首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
断块构造与地震的网络现象   总被引:1,自引:0,他引:1       下载免费PDF全文
地球表面最基本的构造现象之一是X型破裂系统。X型破裂系统是一个极其广泛的研究领域。在一切有关材料呈现机械破坏的领域内,都与X型破裂机制有关。就地质体而言,从晶体内的X型交叉位错,岩层或岩体内的X型节理,到区域性的X断裂和切穿地壳以至切穿岩石圈的X型深大断裂,虽然空间尺度有多级变化,但它们的力学本质是一致的。共轭的剪应力分布、共轭的剪切裂隙、共轭的剪切错动、菱形断块的嵌合与再活动等,都与X型剪切破裂系统的基本特征有关。  相似文献   

2.
大型工程开挖中,高地应力环境下高储能脆性岩体通常会通过脆性破裂快速释放应变能,产生岩爆。针对这类岩爆现象进行了一系列理论探讨,认为:(1)开挖条件下脆性岩体的岩爆破坏主要为张破裂或者张剪性破裂,破裂角一般较小,呈薄片状或刀口状。笔者认为开挖产生次生张应力和压剪应力条件下微裂纹裂尖出现张应力是可能的,因此采用格里菲斯强度理论研究开挖岩体破裂是有效的;(2)以格里菲斯强度理论为基础,分析了岩体在二维和三维情形下的岩爆破裂应力判据和破裂角,指出在有张应力的条件下,岩体的剪破裂角会减小,直至为零,这就解释了开挖面附近薄片状、刀口状破裂现象的原因;(3)分析了脆性岩体岩爆破裂的能量过程,指出张性破裂所耗能量较小,而张剪性和压剪性破裂耗能较高。认为岩爆破裂消耗的能量主要转化为新生裂纹的表面能和破裂碎片的动能,并指出表面能所占比例较动能为小。由此解释了脆性岩体岩爆破坏以动力效应为主的特征;(4)本文理论分析成果的工程应用价值在于:可以预示开挖脆性岩体破裂部位、破裂方式和破裂范围;提出岩爆破裂的张性应力控制依据。  相似文献   

3.
王智  施毅 《探矿工程》2015,42(11):80-84
瞬时卸荷是岩体开挖形成的瞬时岩体应力释放和调整。针对高应力区隧洞岩体开挖瞬时卸荷过程,通过能量守恒推导出了瞬时卸荷位移公式;基于Kachanov准则对构件的脆性破坏理论推导出隧洞侧壁围岩卸荷的初始破裂时间和完全破裂时间,并得出完全破裂时间等于岩体开挖卸荷完成时间;通过锦屏二级水电站某隧洞瞬时卸荷分析得出岩体在开挖瞬时卸荷条件下会产生岩爆,并且卸荷岩体的初始破裂时间较完全破裂时间短,但破裂却已很明显。  相似文献   

4.
地震微破裂成核过程的实验模拟研究   总被引:8,自引:0,他引:8       下载免费PDF全文
熊秉衡  许昭永 《地球科学》2000,25(3):319-323
以透明试件受压破裂过程模拟均匀岩体的破裂过程, 用实时全息干涉摄影系统记录试件应力场分布及其变化, 用瞬态波形自动记录仪记录微破裂的位置和强度.通过两种方式所获数据来探索地震微破裂成核过程与应力场关系.   相似文献   

5.
深部层状节理岩体分区破裂模型试验研究   总被引:2,自引:0,他引:2  
张绪涛  张强勇  向文  高强  袁圣渤  王超 《岩土力学》2014,35(8):2247-2254
随着地下工程开挖深度的增加,深部洞室围岩将产生不同于浅部洞室的分区破裂现象。为深入研究深部岩体分区破裂现象的形成机制和影响因素,以淮南矿区丁集煤矿的深部巷道为工程背景,利用模型相似材料和高地应力真三维加载模型试验系统,首次开展了带有软弱夹层的层状节理岩体的真三维地质力学模型试验。结果表明:(1)在满足一定应力条件下,带有软弱夹层的层状节理试验模型出现明显的分区破裂现象;(2)软弱夹层是影响层状节理岩体分区破裂现象的重要因素,在相同的应力条件下,软弱夹层使得巷道围岩的径向位移和应变明显增加;并且软弱夹层的间距越小,洞周破裂区的层数越多,范围越大;(3)洞周破裂区的形状近似为圆形,与是否存在软弱夹层及软弱夹层间距均无关。模型试验结果有效揭示了分区破裂的影响因素,为深入研究高地应力深部岩体的非线性变形破坏特征奠定了坚实的试验基础。  相似文献   

6.
任浩楠  徐进  刘建锋  聂明 《岩土力学》2013,34(4):1053-1057
在MTS815 Flex Test GT岩石力学试验系统上进行不同围压下砂板岩三轴压缩全过程试验,并测试破裂岩体试样峰后的天然含水状态强度。对试样破裂面施加4级动水压力和静水压力,分别获得天然含水状态和每级水压下破裂岩体试样的强度。试验结果及分析表明,水对破裂岩体强度影响的作用机制主要表现在饱和软化与水压弱化两方面,即饱和软化作用不随水压的增减而变化和水压力对强度的弱化作用随水压升高而线性增大;主要影响强度参数中的黏聚力,对内摩擦系数的影响较小;裂隙岩体中静水压力的弱化作用强于动水压力。试验与分析还获得水对裂隙岩体的饱和软化以及静水压力综合作用的定量表达,并对这些成果的工程应用进行讨论。  相似文献   

7.
结合当前我国矿井高强度快速推采的现状,系统分析了双轴加载速率对大尺寸岩体破裂的影响规律。以山东能源济宁矿区深部岩体所处的复杂环境为背景,确定了与深部岩体力学特性相似的混合砂浆材料的最优配比。采用自主研发的岩石应力-渗流耦合真三轴试验系统和美国生产的PCI-2声发射系统,分析了双轴加载下加载速率对大尺寸试样破裂的影响规律,揭示了加载过程中单裂隙和双裂隙试样的破裂和声发射行为特征。研究表明:当加载速率为1.5 kN/s时,单裂隙试样在剪切作用下易起裂形成反翼裂隙;试样双裂隙的岩桥倾角越大,越有利于试样的加速破坏,产生的声发射事件数较少,表现出岩体破裂的突变性。   相似文献   

8.
缓倾角破裂是岩质斜坡最常见的一种破裂形式,对斜坡演化与稳定性评价具有重要的工程地质意义。基于斜坡中应力场特征,利用颗粒流程序开展岩石的剪切试验,揭示斜坡中缓倾角破裂系统形成演化机制与影响因素。结果表明,(1)岩质斜坡中缓倾角系统是一套瑞德尔低角度剪切破裂体系,由高序次张性雁裂隙和低序次共轭剪切裂隙组成;(2)缓倾角破裂系统形成与演化具有明显的阶段性,裂纹扩展首先从一组彼此近于平行雁行张破裂开始,随后低次序共轭剪切裂纹开始扩展,并与已有的雁裂纹贯通;(3)不同的围压下裂隙最终贯通模式不同。低围压下裂纹沿着早期产生的雁裂隙翼端发展并最终贯通,中围压下裂纹会沿着雁裂隙或共轭剪裂隙中部扩展并贯通,高应力下会生成一组新的雁裂隙,并与早期产生的裂隙相互搭接并贯通;(4)岩石最终破裂面形态与围压关系密切,中低围压下破裂面整体较为平直,但粗糙度大。高围压下破裂面整体呈曲线型,但较为光滑,粗糙度较小。  相似文献   

9.
西南山区节理岩体发育,处于强震易发区,强地震动和节理化岩体结构是汶川地震近场区地震地质灾害多发的两大主控因素,两者的相互耦合使得岷江两岸地震崩滑灾害成因复杂,崩滑机理研究难度增大。由于节理化岩体结构的复杂性以及早期对地震纵波关注不足,强震近场纵波作用下节理岩体变形破裂机制研究成果基本处于空白阶段。本文在系统归纳总结边坡地震动力变形破坏研究进展的基础上,分析了动荷载诱发节理岩体的变形破裂机制,探讨了解决目前研究中存在的核心问题的正确思路和有效途径,旨在对地震纵波作用下节理岩体宏观动力响应及其细观机制研究起到抛砖引玉的作用,并深化有关节理岩体地震响应、强震近场纵波引起节理岩质斜坡失稳模式等科学问题的认识,为下一步地震地质灾害研究指明方向。  相似文献   

10.
层状岩体的非均质性及各向异性导致其破裂方式及规律与均质岩体有显著不同。对层状岩体分别进行不同方式的单轴、双轴、三轴试验, 分析应力-应变曲线特征; 再利用ANSYS有限元软件进行数值模拟, 观察应力、应变在岩体上的分布, 通过曲线和图件的对比分析, 并结合岩石破裂理论, 总结不同应力状态下层状岩体的破裂方式、顺序及规律; 最后以富台地区为例, 对分析结果进行验证。研究结果表明, 不同受力方式对层状岩体破裂的影响体现在施加的载荷及约束与层面的方位。当应力方向与岩层面平行时, 强度大的石灰岩岩体发生集中应力, 首先破裂; 而应力与岩层面垂直时, 强度小的泥岩岩体首先破裂。岩石试验、数值模拟结果以及实例均成功验证了这个规律。   相似文献   

11.
由寒武系坚硬白云岩组成的汾河二库坝基开挖后,岩体沿顺层开裂面发生错位,错位波及几乎整个坝基,错距达1~7cm.本文对坝基岩体错位进行了分析研究,认为岩体错位是基坑开挖后地应力释放的结果。  相似文献   

12.
查明坝基岩体的渗透结构对于大坝工程防渗方案的制定具有重要意义。以黄河古贤水利枢纽工程近水平分布的红层坝基岩体为研究对象,使用“连续、高分辨率”压水试验数据处理与统计方法,分析了岩体透水率与高程、岩性及顺层剪切带的关系,阐明了坝基岩体的渗透结构,提出了工程防渗建议。研究发现,坝基岩体渗透结构表现出结构性和随机性双重特征。结构性表现为岩体透水率随高程的降低而减小;随机性表现为岩体透水率会因岩性和剪切构造等随机变化。对于河床及滩地坝基岩体,风化卸荷带底高程在450 m附近,1 Lu关键透水率指标界线的底高程位于340 m附近。对于岸坡坝基岩体,3 Lu关键透水率指标界线的底高程位于560~580 m。在坝基勘察深度范围内,350~360 m高程段连续分布具有一定厚度的软岩类岩体,剪切构造不发育且岩体透水微弱,可视为相对隔水层,对坝基防渗帷幕优化设计具有指示意义。文章提出的统计、分析方法具有一定普适性,可为类似工程所借鉴。  相似文献   

13.
清江隔河岩坝基工程岩体质量评价研究   总被引:20,自引:7,他引:13  
采用《工程岩体分级标准》定性和定量相结合的方法,根据岩石坚硬程度和岩石完整程度决定岩体的基本质量,然后考虑地下水状态、初始应力状态、工程轴线方位与主要软弱结构面产状的组合关系等修正因素,确定坝基工程岩体的级别。针对隔河岩工程考虑岩溶、层间剪切带、应力水平、岩体所处工程部位等因素,给出隔河岩工程坝基工程岩体分级。  相似文献   

14.
小湾水电站坝基岩体在开挖过程中,暴露出一系列的变形破坏现象,主要表现为板裂、表面岩爆、沿已有裂隙张开、扩展和错动等。在对上述变形现象分析的基础上,研究了高应力环境下坝基岩体开挖的地质力学响应,发现:河床坝基岩体在开挖过程中所表现出的变形主要集中在坝基浅表,且具有时效性。根据变形破坏现象分析和变形响应研究,对高地应力环境下坚硬岩体河床坝基开挖的变形破坏机理有了新的认识,是河谷下切和开挖卸荷过程中的应力重分布造成的浅表生改造的结果。最终,将河床坝基岩体的变形破坏归纳为压致拉裂卸荷回弹模式,且以压致拉裂为主。  相似文献   

15.
工程开挖面附近卸荷扰动区的岩体,受结构面和拉应力共同影响作用,其变形和破坏具有拉剪复合特征。为研究节理岩体的拉剪力学特性,基于颗粒离散元法针对共面断续节理岩体开展了系列数值模拟研究。通过假设粒间接触的力学参数服从Weibull分布表征岩体的非均质性,探讨了非均质性、均质度、法向拉应力和节理连通率对节理岩体拉剪强度和破坏模式的影响。研究表明:拉剪应力条件下非均质性节理岩体主要沿阶梯型破裂面破坏,剪应力-水平位移曲线可以分为线性变形阶段、非线性变形阶段、峰值及峰后阶段;随均质度提高,节理岩体的剪切强度逐渐增加且提升幅度逐渐减弱,趋于均质岩体,岩体中微裂纹由弥散型分布向破裂面集中;节理岩体峰值剪切强度和法向拉应力的大小呈非线性负相关关系;岩体剪切强度随节理连通率增加而显著降低。  相似文献   

16.
喜河水电站坝型为混凝土重力坝,重力坝对地基岩体的抗剪强度有较高的要求。前期勘查成果表明喜河水电站坝址区存在较多的缓倾角结构面,缓倾角结构面的存在是影响坝基抗滑稳定的关键,因此要对坝基作出抗滑稳定性评价。首先要研究坝址区缓倾角结构面的分布规律及连通情况,通过对坝址区缓倾角结构面的综合分析研究提出合理的坝基岩体的综合抗剪强度。  相似文献   

17.
通过对某水电工程坝区岩体结构的表生改造形迹调查,发现坝区除了发育与岸坡平行的正常的卸荷破坏方式外,还发育了一种破坏方式——夹泥型张裂隙。裂面性质的弱化和发育的普遍性,使这类破裂带可能成为控制坝区高边坡岩体稳定性的重要岩体力学边界。在其发育过程中的诸多控制因素中,岩体结构对这种岩体破坏方式的发育起了控制作用。夹泥型张裂隙与岸坡成大角度相交的陡倾角裂隙和缓倾角错动带组合并构成一个整体。缓倾角错动带的改造是前提。夹泥型张裂隙的发育则伴随陡倾角裂隙和缓倾角错动带的改造过程而产生,构成由陡倾角断裂或裂隙、缓倾角错动带组合形成的典型的岩体破坏模式。结合本地区构造特征和岩体结构特征,并通过大量的现场调查,该文主要探讨了坝区岩体结构特征和夹泥型张裂隙发育的关系,以及岩体结构对夹泥型张裂隙发育的控制作用。  相似文献   

18.
裂隙岩体介质THM耦合问题中的渗透特性研究   总被引:5,自引:0,他引:5  
在前人就热、液、力三因素各自影响裂隙岩体渗透特性的研究和本文所进行的温度及附加应力作用下单裂隙岩样实验的基础上.综合分析了裂隙岩体THM耦合过程,以裂隙结构面的开度、岩体裂隙数(包括受温度影响开通裂隙数)、裂隙连通率、附加应力、剪切膨胀为研究对象.建立具有THM耦合特性的裂隙岩体渗流系数张量。  相似文献   

19.
为了研究节理对锚固岩体力学特征和失稳损伤演化的影响,采用对锚固贯通节理岩体进行室内剪切试验和PFC2D数值模拟的方法,研究不同节理倾角下锚固贯通节理岩体剪切性能的作用机制和破坏模式,研究结果表明:(1)随着节理倾角变化,贯通节理岩体呈现出不同的破坏形式,锚固贯通节理岩体的抗剪强度与剪切位移曲线并不是呈线性增长,而是呈"双驼峰"趋势。(2)锚固体系在剪切试验的过程中,节理面颗粒的接触方位角会发生一定程度的改变,主要集中在锚杆和节理倾角附近。(3)锚固体系在剪切试验的过程中,会因为颗粒间黏结键的断裂生成裂纹,裂纹数生成的越少,其抗剪强度越高,裂纹分为张拉裂纹和剪切裂纹,并且张拉裂纹的数量要远远大于剪切裂纹的数量。研究结论可用于实际工程破坏模式的预测和岩体工程稳定性评价。  相似文献   

20.
小湾水电站坝基卸荷岩体抗剪特性研究   总被引:1,自引:0,他引:1  
李朝政  沈蓉  李伟  廖建军  苏智光 《岩土力学》2008,29(Z1):485-490
通过对小湾水电站松弛岩体抗剪特性以及更深入的现场和室内多种试验研究,以更细致深入的评价松弛岩体结构面的变形破坏机理及抗剪强度参数,为后续评价坝基固结灌浆效果以及复核拱坝坝基开挖和地基处理设计方案提供可靠的依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号