seabed interaction and incorporated into a global SCR model in ABAQUS. A comprehensive parametric study was conducted to investigate the influence of slug characteristics and nonlinear seabed soil model on slug-induced, wave-induced, and combined wave/slug induced oscillations of SCR in the TDZ. It was observed that the nonlinear seabed model could significantly affect the embedment of the SCR into the seabed under the slug-induced oscillations and consequently improve the fatigue life. The developed user interface was found to be a strong framework for modeling riser slugging.  相似文献   

20.
目前水平井射孔完井已在国内外各油田取得了广泛的应用,射孔参数的优化是水平井经济、高效生产运行的关键。在建立了基于正交试验的水平井射孔参数优化设计模型的基础上,研究并筛选了影响水平井射孔完井产能的9个主要因素,分析了各因素对水平井产能影响的权重,优化了射孔完井参数方案,为水平井射孔参数优化提供了新的方法和技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号