首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Decomposition experiments were conducted on cultured phytoplankton (Skeletonema costatum) in seawater containing decomposer and consumer of size less than 500 μm. We determined the decomposition rates of bulk particulate organic matter (POM), the ratio of labile to semi-refractory fractions in the POM, and the POM carbon/ nitrogen (C/N) ratio during decomposition. To identify the kinetic mechanisms involved in the reactions of different order (e.g., first- and second-order), we studied the sensitivity of reaction rates to the initial concentration of POM, ranging from 2.4 to 71 mg-C L−1. The results showed that decomposition consists of two first-order reactions: decomposition of labile and of semi-refractory particulate organic carbon (POC). The decomposition rate constants found for labile (0.13 day−1 at 20°C), and semi-refractory POC (0.008 day−1 at 20°C), and the carbon weight ratio of semi-refractory POC (13% at 20°C), were insensitive to the initial organic matter concentration. The time-dependence of the C/N ratio was also independent of this initial concentration. The decomposition rate constants and the content of semi-refractory POC did not change, regardless of the absence or presence of 25–500 μm organisms in natural seawater. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Mandovi estuary is a tropical estuary strongly influenced by the southwest monsoon. In order to understand, sources and fate of particulate organic nitrogen, suspended particulate matter (SPM) collected from various locations, was analyzed for particulate organic carbon (POC) and particulate organic nitrogen (PON), δ13CPOC, total hydrolysable amino acid enantiomers (l- and d- amino acids) concentration and composition. δ13CPOC values were depleted (−32 to −25‰) during the monsoon and enriched (−29.6 to −21‰) in the pre-monsoon season implying that OM was derived from terrestrial and marine sources during the former and latter season, respectively. The biological indicators such as C/N ratio, d-amino acids, THAA yields and degradation indices (DI) indicate that the particulate organic matter (POM) was relatively more degraded during the monsoon season. Conversely, during the pre-monsoon, the biological indicators indicated the presence of relatively fresh and labile POM derived from autochthonous sources. Amino acids such as alanine, aspartic acid, leucine, serine, arginine, and threonine in monsoon and glutamic acid, glycine, valine, lysine, and isoleucine in pre-monsoon were relatively abundant. Presence of bacterial biomarker, d-amino acids in the SPM of the estuary during both the seasons signifies important contribution of bacteria to the estuarine detrital ON pool. Based on d-amino acid yields, bacterial OM accounted for 16-34% (23.0 ± 6.7%) of POC and 29-75% (47.9 ± 18.7%) of PON in monsoon, and 30-78% (50.0 ± 15%) of POC and 34-79% (51.2 ± 13.3%) of the PON in pre-monsoon in the estuary. Substantial contribution of bacterial-N to PON indicates nitrogen (N) enrichment on terrestrial POM during the monsoon season. Transport of terrestrial POM enriched with bacterial OM to the coastal waters is expected to influence coastal productivity and ecosystem functioning during the monsoon season.  相似文献   

3.
The decomposition characteristics of particulate organic matter (POM) sampled with plankton nets in Hiroshima Bay were investigated under aerobic conditions in a laboratory experiment.The POM derived from plankton consisted of both a labile fraction (70–80 % of the whole) and a refractory fraction (20–30%). The labile fraction was completely decomposed within 40 days at 20°C. Although the concentrations of particulate organic carbon (POC) decreased gradually with time, an apparent lag phase was recognized in the decomposition of particulate phosphorus (PP) at an early stage, which might result from a specific uptake of dissolved inorganic phosphorus (DIP) by bacteria. A comparison of the metabolic activity between dissolved organic matter (DOM) and POM by measuring ATP contents showed that the former was one order of magnitude larger than the latter.On the other hand, there was no significant difference among the decomposition rates of POM collected at various depths. The change of the first-order rate constant (k) for the POM decomposition by temperature was expressed ask=0.0329 exp(0.0644T), and the Q10 value was 1.94. There were fairly large variances ink values obtained from the various plankton species. Thek values averaged 0.144 day–1 and ranged from 0.078 to 0.20 day–1 at 20°C.  相似文献   

4.
A new method of evaluating the rate of mineralization of photoassimilated organic matter is described. This method enables us to compare the rate of direct mineralization of particulate organic carbon (POC) to CO2 with the rate of solubilization of photoassimilated organic carbon followed by the mineralization of the resultant dissolved organic carbon (DOC) under the same conditions. The direct mineralization of photoassimilated carbon from POC to CO2 is a more significant process compared with the mineralization of extracellular released organic carbon. The first-order rate coefficients range from 0.132 to 0.434 day–1 for direct mineralization and 0.034 to 0.189 day–1 for solubilization.  相似文献   

5.
The role of zooplankton in the vertical mass flux in the Kara and Laptev seas was studied during cruise 63 of the R/V Akademik Mstislav Keldysh in August–October 2015. Mass fluxes were estimated using sediment trap samples. The maximum values of the total vertical flux (19600 mg m?2 day?1) and particulate organic carbon (POC) flux (464 mg C m?2 day?1) were measured close to the Lena River Delta in the Laptev Sea. In the Kara Sea, the total flux (80–2700 mg m?2 day?1) and the POC flux (17–130 mg C m?2 day?1) were substantially higher than the estimates published earlier. The fecal pellet flux varied from 2 to 92 mg C m?2 day?1 and made up 4–190% of the total organic carbon flux. The mineral composition of fecal pellets largely mirrored that of suspended particulate matter. Clay minerals in the fecal pellets were more abundant than in particulate matter in the areas with noticeable freshwater impact. The flux of zooplankton carcasses varied from 0.1 to 66.4 mg C m?2 day?1 and made up 0.2–72% of total POC flux. The results are discussed in relation to the abundance and composition of zooplankton, the concentration and composition of suspended particulate matter, hydrophysical conditions, and methods of sample preparation for analysis.  相似文献   

6.
Within the framework of the European project EROS 21, a biogeochemical study of particles transported from the Danube Delta to the Northwestern Black Sea whose carbon cycle is dominated by riverine inputs was carried out in spring off the Sulina branch of the Danube Delta. The distribution of particulate organic carbon (POC), chlorophyll a (Chl a), C/N, and δ13C evidenced an omnipresent contribution of terrestrial organic matter throughout the study area together with a dilution of these inputs by freshwater and marine organisms. Four lipid series, n-alkanoic acids, n-alkanes, n-alkanols, and sterols were analyzed by gas chromatography and gas chromatography/mass spectrometry. Several signature compounds were selected to delineate dispersion of terrestrial organic carbon: (1) long-chain n-alkanoic acids in the range C24–C34, long-chain n-alkanes in the range C25–C35, long-chain n-alkanols in the range C22–C30, 24-ethylcholesta-5,22-dien-3β-ol (29Δ5,22) and 24-ethylcholesterol (29Δ5) for vascular plant-derived material and (2) coprostanol (27Δ0,5β) for faecal contamination associated with sewage effluents. A marked decrease was observed between the concentrations of different vascular plant markers characterizing the two end members: riverine at salinity 0.3 and marine at salinity 15.5. The decrease observed for marine/riverine end members (expressed as a function of organic carbon) varied in a large range, from 4% for n-alkanes to 18.6%, 20.4% and 24% for n-fatty acids, n-alkanols and sterols, respectively. These values reflect a combination of various processes: size-selective particle sedimentation, resuspension of different particle pools of different sizes and ages, and/or selective biological utilization. The multi-marker approach also suggested the liberation in the mixing zone of terrestrial moieties, tightly trapped in macromolecular structures of the riverine material. The greatest decrease for marine/riverine end members was observed for coprostanol (0.9%), underlining the efficiency of the mixing zone as a sink for sewage-derived carbon.  相似文献   

7.
As part of the Western Arctic Shelf–Basin Interactions (SBI) project, the production and fate of organic carbon and nitrogen from the Chukchi and Beaufort Sea shelves were investigated during spring (5 May–15 June) and summer (15 July–25 August) cruises in 2002. Seasonal observations of suspended particulate organic carbon (POC) and nitrogen (PON) and large-particle (>53 μm) size class suggest that there was a large accumulation of carbon (C) and nitrogen (N) between spring and summer in the surface mixed layer due to high phytoplankton productivity. Considerable organic matter appeared to be transported from the shelf into the Arctic Ocean basin in an elevated POC and PON layer at the top of the upper halocline. Seasonal changes in the molar carbon:nitrogen (C:N) ratio of the suspended particulate organic matter (POM) pool reflect a change in the quality of the organic material that was present and presumably being exported to the sediment and to Arctic Ocean waters adjacent to the Chukchi and Beaufort Sea shelves. In spring, low particulate C:N ratios (<6; i.e., N rich) were observed in nitrate-replete surface waters. By the summer, localized high particulate C:N ratios (>9; i.e., N-poor) were observed in nitrate-depleted surface waters. Low POC and inorganic nutrient concentrations observed in the surface layer suggest that rates of primary, new and export production are low in the Canada Basin region of the Arctic Ocean.  相似文献   

8.
Sinking particles were analyzed for their nitrogen isotopic ratio δ15N) of total particulate nitrogen (PN), stable carbon isotopic ratio (δ13C) and radioactive isotopic ratio (δ14C) of total particulate organic carbon (POC), at three different latitudinal (temperate, subpolar and equatorial) and geomorphological (trench, proximal abyssal plain and distal abyssal plain) sites in the western North Pacific Ocean using year-long time series sediment trap systems, to clarify the common vertical trends of the isotopic signals in deep water columns. Although the δ15N and δ13C values of sinking particulate organic matter (POM) were partly affected by the resuspension of sedimentary POM from the sea floor, especially in the trench, the changes in δ15N and δ13C values owing to the resuspension could be corrected by calculation of the isotopic mass balance from δ14C of sinking POC. After this correction, common downward decreasing trends in δ15N and δ13C values were obtained in the deep water columns, irrespective of the latitudes and depths. These coincidental isotopic signals between δ15N and δ13C values provide new constraints for the decomposition process of sinking POM, such as the preferential degradation of 15N- and 13C-rich compounds and the successive re-formation of the sinking particles by higher trophic level organisms in the deep water column.  相似文献   

9.
A carbon flux study was carried out off the coast of Morocco, at 31°N, in a region characterized by the presence of a persistent cyclonic eddy. Two short-term (4 and 3 day) deployments of free-floating sediment traps were combined with water column sampling and rate process measurements as the ship followed the traps. For a period of 36 h between trap deployments, a hydrographic section was run along 31°30'N as part of a larger scale survey being carried out simultaneously on the R.V. A. von Humboldt. The first trap deployment was near the eastern margin of the eddy and the traps moved to the north and west in a frontal jet associated with its northern boundary. After the second deployment, which was at the recovery point of the first, the traps moved to the west and then to the southwest. Throughout the study, chlorophyll concentrations varied between 27 and 125 mg m−2 (0–100 m), with highest concentrations in the upwelled water nearest the coast and in upwelled water generated within the cyclonic eddy. Particulate organic carbon (POC) and particulate organic nitrogen (PON) concentrations were relatively uniform (13.6±1.8 and 1.63±28 g m−2 with phytoplankton carbon accounting for 16–85% of total POC. Bacterial carbon was 5% of total POC and mesozooplankton carbon concentrations were equivalent to 9% of total POC. Microzooplankton biomass was not assessed but POC:PON ratios in the water column were often high, suggesting there was sometimes a large detrital component in the POC. Primary production rates varied between 1.0 and 2.5 g C m−2 day−1. Bacterial consumption accounted for 50% of primary production. Metabolic rates suggested that copepods were ingesting more than 0.4 g C m−2 day−1. while filtration rates suggested that ingestion of phytoplankton carbon was only 0.2 g C m−2day−1, even when phytoplankton constituted 85% of the POC. f-ratios (based on uptake rates for 15N-nitrate and ammonia) were between 0.1 and 0.4, and excretion by mesozooplankton could account for 40% of the daily ammonium uptake by phytoplankton. HPLC pigment analysis showed that when chlorophyll biomass was high, diatoms were dominant, whereas when it was low, small prymnesiophytes, chlorophytes and diatoms were all important. The composition of the fluoresecent pigments in material in the sediment traps indicated that intact phytoplankton and copepod faecal pellets were the main sources but the relative rates of sedimentation of pigment, POC and PON for the two trapping periods did not reflect differences that were observed in the overlying water column. This was likely to be the result of spatial heterogeneity and strong horizontal currents heterogeneity and strong horizontal currents within the euphotic zone. Thus, material collected at 100 m probably did not originate in the water column immediately overlying the traps and trapping efficiencies might also have been variable.  相似文献   

10.
Industrial activities, notably oil and gas industries, are expanding in the Arctic. Most of the biomarkers were developed using temperate organisms living at temperatures above 10 °C. Little is known about the biomarker responses of organisms living between −1.88 and 5 °C. Therefore, assessment of the toxicity of chemicals to cold-water adapted species is required. In this study, the Arctic scallop, Chlamys islandicus, was selected as a key species for bio-monitoring because of wide distribution in Arctic waters and its commercial value. Test animals, stored in seawater at 2 °C, were injected with benzo(a)pyrene (diluted in cod liver oil 5 mg ml−1) in the adductor muscle every 24 h for four days giving a final dose of 0, 74 and 90.6 mg kg−1 wet weight for control, low and high dose, respectively. The biomarkers used were total oxyradical scavenging capacity (TOSC) in the digestive gland and cell membrane stability of haemocytes. TOSC values were significantly reduced (ca. 30%) in exposed groups (P<0.05), indicating a depletion in oxyradical molecular scavengers. The antioxidant defences appeared to be overwhelmed by the reactive oxygen species as the plasma membranes of haemocytes were destabilised (P<0.05) probably due to lipid peroxidation. These data indicate that reactive oxygen species (ROS) were produced by Arctic scallops via the metabolisation of benzo(a)pyrene at 2 °C.  相似文献   

11.
Seasonal and spatial variations of particulate organic carbon (POC) flux were observed with sediment traps at three sites in the Japan Sea (western and eastern Japan Basin and Yamato Basin). In order to investigate the transport processes of POC, radiocarbon (14C) measurements were also carried out. Annual mean POC flux at 1 km depth was 30.7 mg m−2day−1 in the western Japan Basin, 12.0 mg m−2day−1 in the eastern Japan Basin and 23.8 mg m−2day−1 in the Yamato Basin. At all stations, notably higher POC flux was observed in spring (March–May), indicating biological production and rapid sinking of POC in this season. Sinking POC in the high flux season showed modern Δ14C values (>0‰) and aged POC (Δ14C < −40‰) was observed in winter (December–January). The Δ14C values in sinking POC were negatively correlated with aluminum concentration, indicating that Δ14C is strongly related to the lateral supply of lithogenic materials. The Δ14C values also showed correlations with excess manganese (Mnxs) concentrations in sinking particles. The Δ14C-Mnxs relationship suggested that (1) the majority of the aged POC was advected by bottom currents and incorporated into sinking particles, and (2) some of the aged POC might be supplied from the sea surface at the trap site as part of terrestrial POC. From the difference in the Δ14C-Mnxs relationships between the Japan Basin and the Yamato Basin, we consider that basin-scale transport processes of POC occur in the Japan Sea.  相似文献   

12.
对厦门湾塔角附近海域某站位叶绿素 a、POC、初级生产力、234Th/238U不平衡进行的周日变化研究表明,POC含量介于14.4~34.6 mmol/m3之间,其中碎屑有机碳与活体有机碳所占份额分别为74%~92%和8%~26%.POC垂直分布呈现由表及底降低的趋势,且白昼期间POC含量高于晚间,说明研究海域POC含量与生物过程具有密切联系.初级生产力水平在1d之中变化达5倍,垂直分布亦随深度增加而降低,与叶绿素a的变化相对应.短时间(2h)培养获得的初级生产力水平明显高于长时间培养(24 h)的结果,证实部分新固定的碳被优先呼吸排出.结合234Th/238U不平衡法获得的颗粒态234Th输出通量及输出界面颗粒物中的POC/PTh比值,可计算出真光层 POC的垂向输出通量为16.0mmol/(m2·d),其中碎屑有机碳与活体有机碳贡献的数量分别为13.3和2.7mmol/(m2·d).POC输出通量与初级生产力的比值(ThE比值)平均为0.31,真光层POC停留时间平均为11d.上述结果与Aksnes和Wassmann[1]的模型计算结果相吻合,但与其他大多数模型的结果仍存在一定的差异.  相似文献   

13.
In three sections in the Kara Sea, the contents of the dissolved and particulate organic carbon (the DOC and POC, respectively), as well as of the organic carbon of the bottom sediments (Corg) were determined. The contents of varied from 6.3 to 2400 μg/l for the DOC and from 0.84 to 12.2 mg of C/l for the POC. The average concentrations for all the samples tested amounted to 200 μg/l for the DOC (n = 78, σ = 368) and 2.7 mg/l for the POC (n = 92, σ = 2.7). The concentrations of Corg in the samples of the upper layer of the bottom sediments of the area treated varied from 0.13 to 2.10% of the dry substance at an average value of 0.9% (n = 21, σ= 0.49%). It is shown that the distribution of the different forms of organic matter (OM) is an indicator of the supply and spreading of the particulate matter in the Kara Sea and that the DOC and POC of the Kara Sea are formed under the impact of the runoff of the Ob and Yenisei river waters. It is found that the distribution of the OM of the bottom sediments in the surveyed area of the Kara Sea is closely related to their grain-size composition and to the structure of the currents in the area studied. The variations in the Corg content in the bottom sediment cores from the zone of riverine and marine water mixing represent the variability of the OM burial.  相似文献   

14.
Twenty-two different species of Arctic brown, red and green macroalgae, collected in the Kongsfjord at Ny-Ålesund (Spitsbergen), were incubated under polar conditions and investigated for their release of volatile halogenated organic compounds (VHOC). Bromoform, dibromomethane, dibromochloromethane, bromodichloromethane, 1,2-dibromoethane, diiodomethane and chloroiodomethane have been identified and their net releases during incubations were determined. Generally, brown and green macroalgae showed higher VHOC release, while red macroalage had only low release. Bromoform was released in relatively large quantities from all species studied, with the highest release observed from the brown algae Dictyosyphon foeniculaceus (0.3 μg g−1 wet algal weight day−1) and Laminaria saccharina (0.15 μg g−1 wet algal weight day−1), and from the green algae Monostroma arcticum (0.3 μg g−1 wet algal weight day−1) and Blidingia minima (0.27 μg g−1 wet algal weight day−1). Dibromomethane, diiodomethane, dibromochloromethane and 1,2-dibromoethane showed lower net release during the incubations. The net release of chloroiodomethane and bromodichloromethane was very low for the most algae species investigated. Based on the distribution of these algae in the Arctic environment, Dictyosiphon foeniculaceus and Laminaria saccharina may be important sources for VHOC because of high release and high biomass. Release of VHOC could be detected from all parts of the thallus of the macroalga. This may provide some evidence for a possible role of VHOC production as a chemical protection mechanism in algae.  相似文献   

15.
Dissolved organic carbon (DOC), stable carbon isotopic (δ13C) compositions of DOC and particulate organic carbon (POC), and elemental C/N ratios of POC were measured for samples collected from the lower Mississippi and Atchafalaya rivers and adjacent coastal waters in the northern Gulf of Mexico during the low flow season in June 2000 and high flow season in April 2001. These isotopic and C/N results combined with DOC measurements were used to assess the sources and transport of terrestrial organic matter from the Mississippi and Atchafalaya rivers to the coastal region in the northern Gulf of Mexico. δ13C values of both POC (−23.8‰ to −26.8‰) and DOC (−25.0‰ to −29.0‰) carried by the two rivers were more depleted than the values measured for the samples collected in the offshore waters. Strong seasonal variations in δ13C distributions were observed for both POC and DOC in the surface waters of the region. Fresh water discharge and horizontal mixing played important roles in the distribution and transport of terrestrial POC and DOC offshore. Our results indicate that both POC and DOC exhibited non-conservative behavior during the mixing especially in the mid-salinity range. Based on a simple two end-member mixing model, the comparison of the measured DOC-δ13C with the calculated conservative isotopic mixing curve indicated that there was a significant in situ production of marine-derived DOC in the mid- to high-salinity waters consistent with our in situ chlorophyll-a measurements. Our DOC-δ13C data suggest that a removal of terrestrial DOC mainly occurred in the high-salinity (>25) waters during the mixing. Our study indicates that the mid- to high- (10–30) salinity range was the most dynamic zone for organic carbon transport and cycling in the Mississippi River estuary. Variability in isotopic and elemental compositions along with variability in DOC and POC concentrations suggest that autochthonous production, bacterial utilization, and photo-oxidation could all play important roles in regulating and removing terrestrial DOC in the northern Gulf of Mexico and further study of these individual processes is warranted.  相似文献   

16.
Organic matter in a tropical mangrove ecosystem was characterized by stable carbon and nitrogen isotopic analyze, conducted on various organic samples, including land and mangrove plants, soils, particulate organic matter (POM), and sea and river sediments along the southwestern coast of Thailand. The δ13C values of land plants and POM in river water can be explained in terms of a greater influence of C3 plants than C4 plants in this area. The POM and sediments from the Trang River and Ko Talibong area showed systematically higher δ15N values than those from Ko Muk and other coastal areas. Organic matter in the Trang River might be influenced by nitrogen released from agricultural or human waste, which could affect the isotopic composition of POM and sediments in the Trang River estuary and along the coast near the river mouth. We used a stochastic method to estimate the contributions of four organic end-members, identifiable by their δ13C and δ15N values. The results implied that seagrasses were a major source of sedimentary organic matter, contributing 42 ± 5% in the Ko Muk area and 36 ± 5% in the Ko Talibong area. The contribution of coastal POM to sediments was estimated to be only 13% in Ko Muk and 19% in Ko Talibong. Mangrove plants contributed approximately 23% in both areas. It was concluded that seagrasses are an important source of sedimentary organic matter in this coastal region of southwestern Thailand. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Tangential-flow ultrafiltration was used to isolate particulate and high-molecular-weight dissolved material from seawater collected at various depths and geographic regions of the Pacific and Atlantic Oceans. Ultrafiltration proved to be a relatively fast and efficient method for the isolation of hundreds of milligrams of material. Optical and electron microscopy of the isolated materials revealed that relatively fragile materials were recovered intact. Depth-weighted results of the size distribution of organic matter in seawater indicated that ˜ 75% of marine organic carbon was low-molecular-weight (LMW) dissolved organic carbon (< 1 nm), ˜ 24% was high-molecular-weight (HMW) dissolved organic carbon (1–100 nm), and ˜ 1% was particulate organic carbon (> 100 nm). The distribution of carbon in surface water was shifted to greater relative abundances of larger size fractions, suggesting a diagenetic sequence from macromolecular material to small refractory molecules. The average C:N ratios of particulate organic matter (POM) and HMW dissolved organic matter (DOM) were 7.7 and 16.7, respectively. Differences in C:N ratios between POM and HMW DOM were large and invariant with depth and geographic region, indicating that the aggregation of HMW DOM to form POM must be of minor significance to overall carbon dynamics. The stable carbon isotope composition (δ13C) of POM averaged −22.7%. in surface water and −25.2%. in subsurface water. Several possible explanations for the observed isotopic shift with depth were explored, but we were unable to discern the cause. The δ13C of HMW DOM samples was relatively constant and averaged −21.7%., indicating a predominantly marine origin for this material. The δ15N values of POM were highly variable (5.8–15.4%.), and the availability of nitrate in surface waters appeared to be the major factor influencing δ15N values in the equatorial Pacific. In the upwelling region nitrate concentrations were relatively high and δ15N values of POM were low, whereas to the north and south of the upwelling nitrate concentrations were low and δ15N values were high. The δ15N values of HMW DOM reflected the same trends observed in the POM fraction and provided the first such evidence for biological cycling of dissolved organic nitrogen (DON). Using the observed δ15N values and an estimate of meridional advection velocity, we estimated a turnover time of 0.3 to 0.5% day−1 for HMW DON. These results suggest a major role for DON in the upper ocean nitrogen cycle.  相似文献   

18.
The Ross Sea, a region of high seasonal production in the Southern Ocean, is characterized by blooms of the haptophyte Phaeocystis antarctica and of diatoms. The different morphology, structural composition and consumption of these two phytoplankton by grazing zooplankton may result in different carbon cycling dynamics and carbon flux from the euphotic zone. We sampled short-term (2 days) particle flux at 5 sites from 177.6°W to 165°E along a transect at 76.5°S with traps placed below the euphotic zone at 200 m during December 1995–January 1996. We estimated carbon flux of as many eucaryotic organisms and fecal pellets as possible using microscopy for counts and measurements and applying volume:carbon conversions from the literature. Eucaryotic organisms contributed about 20–40% of the total organic carbon flux in both the central Ross Sea polynya and in the western polynya, and groups of organisms differed in contribution to the carbon flux at the different sites. Algal carbon flux ranged from 4.5 to 21.1 mg C m−2 day−1 and consisted primarily of P. antarctica (cell plus mucus) and diatom carbon at all sites. Different diatom species dominated the diatom flux at different sites. Carbon fluxes of small pennate diatoms may have been enhanced by scavenging, by sinking senescent P. antarctica colonies. Heterotrophic carbon flux ranged from 9.2 to 37.6 mg C m−2 day−1 and was dominated by athecate heterotrophic dinoflagellate carbon in general and by carbon flux of a particular large athecate dinoflagellate at two sites. Fecal pellet carbon flux ranged from 4.6 to 54.5 mg C m−2 day−1 and was dominated by carbon from ovoid/angular pellets at most sites. Analysis of fecal pellet contents suggested that large protozoans identified by light microscopy contributed to ovoid/angular fecal pellet fluxes. Carbon flux as a percentage of daily primary production was lowest at sites where P. antarctica predominated in the water column and was highest at sites where fecal pellet flux was highest. This indicates the importance of grazers in carbon export.  相似文献   

19.
Dissolved and particulate 234Th activities in surface seawater were determined at 27 stations along the coastline of western Taiwan during 19–23 November 2004. Contrasting scavenging settings were observed between the northern and southern regimes of the nearshore water off western Taiwan, separated by the Cho-Shui River. The northern regime is characterized by a large quantity of suspended load contributed by northward transport of a suspension plume from the Cho-Shui River, while the southern regime, low in suspended load and high in chlorophyll concentration, is a system controlled by biological activity. A scavenging model that takes account of the physical transport was used to estimate the 234Th budget in order to estimate the scavenging and removal rates from the nearshore water. The scavenging and removal rates ranged from 21 to 127 dpm m−3d−1 and from 36 to 525 dpm m−3d−1, for dissolved and particulate 234Th, respectively. The removal fluxes of particulate organic carbon (POC) and particulate organic nitrogen (PON) were estimated by multiplying the particulate 234Th removal flux to the organic carbon/234Th and nitrogen/234Th ratios in suspended particles, which ranged from 4.5 to 275.2 mmol-C m−2d−1 and from 1.3 to 50.1 mmol-N m−2d−1, respectively. These fluxes resulted in residence times of 1∼20 days for the POC in the surface water of nearshore water off western Taiwan.  相似文献   

20.
Organic carbon (C) and total nitrogen (N) contents and corresponding isotope ratios were determined in surficial sediment (0–3 cm) at 94 stations ranging from 21 to 1995 m water depth off Tokachi, Hokkaido, Japan, to elucidate the distribution and source of sedimentary organic matter. Suspended particulate organic matter (POM) in the seawater and suspended POM and sediment in the Tokachi River were also examined. δ13C, δ15N and C / N ratios of the samples in the Tokachi River suggest that the spring snowmelt is an important process for the transport of terrestrial organic matter to the coastal waters. δ13C values of suspended POM in the surface seawater were higher in May and November than in August, while δ15N values of the POM were higher in May and August than in November. These changes are attributed to seasonal changes in phytoplankton growth rate and nitrate availability. δ13C and δ15N values in the sediments off Tokachi were lowest near the Tokachi River mouth, and increased offshore to constant values that persisted from 134 to 1995 m water depth. The spatial variation in C / N ratios in the sediment mirrored those of δ13C and δ15N. Comparison of δ13C, δ15N and C / N ratios in the sediments off Tokachi with those in the Tokachi River and seawater indicates that about half of the organic matter in the sediment was of terrestrial origin near the Tokachi River mouth, and the sedimentary organic matter from 134 to 1995 m water depth was of marine origin. The organic C content in the sediment was high near the Tokachi River mouth, and also around 1000 m water depth. The C content was significantly correlated with silt plus clay content, with different regression lines for those stations shallower and deeper than 134 m, owing to several stations of higher C content with the elevated C / N ratio on the inner shelf. These results suggest that transport and deposition of organic-rich fine sediment particles by hydrodynamic processes were major factors controlling C content off Tokachi. In addition, the supply of a fraction of terrestrial organic matter with high C / N probably also affected C content on the inner shelf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号