首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 455 毫秒
1.
This paper describes and tests two models for estimating net radiation(or the radiation balance)on sloping surfacesof alpine environments.They are an empirical method based on the linear relationship between net radiation and globalsolar radiation and a flux-by-flux method involving the estimation of all the individual components of radiation budgetindependently.The results show that the empirical method is capable of predicting hourly net radiation on sloping sur-faces to within about±53 W m~(-2) under all sky conditions.During clear sky conditions,it could predict net radiation onslopes to within±58 W m~(-2) or 16% of the measured values.The flux-by-flux method,although it did not perform aswell as the empirical method,performed adequately and could give estimates of net radiation on slopes with root meansquare error of less than 74 W m~(-2)(20%)and a mean bias error of 27 W m~(-2)(7%).  相似文献   

2.
Sensible (H) and latent (LvE) heat fluxes are obtained by a combined energy budget – similarity model applied to observations from Melle in Belgium and Cabauw in The Netherlands. The sensitivity to both the stability functions and the accuracy of input data is investigated. In a first step, fluxes are calculated for a selection of stability functions and compared to values obtained with pre-defined (reference) functions. For the diurnal fluxes higher than 10 W m−2 in 1996 at Melle, the root-mean-square rmsreaches 9 W m−2 for H and 6 W m−2 for LvE, depending on the chosen functions. A lesser sensitivity is obtained at Cabauw and can be explained by lower absolute values of the stability parameter ζ (L involving the Obukhov length) mainly induced by higher mean wind speeds. Different stability bins are also considered. It is concluded that a more accurate assessment of the stability functions is already desirable for absolute values of L above a few metres. These values are not so scarce at Melle and should be captured in the future by an increasing number of new developing long-term measurement stations. In a second step, a statistical approach is proposed with errors depicted by both systematic biases and random fluctuations represented by means of Gaussian distributions. The results show that very accurate measurements are needed in order to maintain the mean annual value of the bias and rms below 5–10 W m−2, and thus to allow the discrimination between the sensitivity to errors on input data and to the stability functions selection.  相似文献   

3.
The changing chemical composition of cloud water and precipitation in the Western Sudety Mountains are discussed against the background of air-pollution changes in the Black Triangle since the 1980s until September 2004. A marked reduction of sulphur dioxide emissions between the early 1990's and the present (from almost 2 million tons to around 0.2 million tons) has been observed, with a substantial decline of sulphate and hydrogen concentration in cloud water (SO42− from more than 200 to around 70 μmol l− 1; H+ from 150 to 50 μmol l− 1) and precipitation (SO42− from around 80 to 20–30 μmol l− 1; H+ from around 60 to 10–15 μmol l− 1) samples. At some sites, where fog/cloud becomes the major source of pollutants, deposition hot spots are still observed where, for example, nitrogen deposition can exceed 20 times the relevant critical load. The results show that monitoring of cloud water chemistry can be a sensitive indicator of pollutant emissions.  相似文献   

4.
We propose a new model to estimate daily global radiation from daily temperature range measurements. This model combines that of Majumdar et al. (Sol Energy 13(4):383–394, 1972) to estimate clear sky radiation with a Gompertz function to estimate the relation between temperature range and cloud transmittance. Model parameters are estimated from historical weather data: maximum and minimum temperatures and, if available, relative humidity; no other calibration is required. The model was parametrized and validated using 788 weather stations in Mexico. When calibrated using historical humidity data, daily global radiation was estimated with a mean root mean square error of 3.06 MJ m?2 day?1. The model performed well in all situations, except for a few stations around the Gulf of Mexico and in mountain areas. When using estimated humidity, the root mean square error of prediction was only slightly degraded (3.07 MJ m?2 day?1). Possible theoretical basis and applicability of this model to other environments are discussed.  相似文献   

5.
Broadband solar irradiance data obtained in the spectral range 400–940 nm at Kwangju, South Korea from 1999–2000 have been analyzed to investigate the effects of cloud cover and atmospheric optical depth on solar radiation components. Results from measurements indicate that the percentage of direct and diffuse horizontal components of solar irradiance depend largely on total optical depth (TOD) and cloud cover. During summer and spring, the percentages of diffuse solar irradiance relative to the global irradiance were 5.0% and 4.9% as compared to 2.2% and 3.0% during winter and autumn. The diffuse solar irradiance is higher than the direct in spring and summer by 24.2%, and 40.6%, respectively, which may largely be attributed to the attenuation (scattering) of radiation by heavy dust pollution and large cloud amount. In cloud-free conditions with cloud cover ≤2/10, the fraction of the direct and diffuse components were 66.0% and 34.0%, respectively, with a mean daily global irradiance value of 7.92±2.91 MJ m−2 day−1. However, under cloudy conditions (with cloud cover ≥8/10), the diffuse and direct fractions were 97.9% and 2.2% of the global component, respectively. The annual mean TOD under cloudless conditions (cloud cover≤2/10) yields 0.74±0.33 and increased to as much as 3.15±0.67 under cloudy conditions with cloud amount ≥8/10. An empirical formula is derived for estimating the diffuse and direct components of horizontal solar irradiance by considering the total atmospheric optical depth (TOD). Results from statistical models are shown for the estimation of solar irradiance components as a function of TOD with sufficient accuracy as indicated by low standard error for each solar zenith angle (SZA).  相似文献   

6.
Surface measurements of cloud condensation nuclei (CCN) number concentration (cm−3) are presented for unmodified marine air and for polluted air at Mace Head, for the years 1994 and 1995. The CCN number concentration active at 0.5% supersaturation is found to be approximately log-normal for marine and polluted air at the site. Values of geometric mean, median and arithmetic mean of CCN number concentration (cm−3) for marine air are in the range 124–135, 140–150 and 130–157 for the two years of data. Analysis of CCN number concentration for high wind speed, U, up to 20 m s−1 show enhanced CCN production for U in excess of about 10–12 m s−1. Approximately 7% increase in CCN per 1 m s−1 increase in wind speed is found, up to 17 m s−1. A relationship of the form log10CCN=a+bU is obtained for the periods March 1994 and January, February 1995 for marine air yielding values a of 1.70; 1.90 and b of 0.035 for both periods.  相似文献   

7.
Esmaiel Malek   《Atmospheric Research》2008,88(3-4):367-380
An automated-ventilated radiation station has been set up in a mountainous valley at the Logan Airport in northern Utah, USA, since mid-1995, to evaluate the daily and annual radiation budget components, and develop an algorithm to study cloudiness and its contribution to the daily and annual radiation. This radiation station (composed of pyranometers, pyrgeometers and a net radiometer) provides continuous measurements of downward and upward shortwave, longwave and net radiation throughout the year. The surface temperature and pressure, the 2-m air temperature and humidity, precipitation, and wind at this station were also measured. A heated rain gauge provided precipitation information. Using air temperature and moisture and measured downward longwave (atmospheric) radiation, appropriate formula (among four approaches) was chosen for computation of cloudless-skies atmospheric emissivity. Considering the additional longwave radiation during the cloudy skies coming from the cloud in the waveband which the gaseous emission lacks (from 8–13 μm), an algorithm was developed which provides continuous 20-min cloud information (cloud base height, cloud base temperature, percent of skies covered by cloud, and cloud contribution to the radiation budget) over the area during day and night. On the partly-cloudy day of 3 February, 2003, for instance, cloud contributed 1.34 MJ m− 2 d− 1 out of 26.92 MJ m− 2 d− 1 to the daily atmospheric radiation. On the overcast day of 18 December, 2003, this contribution was 5.77 MJ m− 2 d− 1 out of 29.38 MJ m− 2 d− 1. The same contribution for the year 2003 amounted to 402.85 MJ m− 2 y− 1 out of 9976.08 MJ m− 2 y− 1. Observations (fog which yielded a zero cloud base height and satellite cloud imaging data) throughout the year confirmed the validity of the computed data. The nearby Bowen ratio station provided the downward radiation and net radiation data. If necessary, these data could be substituted for the missing data at the radiation station. While the automated surface observing systems (ASOS) ceilometer at the Logan airport provides only the overhead cloud information, the proposed algorithm provides this information over the valley. The proposed algorithm is a promising approach for evaluation of the cloud base temperature, cloud base height, percent of skies covered by cloud, and cloud contribution to the daily and annual radiation budget at local and regional scales.  相似文献   

8.
In this paper, the basic composition of fog and low cloud water are presented, resulting from the analyses of water samples from 111 fog/cloud events. The samples were collected at five sites located in various regions of the Czech Republic. Two sampling sites are in mountainous regions and three sites represent various urban areas. The mountain stations are located in two regions of the Czech Republic with different industry types. At all the sites, active fog collectors were employed. In the water samples, the conductivity, acidity (pH), cations (H+, Na+, K+, NH4+, Mg2+, Ca2+) and anions (F, Cl, NO3, SO42−) were determined.A mean pH value of about 4.5 was obtained at mountain sites whereas the measurements in urban areas showed mean pH values from 4.9 to 6.4. The mean conductivity values in the samples from the two mountain stations were 137 and 191.5 μS cm−1. The samples from urban sites showed mean values between 127.7 and 654.4 μS cm−1. The maximum concentration means for the three dominant pollutants (expressed by the ratio mountain sites/urban sites) are 32.9/99.6 mg l−1 for NO3, 32.5/192.9 mg l−1 for SO42− and 18.5/52.7 mg l−1 for NH4+. As expected, we found higher ion concentrations in the northern part of the Czech Republic where larger numbers of lignite-burning power plants, chemical factories and opencast lignite mines are located. A decrease in ion concentrations was observed at higher altitude sites, probably reflecting at least in part higher liquid water contents at these locations.  相似文献   

9.
Coastal nucleation events and behavior of cluster ions were characterized through the measurements of air ion mobility distributions at the Mace Head research station on the west coast of Ireland in 2006. We measured concentrations of cluster ions and charged aerosol particles in the size range of 0.34–40 nm. These measurements allow us to characterize freshly nucleated charged particles with diameters smaller than 3 nm. The analysis shows that bursts of intermediate ions (1.6–7 nm) are a frequent phenomenon in the marine coastal environment. Intermediate ion concentrations were generally close to zero, but during some nucleation episodes the concentrations increased to several hundreds per cm3. Nucleation events occurred during most of the measurement days. We classified all days into one of seven classes according to the occurrence and type of new particle formation. Nucleation events were observed during 207 days in 2006, most prominently in the spring and summer months. Rain-induced events, in turn, were observed during 132 days. Particle formation and growth events mostly coincided with the presence of low tide. Also small cluster ions (0.34–1.6 nm) were characterized. Average concentrations of small ions were 440 cm− 3 for the negative ions and 423 cm− 3 for the positive ions. Average mean mobilities of small ions were 1.86 cm2V− 1s− 1 and 1.49 cm2V− 1s− 1 for the negative and positive polarities, respectively. Concentrations of small ions were observed to be strongly dependent on the variations of meteorological parameters including wind speed and direction.  相似文献   

10.
王晓东  曹雯  伍琼  岳伟  段春锋 《气象科学》2021,41(2):245-252
利用1961-2015年黄淮地区8个辐射站太阳辐射和日照时数等常规气象资料,分别评价6种常用的太阳总辐射和有效辐射估算模型在黄淮地区的适用性,同时采用多元回归分析和迭代等方法,对辐射参数进行优化调整,建立了适合本地区的辐射最优化估算模型.结果 表明:童宏良公式和邓根云公式分别在估算太阳总辐射和地面有效辐射时的误差最小,...  相似文献   

11.
The hydrodynamic equations governing the water-level response of a lake to wind stress are inverted to determine wind stress from water-level fluctuations. In order to obtain a unique solution, the wind-stress field is represented in terms of a finite number of spatially dependent basis functions with time-dependent coefficients. The discretized version of the inverse equation is solved by a least-squares procedure to obtain the coefficients, and thereby the stress. The method is tested for several ideal cases with Lake Erie topography. Real water-level data is then used to determine hourly values of vector wind stress over Lake Erie for the period 5 May–31 October, 1979. Results are compared with measurements of wind speed and direction from buoys deployed in the lake. Calculated stress direction agrees with observed wind direction for wind speeds > 7.5 m s−1. Under neutral conditions, calculated drag coefficients increase with the wind speed from 1.53 × 10−3 for 7.5−10 m s−1 winds to 2.04 × 10−3 for 15−17.5 m s−1 winds. Drag coefficients are lower for stable conditions and higher for unstable conditions.  相似文献   

12.
We analyzed a long-term (37 year) record of monthly average below-ground temperatures, at depths ranging from the surface down to 12.8 m,to determine the ground heat flux. Temperatures at all depths have increased over the period, evidence of a non-zero mean ground heat flux. Analysis indicates an average downward flux out of the root zone (below 1.6m) over the period of approximately 1.1 MJ m–2year–1. The corresponding average flux through the bottomplane of measurement has been approximately 0.22 MJ m–2year–1, indicating that 20% of the heat storage duringthe period has been at depths greater than 12.8 m. Current representations of ground heat flux in global climate models are inadequate to realistically simulate these results. This warming, if it continues, could affect a range of biotic and abiotic below-ground processes.  相似文献   

13.
This paper presents the development of a simple and precise analytical method for the determination of nitrogen dioxide in ambient air. In this method nitrogen dioxide is determined in the form of nitrite. The determination of nitrogen dioxide needs no reagents except for a solution of sodium hydroxide mixed with sodium arsenite (NaOH–Na2As2O3) which is used as an absorbing reagent for trapping the nitrogen dioxide from the atmosphere in the form of nitrite, i.e., a prior analysis step. The determination of submicrogram levels of nitrogen dioxide is based on the selection of a strong and sharp quantitative analytical peak at 1380 cm− 1 using diffuse reflectance infrared spectroscopy (DRS-FTIR). The limit of detection (LOD) and the limit of quantification of the method are found to be 0.008 μg g− 1 NO2 and 0.05 μg g− 1 NO2, respectively. The precision in terms of standard deviation and relative standard deviation value at a level of 2 μg NO2 / 0.1 g KBr for n = 10 is found to be 0.036 μg NO2 and 1.8%, respectively. The relative standard deviation (n = 10) for the determination of nitrogen dioxide in ambient air was observed to be in the range 2.6–3.8%. The method proposed is time-saving and eliminates the slow and cumbersome steps of pH maintenance of the reaction mixture and color formation of the EPA recommended spectrophotometric and other methods for quantitative determination of nitrogen dioxide.  相似文献   

14.
On February 8, 1993, the NASA DC-8 aircraft profiled from 10,000 to 37,000 feet (3.1–11.3 km) pressure altitude in a stratified section of tropical cyclone “Oliver” over the Coral Sea northeast of Australia. Size, shape and phase of cloud and precipitation particles were measured with a 2-D Greyscale probe. Cloud/ precipitation particles changed from liquid to ice as soon as the freezing level was reached near 17,000 feet (5.2 km) pressure altitude. The cloud was completely glaciated at −5°C. There was no correlation between ice particle habit and ambient temperature. In the liquid phase, the precipitation-cloud drop concentration was 4.0 × 103 m−3, the geometric mean diameter Dg=0.5−0.7 mm, and the liquid water content 0.7−1.9 g m−3. The largest particles anywhere in the cloud, dominated by fused dendrites at concentrations similar to that of raindrops (2.5 × 103 m−3) but a higher condensed water content (5.4 g m−3 estimated) were found in the mixed phase; condensed water is removed very effectively from the mixed layer due to high settling velocities of the large mixed particles. The highest number concentration (4.9 × 104 m−3), smallest size (Dg=0.3−0.4 mm), largest surface area (up to 2.6 × 102 cm2 m−3 at 0.4−1.0 g m−3 of condensate) existed in the ice phase at the coldest temperature (−40°C) at 35,000 feet (10.7 km). Each cloud contained aerosol (haze particles) in addition to cloud particles. The aerosol total surface area exceeded that of the cirrus particles at the coldest temperature. Thus, aerosols must play a significant role in the upscattering of solar radiation. Light extinction (6.2 km−1) and backscatter (0.8 sr−1 km−1) was highest in the coldest portion of the cirrus cloud at the highest altitude.  相似文献   

15.
Columnar observations of liquid water and of radar echo intensity in cloud were carried out, using a microwave radiometer and a vertically pointing radar respectively, in Ny-Ålesund, Svalbard. Chemical concentrations were also measured in aerosols, gases and snowfalls. Clouds with a large proportion of liquid water moved over the site after snow clouds, with a much lower liquid water content, had been present for about 16 h. The mass concentrations of most chemical species in snowfalls were lower from the first set of clouds than the second. The NO3 and SO42− concentrations in gases and aerosols associated with the first set of clouds were higher than in the second set, but Cl concentration was less for the first set than the second.  相似文献   

16.
The deposition fluxes of inorganic compounds dissolved in fog and rain were quantified for two different ecosystems in Europe. The fogwater deposition fluxes were measured by employing the eddy covariance method. The site in Switzerland that lies within an agricultural area surrounded by the Jura mountains and the Alps is often exposed to radiation fog. At the German mountain forest ecosystem, on the other hand, advection fog occurs most frequently. At the Swiss site, fogwater deposition fluxes of the dominant components SO42− (0.027 mg S m−2 day−1), NO3 (0.030 mg N m−2 day−1) and NH4+ (0.060 mg N m−2 day−1) were estimated to be <5% of the measured wet deposition (0.85, 0.70 and 1.34 mg m−2 day−1, respectively). The corresponding fluxes at the forest site (0.62, 0.82 and 1.16 mg m−2 day−1, respectively) were of the same order of magnitude as wet deposition (1.04, 1.01 and 1.36 mg m−2 day−1), illustrating the importance of fog (or occult) deposition. Trajectory analyses at the forest site indicate significantly higher fogwater concentrations of all major ions if air originated from the east (i.e. the Czech Republic), which is in close agreement with earlier studies.  相似文献   

17.
A project in northern Chile was undertaken to determine the origin and behaviour of fog in the coastal and inland locations of the Tarapacá Region. In the Pampa del Tamarugal, 50 km from the sea, conditions exist for the formation of radiation fog. Advective fog has been studied on the coast and orographic fog was observed at a few coastal sites near mountain ranges with elevations above 1000 m. Fog water collected by two standard fog collectors (SFC) for 3 1/2 years showed an average flux of 8.5 l m−2 day−1 on the coast and 1.1 l m−2 day−1 inland 12 km from the coastline. On only a few days in 10 months was water collected at the inland site of Pampa del Tamarugal. GOES satellite images are shown to illustrate the pattern of formation of the stratocumuli cloud over the sea, its approach to the coastline, the entrance of fog by corridors through the coastal range and the presence of radiation fog inland. The results are important for the understanding of fog formation and dissipation along the coastal mountain range and for the recognition of potential sites for the installation of fog water collectors, which can be used as a water source in the Atacama Desert. The results also provide vital information for use in the preservation of the unique ecosystems of the most arid desert of the world.  相似文献   

18.
Physical experiments designed to explore the potential of rain augmentation through airborne glaciogenic seeding on small, isolated non-precipitating cumuliform clouds near Red Deer, Alberta were carried out during the period 1982–1985. The microstructure of 90 cumulus congestus clouds have been documented through repeated in-situ sampling using a cloud physics instrumented aircraft platform. Observations from the inspection passes of 57 clouds seeded with either dry ice pellets or silver iodide pyrotechnics, and all the passes of 33 natural clouds are presented.Measurements of the cloud droplet concentration indicate that Alberta cumulus clouds are typically continental in nature, with an average droplet concentration of 535 cm−3 and an average droplet diameter of 10.6 μm. Alberta clouds have average liquid water contents of 0.57 g m−3, with a peak 1-sec value of 3.17 g m−3. The 1-km average liquid water contents are 0.83 g m−3, with a peak value of 2.81 g m−3. Cloud lifetimes vary between 11 and 20 minutes. Concentrations of naturally occurring ice crystals are found to be low. The average maximum 1-km ice concentration was 31−1, and the peak 1-km concentration was 73.11−1 in the natural cloud dataset. Evidence of precipitation-sized particles was detected in 21% (7 of 33) of the clouds, and precipitation below cloud base was detected in 6% (2 of 33) of the clouds.A comparison of the Alberta cloud characteristics to the cumulus clouds from different locations showed that there are some distinct differences between Alberta clouds and the clouds from the other regions.  相似文献   

19.
The surface energy fluxes simulated by the CSIRO9 Mark 1 GCM for present and doubled CO2 conditions are analyzed. On the global scale the climatological flux fields are similar to those from four GCMs studied previously. A diagnostic calculation is used to provide estimates of the radiative forcing by the GCM atmosphere. For 1 × CO2, in the global and annual mean, cloud produces a net cooling at the surface of 31 W m–2. The clear-sky longwave surface greenhouse effect is 311 W m–2, while the corresponding shortwave term is –79 W m–2. As for the other GCM results, the CSIRO9 CO2 surface warming (global mean 4.8°C) is closely related to the increased downward longwave radiation (LW ). Global mean net cloud forcing changes little. The contrast in warming between land and ocean, largely due to the increase in evaporative cooling (E) over ocean, is highlighted. In order to further the understanding of influences on the fluxes, simple physically based linear models are developed using multiple regression. Applied to both 1 × CO2 and CO2 December–February mean tropical fields from CSIRO9, the linear models quite accurately (3–5 W m–2 for 1 × CO2 and 2–3 W m–2 for CO2) relate LW and net shortwave radiation to temperature, surface albedo, the water vapor column, and cloud. The linear models provide alternative estimates of radiative forcing terms to those from the diagnostic calculation. Tropical mean cloud forcings are compared. Over land, E is well correlated with soil moisture, and sensible heat with air-surface temperature difference. However an attempt to relate the spatial variation of LWt within the tropics to that of the nonflux fields had little success. Regional changes in surface temperature are not linearly related to, for instance, changes in cloud or soil moisture.  相似文献   

20.
The surface heat budget over the Riband reservoir covering 300 km2 is investigated making use of hydrometeorological data collected at a number of stations during May and June 1983. The observations had to be restricted to 0800–1400 hr for operational reasons in this remote part of India. The winds were weaker, and in general the temperature and humidity gradients were stronger at that time of day than during the afternoon.The mean albedo between 0700–1200 hr is found to be about 34% which could be due to the high turbidity of the water. A simple relation of the form, R = (1 – )Q i – 85 is proposed to estimate net radiation over the water body from the global radiation. This relation is useful for the computation of net radiation since it avoids the computation of effective back radiation, which requires data on humidity, cloud amount and surface water temperature. The overall means of net radiation, latent and sensible heat fluxes were found to be 420, 96 and -11 W/m2, respectively. A net heat gain of about 335 W/m2 was observed during the study period. The measured effective back radiation agreed reasonably well with the value computed from the theoretical formula.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号