首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The low-grade Palaeoproterozoic stratabound banded iron ores of the Krivoy Rog basin (Ukraine) underwent strong tectonometamorphic deformation into superimposed folds of several orders, with amplitudes from centimetres to hundreds of metres. The across-strike sections of bed surfaces defining the low-grade ore bodies resemble self-similar fractal curves; hence, a fractal geometrical model was developed in order to quantify the complexity and sinuosity of bed contours. Two different methods of measurement (polygonal approximation and two-dimensional grid cell counting) were used for 5–8 different scales. Factual similarity dimension D and other model parameters have been estimated by means of linear regression and compared for both measurement methods. From the fractal model a sinuosity coefficient of contours of the folded bed surfaces K s and a coefficient of degree of exploration of iron ore bodies K e were constructed. It is pointed out that parameters of the model can be used for determination of the optimal exploration length scales.  相似文献   

2.
在黄陵基底穹隆北部已发现的几个大鳞片晶质石墨矿区中采取少量新鲜石墨样品(含少量大理岩围岩)进行了矿石岩相学及地球化学测试,通过相应分析、图解,探讨其成矿物质来源。该区石墨矿石赋存于黄凉河岩组(Pt1h)一套孔兹岩系内,主要矿石类型为石墨片岩及石墨片麻岩。根据其主微量元素及碳同位素分析,恢复矿石原岩为一套含炭质的(砂)泥质沉积岩,其固定碳质绝大多数来源于有机物而不是大理岩中的无机碳。根据矿层的元素组成及古地史证据,推测黄凉河岩组的蚀源区以野马洞岩组(Ar2y,拉斑玄武质)为主,东冲河片麻杂岩(Ar2D,花岗质)次之,而不是前人认为的单一"以花岗质岩石为蚀源区"。从供给源到成矿母岩的演化过程中,发生了强烈的地球化学变化,而不只是物质简单的机械转移。  相似文献   

3.
The Montagne Noire in the southernmost French Massif Central is made of an ENE‐elongated gneiss dome flanked by Palaeozoic sedimentary rocks. The tectonic evolution of the gneiss dome has generated controversy for more than half a century. As a result, a multitude of models have been proposed that invoke various tectonic regimes and exhumation mechanisms. Most of these models are based on data from the gneiss dome itself. Here, new constraints on the dome evolution are provided based on a combination of very low‐grade petrology, K–Ar geochronology, field mapping and structural analysis of the Palaeozoic western Mont Peyroux and Faugères units, which constitute part of the southern hangingwall of the dome. It is shown that southward‐directed Variscan nappe‐thrusting (D1) and a related medium‐P metamorphism (M1) are only preserved in the area furthest away from the gneiss dome. The regionally dominant pervasive tectono‐metamorphic event D2/M2 largely transposes D1 structures, comprises a higher metamorphic thermal gradient than M1 (transition low‐P and medium‐P metamorphic facies series) and affected the rocks between c. 309 and 300 Ma, post‐dating D1/M1 by more than 20 Ma. D2‐related fabrics are refolded by D3, which in its turn, is followed by dextral‐normal shearing along the basal shear zone of both units at c. 297 Ma. In the western Mont Peyroux and Faugères units, D2/M2 is largely synchronous with shearing along the southern dome margin between c. 311 and 303 Ma, facilitating the emplacement of the gneiss dome into the upper crust. D2/M2 also overlaps in time with granitic magmatism and migmatization in the Zone Axiale between c. 314 and 306 Ma, and a related low‐P/high‐T metamorphism at c. 308 Ma. The shearing that accompanied the exhumation of the dome therefore was synchronous with a peak in temperature expressed by migmatization and intrusion of melts within the dome, and also with the peak of metamorphism in the hangingwall. Both, the intensity of D2 fabrics and the M2 metamorphic grade within the hangingwall, decrease away from the gneiss dome, with grades ranging from the anchizone–epizone boundary to the diagenetic zone. The related zonation of the pre‐D3 metamorphic field gradients paralleled the dome. These observations indicate that D2/M2 is controlled by the exhumation of the Zone Axiale, and suggest a coherent kinematic between the different crustal levels at some time during D2/M2. Based on integration of these findings with regional geological constraints, a two‐stage exhumation of the gneiss dome is proposed: during a first stage between c. 316 and 300 Ma dome emplacement into the upper crust was controlled by dextral shear zones arranged in a pull‐apart‐like geometry. The second stage from 300 Ma onwards was characterized by northeast to northward extension, with exhumation accommodated by north‐dipping detachments and hangingwall basin formation along the northeastern dome margin.  相似文献   

4.
Summary A new concept of feature size range of a roughness profile is introduced in the paper. It is shown that this feature size range plays an important role in estimating the fractal dimension,D, accurately using the divider method. Discussions are given to indicate the difficulty of using both the divider and the box methods in estimatingD accurately for self-affine profiles. The line scaling method's capability in quantifying roughness of natural rock joint profiles, which may be self-affine, is explored. Fractional Brownian profiles (self-affine profiles) with and without global trends were generated using known values ofD, input standard deviation, , and global trend angles. For different values of the input parameter of the line scaling method (step sizea 0),D and another associated fractal parameterC were calculated for the aforementioned profiles. Suitable ranges fora 0 were estimated to obtain computedD within ±10% of theD used for the generation. Minimum and maximum feature sizes of the profiles were defined and calculated. The feature size range was found to increase with increasingD and , in addition to being dependent on the total horizontal length of the profile and the total number of data points in the profile. The suitable range fora 0 was found to depend on bothD and , and then, in turn, on the feature size range, indicating the importance of calculating feature size range for roughness profiles to obtain accurate estimates for the fractal parameters. Procedures are given to estimate the suitablea 0 range for a given natural rock joint profile to use with the line scaling method in estimating fractal parameters within ±10% error. Results indicate the importance of removal of global trends of roughness profiles to obtain accurate estimates for the fractal parameters. The parametersC andD are recommended to use with the line scaling method in quantifying stationary roughness. In addition, one or more parameters should be used to quantify the non-stationary part of roughness, if it exists. The estimatedC was found to depend on bothD and and seems to have potential to capture the scale effect of roughness profiles.  相似文献   

5.
Fractal Geometry of Element Distribution on Mineral Surfaces   总被引:3,自引:0,他引:3  
Fractal models have been established for the distributions of Au, As, S, Fe, and Si on mineral surface based on perimeter–area power-law association observed in mineral samples from fine-disseminated gold deposits at Jinya (JY), Larima (LRM), and Dongbeizhai (DBZ). The fractal index DAL, involved in the fractal perimeter–area relationship is a function of the formation conditions of the mineral. Minerals formed at higher temperatures have a larger value of DAL. For the same mineral, the values of DAL obtained for different elements are approximately the same. DAL may serve as a quantitative index characterizing the distribution configuration of elements on mineral surface.  相似文献   

6.
Structural, petrographic and geochronologic studies of the Kampa Dome provide insights into the tectonothermal evolution of orogenic crust exposed in the North Himalayan gneiss domes of southern Tibet. U–Pb ion microprobe dating of zircons from granite gneiss exposed at the deepest levels within the dome yields concordia 206Pb/238U age populations of 506 ± 3 Ma and 527 ± 6 Ma, with no evidence of new zircon growth during Himalayan orogenesis. However, the granite contains penetrative deformation fabrics that are also preserved in the overlying Paleozoic strata, implying that the Kampa granite is a Cambrian pluton that was strongly deformed and metamorphosed during Himalayan orogenesis. Zircons from deformed leucogranite sills that cross-cut Paleozoic metasedimentary rocks yield concordant Cambrian ages from oscillatory zoned cores and discordant ages ranging from ca. 491–32 Ma in metamict grains. Since these leucogranites clearly post-date the metasedimentary rocks they intrude, the zircons are interpreted as xenocrysts that are probably derived from the Kampa granite. The Kampa Dome formed via a series of progressive orogenic events including regional ~ N–S contraction and related crustal thickening (D1), predominately top-to-N ductile shearing and crustal extension (D2), top-to-N brittle–ductile faulting and related folding on the north limb of the dome, localized top-to-S faulting on the southern limb of the dome, and crustal doming (D3), and continued N–S contraction, E–W extension and doming (D4). Structural and geochronologic variability amongst adjacent North Himalayan gneiss domes may reflect changes in the magnitude of crustal exhumation along the North Himalayan antiform, possibly relating to differences in the mid-crustal geometry of the exhuming fault systems.  相似文献   

7.
Three-phase NaCl-H2O fluid inclusions featuring halite dissolution temperature(Tm)higher than vapor bubble disappearance temperature(Th) are commonly observed in porphyry copper/molybdenum deposits,skarn-type deposits and other magmatic- hydrothermal ore deposits.Based on |ΔV1|(the absolute value of volume variation of NaCl-H2O solution in a heating or cooling process of inclusions)= |ΔVs|(the absolute value of volume variation of the halite crystal in a heating or cooling process of inclusions) and on the principle of conservation of the mass of NaCl and H2O,we systematically calculated the densities of NaCl-H2O solutions in the solid-liquid two-phase field for temperatures(Th) from 0.1℃ to 800℃ and salinities from 26.3 wt%to 99.2wt%.Consequently for the first time we obtained the upper limit of the density of NaCI-H2O solutions in the solid-liquid twophase field for Tbm inclusions with variant salinities.The results indicate that for inclusions of the Thm type with the same Th,the higher the Tm or salinity is,the higher the density of the NaClsaturated solution will be.If a group of fluid inclusions were homogeneously trapped,they must have the same Th value and the same Tm or salinity value.This may be used to distinguish homogeneous,inhomogeneous,and multiple entrapments of fluid inclusions.  相似文献   

8.
Sediments contained in the river bed do not necessarily contribute to morphological change. The finest part of the sediment mixture often fills the pores between the larger grains and can be removed without causing a drop in bed level. The discrimination between pore‐filling load and bed‐structure load, therefore, is of practical importance for morphological predictions. In this study, a new method is proposed to estimate the cut‐off grain size that forms the boundary between pore‐filling load and bed‐structure load. The method evaluates the pore structure of the river bed geometrically. Only detailed grain‐size distributions of the river bed are required as input to the method. A preliminary validation shows that the calculated porosity and cut‐off size values agree well with experimental data. Application of the new cut‐off size method to the river Rhine demonstrates that the estimated cut‐off size decreases in a downstream direction from about 2 to 0·05 mm, covariant with the downstream fining of bed sediments. Grain size fractions that are pore‐filling load in the upstream part of the river thus gradually become bed‐structure load in the downstream part. The estimated (mass) percentage of pore‐filling load in the river bed ranges from 0% in areas with a unimodal river bed, to about 22% in reaches with a bimodal sand‐gravel bed. The estimated bed porosity varies between 0·15 and 0·35, which is considerably less than the often‐used standard value of 0·40. The predicted cut‐off size between pore‐filling load and bed‐structure load (Dc,p) is fundamentally different from the cut‐off size between wash‐load and bed‐material load (Dc,w), irrespective of the method used to determine Dc,p or Dc,w. Dc,w values are in the order of 10?1 mm and mainly dependent on the flow characteristics, whereas Dc,p values are generally much larger (about 100 mm in gravel‐bed rivers) and dependent on the bed composition. Knowledge of Dc,w is important for the prediction of the total sediment transport in a river (including suspended fines that do not interact with the bed), whereas knowledge of Dc,p helps to improve morphological predictions, especially if spatial variations in Dc,p are taken into account. An alternative to using a spatially variable value of Dc,p in morphological models is to use a spatially variable bed porosity, which can also be predicted with the new method. In addition to the morphological benefits, the new method also has sedimentological applications. The possibility to determine quickly whether a sediment mixture is clast‐supported or matrix‐supported may help to better understand downstream fining trends, sediment entrainment thresholds and variations in hydraulic conductivity.  相似文献   

9.
Geospeedometry allows to estimate the cooling rate (sinit) of metamorphic rocks at the beginning of the cooling history using diffusion data. But the choice of a diffusion activation energy (E) and a preexponential factor (D0) from experimental results can be difficult. We propose a method to obtain E directly from the rock itself by studying the variation of the average concentration of elements or isotopes (〈C〉) as a function of mineral grain size (d). An appropriate value of D0 can then be estimated using an existing compensation rule, a linear relationship between log D0 and E. Consequently, uncertainties on sinit are markedly reduced. All parameters of this analytical model and their sensitivity on sinit can be estimated from 〈C〉 of the mineral grains under study. As a test we apply our model to a study by Edwards and Valley (1998)**** on 18O/16O fractionation between diopside and calcite in Adirondacks marbles, and find a cooling rate in agreement with previous works, without choosing experimental values for E and D0.  相似文献   

10.
Summary A wide range of types of contact morphology among mafic and felsic magmas are observed in outcrops on Vegetation Island (Terra Nova Intrusive Complex, Antarctica). Image analysis and fractal geometry techniques were applied for in-depth study of the mafic/felsic interface, with the aim of studying the origin of the varied morphologies. In particular, the length (IPN) and fractal dimension (Dbox) of interfaces were measured. Results indicate that there is a close exponential dependence of IPN on Dbox.The observed morphologies are identical to those observed during viscous fingering processes induced by the displacement of a more viscous fluid by a less viscous one. To test if viscous fingering was responsible in this case too, IPN and Dbox values were measured on viscous fingering structures obtained experimentally using various viscosity ratios (VR) from the literature. Results indicate that, as in the natural case, there is an exponential dependence of IPN on Dbox, leading to the conclusion that the varied interface morphologies between mafic and felsic magmas are the result of viscous fingering dynamics. In addition, experimental studies clearly show that there is an exponential relationship between the viscosity ratio of fluids and the interface fractal dimension (Dbox), and the ratio between the two types of magma was estimated using this relationship. It is shown that viscosity contrasts between mafic and felsic magmas varied considerably, ratios ranging from ca. 6 to 49. These results, together with outcrop evidence, provide indications regarding the evolution of the magmatic system, which generated the actual mafic/felsic associations on Vegetation Island.  相似文献   

11.
Grain size and grain shape analysis of fault rocks   总被引:4,自引:0,他引:4  
  相似文献   

12.
Summary Many rock mass classification systems exist to assist the engineer in assessing the rock support requirements for underground design. On-going research in this area is directed at attempting to utilize the fractal dimension and the acoustic emission response of the tuffs at the Nevada Yucca Mountain to further aid in rock mass classification. Acoustic emission response is shown to be correlated with the porosity of the sample. Engineering behaviour of the rock varies dramatically with porosity; events and peak amplitude offer a means to distinguish between fracture porosity and pore porosity and consequently the engineering behaviour of the rock. Fractal dimension is used to characterize the roughness of fracture surfaces. Two fractal dimension calculation methods, one based on the semi-variogram for the surface and the other based on the use of dividers, are applied for this purpose. The divider method is shown to resolve deviation from a straight line; the semi-variogram method is shown to identify statistical similarity to various types of noise.Nomenclature D fractal dimension - AE acoustic emission - b b-value determined from log(frequency) against log(amplitude) plots - (h) semi-variogram function - h lag distance for semi-variogram function - H an exponent term related to fractal dimension asD=2 –H  相似文献   

13.
P and S velocity and attenuation estimates in the lower crust are obtained from a set of wide angle reflection–refraction profiles in the region of active tectonics at the NE edge of the Tibetan Plateau and discussed together with respect to similar data at its Himalaya–south Tibet edge.The quality factor is estimated in the lower half of the crust by accounting for the differential effect on amplitude–frequency observed between waves of different penetrations, and both in P and S modes. Attenuation values allow to exclude a significant proportion of partial melt and to estimate the homologous temperature, ratio of in situ to solidus absolute temperatures. The latter depend on the physical conditions being of dry, wet or dehydration melting, which are found different among the regions of the northern Bayan Har and northern Qang Tang boundaries between blocks, as well as the Tethyan–Himalayas, south of the Indus–Tsangpo suture. Their in situ temperatures differ also as estimated from their different Vp for a similar felsic composition.Joint measurement of several parameters, Vp, Vs, Qp and Qs reveals the composition, mineralogy, temperature and hydration conditions of the lower half of the thickened crust of Tibet that may be discussed in terms of evolution. The material presently in the thickened crust, even its lower part, has a felsic composition, upper to middle crustal lithology, and the temperature conditions estimated suggest that basic material that could have underlain it could be eclogitized and not appear anymore above the seismic Moho.Under northern Qang Tang, the felsic material in the lower half of the crust appears as hot and dry. Its burial may have occurred earlier or may have been moderate in the postcollisional phase. This is consistent with a model of indentation of the Qang Tang crust by an originally thinner Bayan Har crust to bring part of its crust to greater depth, suggested from imaging the crustal architecture. Under northern Bayan Har, the material in the lower half of the crust appears as felsic, at low temperature and not dry conditions. This is evidence that it has been transported from a shallower depth, and this recently enough not to be yet dehydrated and temperature equilibrated in a conductive geotherm. It supports a model of recent overriding of the middle crust of the north Kun Lun block to the north independently suggested from the image of crustal architecture. The Tethyan Himalayas case appears bracketed by these two cases in northern Tibet for Vp and temperature conditions, but shows highest attenuation in the lower crust that is colder but less dry than under northern Qang Tang.  相似文献   

14.
Tokutaro Hatori 《GeoJournal》1996,38(3):313-319
The regional characteristics of tsunami magnitudes in the SE Asia region are discussed in relation to earthquake magnitudes during the period from 1960 to 1994. Tsunami magnitudes on the Imamura-Iida scale are investigated by the author's method (Hatori 1979, 1986) using the data of inundation heights near the source area and tide-gauge records observed in Japan. The magnitude values of the Taiwan tsunamis showed relatively to be small. On the contrary, the magnitudes of tsunamis in the vicinities of the Philippines and Indonesia exceed more than 1–2 grade (tsunami heights: 2–5 times) compared to earthquakes with similar size on the circum-Pacific zone. The relation between tsunami magnitude, m, and earthquake magnitude, M s, is expressed as m = 2.66 M s– 17.5 for these regions. For example, the magnitudes for the 1976 Mindanao tsunami (M s= 7.8, 3702 deaths) and the 1992 Flores tsunami (M s= 7.5, 1713 deaths) were determined to be m = 3 and m = 2.5, respectively. The focal depth of tsunamigenic earthquakes is shallower thand< 36 km, and the detectively of tsunamis is small for deep earthquakes being d > 40 km. For future tsunamis, it is indispensable to take precautions against shallow earthquakes having the magnitudes M s> 6.5.  相似文献   

15.
Pickering & Hiscott, (1985) have demonstrated amply the presence of reverse-flow units within the thick-bedded calcareous wacke (TCW) beds of the turbiditic Cloridorme Formation (Middle Ordovician, Gaspé Peninsula, Quebec, Canada). These reverse-flow units are underlain and overlain by units which reveal flow in the primary (obverse) direction. In this paper, a model is proposed for this reverse flow, based on the probable nature of the primary turbidity flow. It appears that the initial flow was highly elongated (thickness h? length L), with h~ 500 m, velocity U~ 2 m s-1 and sediment concentration C~ 1·25%o. The rate of momentum loss of the flow is estimated by means of a useful parameter which we call the ‘drag distance’, symbol dD, defined by where h and L are the thickness and length of the flow, respectively; cCd is a combined drag coefficient representing friction on the bottom and at the upper interface; and fCd is a form-drag coefficient related to the shape and size of the head. dD is the distance travelled by a current of constant h and L, flowing over a horizontal bottom and obeying a quadratic friction law, for an e-fold reduction in velocity. Simple considerations, confirmed by our own experiments (described in this paper), show that such an elongated turbidity current cannot be reflected as a whole from an adverse slope: when the nose of the current reaches the slope, it forms a hump, which surges backwards and sooner or later breaks up into a series of internal solitons. The latter, probably numbering 4–7, will cause reverse flow at a given point as they pass by, provided that the residual velocity in the tail is not too great. Flow in the original (obverse) direction will be re-established after the passage of the solitons. Quiescent periods in front of, between and behind the solitons, when soliton-associated currents cancelled out the residual obverse flow, would allow the deposition of thin mud-drapes. Additional flow reversals observed in a few of the TCW beds cannot be explained readily by the re-passage of solitons, since wave breaking at the ends of the basin would cause massive energy loss; internal seiches are the preferred explanation for these later reversals.  相似文献   

16.
E.A. Hetland  F.T. Wu  J.L Song   《Tectonophysics》2004,386(3-4):157-175
During 1998–1999, we installed a temporary broadband seismic network in the Changbaishan volcanic region, NE China. We estimated crustal structure using teleseismic seismograms collected at the network. We detected a near surface region of strong anisotropy directly under the main volcanic edifice of the volcanic area. We modeled 109 receiver functions from 19 broadband stations using three techniques. First we used a “slant-stacking” method to model the principal crustal P reverberation phases to estimate crustal thickness and the average crustal P to S speed ratio (vp/vs), assuming an average P-wave velocity in the crust. We then estimated crustal S-wave velocity (vs) and vp/vs profiles by modeling stacked receiver functions using a direct search. Finally, we inverted several receiver functions recorded at stations closest to the main volcanic edifice using least squares to estimate vs velocity profiles, assuming a vp/vs value. The results from the three estimation techniques were consistent, and generally we found that the receiver functions constrained estimates of changes in wave speeds better than absolute values. We resolved that the crust is 30–39 km thick under the volcanic region and 28–32 km thick away from the volcanic region, with a midcrust velocity transition at about 10–15 km depth. We estimated that the average crust P-wave velocity is about 6.0–6.2 km/s surrounding the main volcanic region, while it is slightly lower in the vicinity of the main volcanic edifice. The estimates of vp/vs were more ambiguous, but we inferred that the bulk crustal Poisson's ratio (which is related to vp/vs) ranges between 0.20 and 0.30, with a suggestion that the Poisson's ratio is lower under the central volcanic region compared to the surrounding areas. We resolved low S-wave velocities (down to about 3 km/s) in the middle crust in the region of the main volcanic edifice. The low velocity anomaly extends from about 5–10 to 15–25 km below the surface, probably indicating a region of elevated temperatures. We were unable to determine if partial melt is present with the data we considered in this paper.  相似文献   

17.
We have analyzed the spatial distribution of galaxies from the latest release of the Sloan Digital Sky Survey of galactic redshifts (SDSS DR7), applying the complete correlation function (conditional density), two-point conditional density (cylinder), and radial density methods. Our analysis demonstrates that the conditional density has a power-law form for scales lengths 0.5–30 Mpc/h, with the power-law corresponding to the fractal dimension D = 2.2 ± 0.2; for scale lengths in excess of 30 Mpc/h, it enters an essentially flat regime, as is expected for a uniform distribution of galaxies. However, in the analysis applying the cylinder method, the power-law character with D = 2.0 ± 0.3 persists to scale lengths of 70 Mpc/h. The radial density method reveals inhomogeneities in the spatial distribution of galaxies on scales of 200 Mpc/h with a density contrast of two, confirming that translation invariance is violated in the distribution of galaxies to 300 Mpc/h, with the sampling depth of the SDSS galaxies being 600 Mpc/h.  相似文献   

18.
The partitioning of samarium and thulium between garnets and melts in the systems Mg3Al2-Si3O12-H2O and Ca3Al2Si3O12-H2O has been studied as a function of REE concentration in the garnets at 30 kbar pressure. Synthesis experiments of variable time under constant P, T conditions indicate that garnet initially crystallizes rapidly to produce apparent values of D Sm (D Sm=concentration of Sm in garnet/concentration of Sm in liquid) which are too large in the case of pyrope and too small in the case of grossular. As the experiment proceeds, Sm diffuses out of or into the garnet and the equilibrium value of D Sm is approached. Approximate values of diffusion coefficients for Sm in pyrope garnet obtained by this method are 6 × 10–13 cm2 s–1 at 1,300 ° C and 2 × 10–12 cm2 s–1 at 1,500 ° C, and for grossular, 8.3 × 10–12 cm2 s–1 at 1,200 ° C and 4.6 × 10–11 cm2 s–1 at 1,300 ° C. The equilibrium values of D Sm have been reversed by experiments with Sm-free pyrope and Sm-bearing glass, and with Sm-bearing grossular and Sm-free glass.Between 12 ppm and 1,000 ppm Sm in pyrope at 1,300 ° C and between 80 ppm and >2 wt.% Tm in pyrope at 1,500 ° C, partition coefficients are constant and independent of REE concentration. Above 100 ppm of Sm in garnet at 1,500 ° C, partition coefficients are independent of Sm concentration. At lower concentrations, however, D Sm is dependent upon the Sm content of the garnet. The two regions may be interpreted in terms of charge-balanced substitution of Sm3Al5O12 in the garnet at high Sm concentrations and defect equilibria involving cation vacancies at low concentrations. At very low REE concentrations (< 1 ppm Tm in grossular at 1,300 ° C) DREE garnet/liquid again becomes constant with an apparent Henry's Law value greater than that at high concentrations. This may be interpreted in terms of a large abundance of cation vacancies relative to the number of REE ions.The importance of defects in the low concentration region has been confirmed by adding other REE (at 80 ppm level) to the system Mg3Al2Si3O12-H2O at low Sm concentrations. These change D Sm in the defect region, demonstrating their role in the production of vacancies.Experiments on a natural pyropic garnet indicate that defect equilibria are of importance to REE partitioning within the concentration ranges found in nature.  相似文献   

19.
A total of 13 regional Ocean Bottom Seismograph (OBS) profiles with an accumulated length of 2207 km acquired on the Vøring Margin, NE Atlantic have been travel time modelled with regards to S-waves. The Vp/Vs ratios are found to decrease with depth through the Tertiary layers, which is attributed to increased compaction and consolidation of the rocks. The Vp/Vs ratio in the intra-Campanian to mid-Campanian layer (1.75–1.8) in the central Vøring Basin is significantly lower than for the layers above and beneath, suggesting higher sand/shale ratio. This layer was confirmed by drilling to represent a layer of sandstone. This mid-Cretaceous ‘anomaly’ is also present in the northern Vøring Basin, as well as on the southern Lofoten Margin further north. The Vp/Vs ratio in the extrusive rocks on the Vøring Plateau is estimated to be 1.85, conformable with mafic (basaltic) rocks. Landward of the continent/ocean transition (COT), the Vp/Vs ratio in the layer beneath the volcanics is estimated to be 1.67–1.75. These low values suggest that this layer represents sedimentary rocks, and that the sand/shale ratio might be relatively high here. The Vp/Vs ratio in the crystalline basement is estimated to be 1.67–1.75 in the basin and on the landward part of the Vøring Plateau, indicating the presence of granitic/granodioritic continental crust. In the lower crust, the Vp/Vs ratio in the basin decreases uniformly from southwest to northeast, from 1.85–1.9 to 1.68–1.73, suggesting a gradual change from mafic (gabbroic) to felsic (granodioritic) lower crust. Significant (3–5%) azimuthal S-wave anisotropy is observed for several sedimentary layers, as well as in the lower crust. All these observations can be explained by invoking the presence of liquid-filled microcracks aligned vertically along the direction of the present day maximum compressive stress (NW–SE).  相似文献   

20.
Subseabed disposal of radioactive waste applies a multiple-barrier concept with the sediment being the most important barrier for preventing a release of nuclides into the biosphere. While many investigations have been carried out to analyze the risk potential in this type of disposal, the effects of sediment consolidation and associated fluid flow have not fully been taken into consideration. Here, possible effects of consolidational fluid flow in the penetrator disposal option and possible consequences to the transport of nuclides in the sediment are analyzed. Results of numerical experiments demonstrate that consolidation contributes to the transport of radioactive nuclides released from containers buried in the sediment and to the release of nuclides at the sediment-water interface. Both depend on geological conditions and to a large extent on possible alterations of hydraulic conductivity i of the sediment in the vicinity of the entry path of a penetrator.Symbols c concentration ml m–3 - c a concentration of adsorbed solute mg kg–1 (relative to dry weight of sorbing substance) - c in solute concentration of source q mg m–3 - c 0 initial concentration mg m–3 - ID dispersion tensorm 2s–1 - ID * diffusion tensor m2s–1 - D coefficient of dispersion m2s–1 - d 0 coefficient of molecular diffusion m2s–1 - d coefficient of effective diffusion m2s–1 - g gravity m2s–1 - h piezometric pressure m - k hydraulic conductivity m2s–1 - m mass kg - p pressure Pa - q source/sink m3s–1 - S 0 specific surface m2m–3 - t time s - v velocity m s–1 - x, z cartesian coordinates m - compressibiliy of sediment m2N–1 - L longitudinal dispersivity m - effective porosity (decimal fraction) - density kg m–3 - s density of sediment kg m–3 - w density of water kg m–3 - decay constant per s - kinematic viscosity m2s–1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号