首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The Sanshenjiang gold deposit in southeastern Guizhou Province, China, is hosted by the Neoproterozoic metasedimentary rocks which experienced low-grade greenschist facies metamorphism. Gold mineralization occurs mainly in the ribbon chiltern slate of the first member of the Longli Formation and is controlled by both strata and faults. Ore bodies are characterized by abundant quartz-arsenopyrite-gold-pyrite-bedding veins, veinlets and small lenses within the shear zone. In this study, trace element and REE geochemistry was analyzed to constrain the origin and genesis of this deposit. The trace element signatures of wall rocks and veins display a basically similar tendency in the spider diagram, showing the genetic relationship. The values of Co/Ni, Y/Ho, Hf/Sm, Nb/La and Th/La reflect that the hydrothermal fluids of this deposit were derived from the mixture of multiple sources with marked enrichment of Cl and moderate to high temperature. There is a broad similarity in the chondrite-normalized patterns and REE fractionation between wall rocks and ore bodies, possibly reflecting their similar origin. Based on the difference in δCe and δEu, quartz veins and lenses can be subdivided into weakly negative Ce-anomalies (δCe=0.81 to 1.06) with slight Eu anomalies (δEu=0.81 to 1.06) type and the significant positive Ce-anomalies (δCe=1.13 to 1.97) with moderate negative Eu-anomalies type, probably suggesting physical-chemical changes in the evolution process of ore-forming fluids from the early to late stage. It can be concluded that the ore-forming process may have experienced three stages: formation of the original ore source bed, regional metamorphism and gold mineralization, on the basis of trace element and REE analysis and field observation.  相似文献   

2.
The large Gacun silver–lead–zinc–copper deposit in Sichuan Province is one of the largest volcanogenic massive sulfide(VMS) deposits in China. The deposit consists of western and central ore bodies, which form a vein–stockwork mineralization system corresponding to hydrothermal channels, and eastern ore bodies, which form an exhalative chemical sedimentary system derived from a brine pool in a submarine basin. The Youre lead–zinc deposit, which is currently under exploration and lies adjacent to the southern part of the Gacun deposit, is characterized by intense silicification and vein–stockwork structures and consists of massive silicified rhyolitic volcanics, banded rhyolitic tuff, and phyllitic sericite tuff. From a comparison of their ore-bearing horizons, the Gacun and Youre deposits have a continuous and stable hanging wall(calcareous slate and overlying andesite) and foot wall(rhyolite–dacite breccia and agglomerate), and the lithologic sequence includes lower intermediate to felsic rocks and upper felsic rocks. Thus, the Youre deposit, which comprises relatively thinly layered low–grade ore, is regarded as forming a southward extension of the Gacun deposit. A further comparison of the structures of the ore-bearing belts between the two deposits suggests that the Youre ore bodies are similar to the western ore bodies of the Gacun deposit. Moreover, the characteristics of fluid inclusions and stable isotopes in the Youre deposit are also similar to those of the western ore bodies of the Gacun deposit. Genetic models of the deposits are proposed for the Gacun–Youre ore district, and massive concealed ore bodies may occcur in the Youre deposit at depths that are similar to those of the eastern ore bodies of the Gacun deposit.  相似文献   

3.
Abstract: The Jinchuan deposit is hosted by the olivine-rich ultramafic rock body, which is the third-largest magmatic sulfide Ni–Cu deposit in the world currently being exploited. Seeking new relaying resources in the deep and the border of the deposit becomes more and more important. The ore body, ore and geochemistry characteristics of the concealed Cu-rich ore body are researched. Through spatial analysis and comparison with the neighboring II1 main ore body, the mineralization rule of the concealed Cu-rich ore body is summed up. It is also implied that Cu-rich magma may exist between Ni-rich magma and ore pulp during liquation differentiation in deep-stage chambers, which derives from deep-mantle Hi–MgO basalt magma. It is concluded that the type of ore body has features of both magmatic liquation and late reconstruction action. It has experienced three stages: deep liquation and pulsatory injection of the Cu- and PPGE-rich magma, concentration of tectonic activation, and the later magma hydrothermal superimposition. In addition, the Pb and S isotopes indicate the magma of I6 concealed Cu-rich ore body originates predominantly from mantle; however, it is interfused by minute crust material. Finally, it is inferred that the genesis of the Cu–Ni sulfide deposit is complex and diverse, and the prospect of seeking new deep ore bodies within similar deposits is promising, especially Cu-rich ore bodies.  相似文献   

4.
The Dongfengnanshan Cu polymetallic deposit is one representative deposit of the Tianbaoshan ore district in the Yanbian area, northeast(NE) China. There occur two types of ore bodies in this deposit, the stratiform ore bodies and veintype ones, controlled by the Early Permian strata and the Late Hercynian diorite intrusion, respectively. Due to the ambiguous genetic type of the stratiform ore bodies, there has been controversy on the relationship between them and veintype ore bodies. To determine the genetic type of stratiform ore bodies, laser ablation inductively coupled plasma mass spectrometry(LA-ICP-MS) in situ trace elements and S–Pb isotope analysis have been carried on the sulfides in the stratiform ore bodies. Compared with that in skarn, Mississippi Valley-type(MVT), and epithermal deposits, sphalerite samples in the stratiform ore bodies of the Dongfengnanshan deposit are significantly enriched in Fe, Mn, and In, while depleted in Ga, Ge, and Cd, which is similar to the sphalerite in volcanic-associated massive sulfide(VMS) deposits. Co/Ni ratio of pyrrhotites in the stratiform ore bodies is similar to that in VMS-type deposits. The concentrations of Zn and Cd of chalcopyrites are similar to those of recrystallized VMS-type deposits. These characteristics also reflect the intermediate ore-forming temperature of the stratiform ore bodies in this deposit. Sulfur isotope compositions of sulfides are similar to those of VMS-type deposits, reflecting that sulfur originated from the Permian Miaoling Formation. Lead isotope compositions indicate mixed-source for lead. Moreover, the comparison of the Dongfengnanshan stratiform ore bodies with some VMStype deposits in China and abroad, on the trace elements and S–Pb isotope characteristics of the sulfides reveals that the stratiform ore bodies of the Dongfengnanshan deposit belong to the VMS-type, and have closely genetic relationship with the early Permian marine volcanic sedimentary rocks.  相似文献   

5.
福建钟腾斑岩铜(钼)矿床根带的蚀变矿化特征   总被引:1,自引:0,他引:1  
  相似文献   

6.
Located in Alxa Zuoqi (Left Banner) of Inner Mongolia, China, the Zhulazhaga gold deposit is the first largescale gold deposit that was found in the middle-upper Proterozoic strata along the north margin of the North China craton in recent years. It was discovered by the No. l Geophysical and Geochemical Exploration Party of Inner Mongolia as a result of prospecting a geochemical anomaly. By now, over 50 tonnes of gold has been defined, with an average Au grade of 4 g/t. The ore bodies occur in the first lithological unit of the Mesoproterozoic Zhulazhagamaodao Formation (MZF), which is composed mainly of epimetamorphic sandstone and siltstone and partly of volcanic rocks. With high concentration of gold,the first lithological unit of the MZF became the source bed for the late-stage ore formation. Controlled by the interstratal fracture zones, the ore bodies mostly appear along the bedding with occurrence similar to that of the strata. The primitiveore types are predominantly the altered rock type with minor ore belonging to the quartz veins type. There are also some oxidized ore near the surface. The metallic minerals are composed mainly of pyrite, pyrrhotite and arsenopyrite with minor chalcopyrite, galena and limonite. Most gold minerals appear as native gold and electrum. Hydrothermal alterations associated with the ore formation are actinolitization, silicatization, sulfidation and carbonation. A total of 100 two-phase H2O-rich and 7 three-phase daughter crystal-beating inclusions were measured in seven goldbearing quartz samples from the Zhulazhaga gold deposit. The homogenization temperatures of the two-phase H2O-rich inclusions range from 155 to 401℃, with an average temperature of 284℃ and bimodal distributions from 240 to 260℃ and 300 to 320℃ respectively. The salinities of the two-phase H2O-rich inclusions vary from 9.22wt% to 24.30wt% NaCl eqniv, with a mode between 23 wt% and 24wt% NaC1 equiv. Comparatively, the homogenization temperatures of the threephase daughter crystal-beating inclusions vary from 210 to 435℃ and the salinities from 29.13wt% to 32.62wt% NaCl equiv. It indicates that the ore-forming fluid is meso-hypothermal and characterized by high salinity, which is apparently different from the metamorphic origin with low salinity. It suggests a magmatic origin of the gold-bearing fluid. The δ^18O values of quartz from auriferous veins range from 11.9 to 16.3 per mil, and the calculated δ^18OH2O values in equilibrium with quartz vary from 1.06 to 9.60 per mil, which fall between the values of meteoric water and magmatic water. It reflects that the ore-forming fluid may be the product of mixing of meteoric water and magmatic water.Based on geological and geochemical studies of the Zhulazhaga gold deposit, it is supposed that the volcanism in the Mesoproterozoic might make gold pre-concentrate in the strata. The extensive and intensive Hercynian tectono-magmatic activity not only brought along a large number of ore-forming materials, but also made the gold from the strata rework. It can be concluded that the ore bodies were mainly formed in late hydrothermal reworking stage. Compared with typical gold deposits associated with epimetamorphic clastic rocks, the Zhulazhaga deposit has similar features in occurrence of ore bodies, ore-controlling structure, wall-rock alterations and mineral assemblages. Therefore, the Zhulazhaga gold deposit belongs to the epimetamorphic clastic rock type.  相似文献   

7.
No. 6 East tin deposit in the Songshujiao orefield, Gejiu, is characterized by one-stage hydrothermal activity and monotonous country rocks. The authors selected this deposit and used the multivariate statistical analysis to study the types of association of main ore-forming elements at different temperatures and pressures and their distribution in the deposit. On that basis combined with the structural analysis of the deposit, the recto-geochemical features of No.6 East tin deposit have been revealed and the direction and channel of migration of the ore solutions in faults and the deposit have been deduced. This research can appropriately elucidate the control of faults on the migration of ore solutions and the sites where ore solutions are dispersed and accumulated, thus providing the theoretical basis for the prediction of hydrothermal deposits in question.  相似文献   

8.
Through studies on the element geochemistry, alteration of country rocks, ore-forming fluids and isotopegeochemistry of the Arno tin deposit in the metamorphic rocks of the Upper Proterozoic Ximeng Group, theauthors consider that the concentration of the B-F-Li-Rb-Cs-Sn association is related to acidic magmatism inthe study area. The Fe-Mg-Li tourmaline in the ore is the replaced product of the country rocks byhypothermal fluid. The δ~(18)O values of mineral separates are +2.01- +13.16‰ and their δ~(34)S values, +2.6-+7.2‰. The ore-forming materials were derived from hydrothermal fluid of granitic magma. For themineralization, the temperature is 450°-350℃, the pressure, 450-1000×10~5 Pa, and the age, Himalayan(21.5 Ma). According to the geochemical characteristics, a minerogenic model is established: the deposit is ahypothermal cassiterite-quartz vein type tin deposit controlled by the hidden Himalayan granites.  相似文献   

9.
The Linglong-Jiaojia district is one of the most important regions containing gold deposits in China. These gold deposits can be divided into: a) the pyrite-gold-quartz vein type (Linglong type), which is controlled by brittle-ductile to ductile deformation structures, and b) the alteration-zone type (Jiaojia type), characterized by small veinlets, or the disseminated type recognized in brittle shear zones. Lode gold deposits in the Jiaojia area occur in NE brittle fracture zones, formed in a dominantly simple shear deformation regime, mainly in thrust attitude with a minor sinistral strike slip component. In the Linglong area, the lode gold deposits are located at the intersection of three types of structures: NNE and NE brittle-ductile fault zones and the ENE ductile reverse shear zone in the south of the area. The structural characteristics of these brittle shear zones are consistent with a tectonic NNW-SSE principal stress field orientation. Similar stresses explain the ENE Qixia fold axes, the Potouqing and several other ENE reverse ductile shear zones elsewhere in the region, the Tancheng-Lujiang fault zone and its subsidiaries in the vicinity of the Linglong-Jiaojia district, as well as the southern ENE suture zone north of Qingdao. Therefore these structural systems occurred as part of different major tectonic events under NNW-SSE compression principal stress fields in the area. Gold deposits are hosted in smaller-scale structures within the brittle fault zones and brittle-ductile shear zones. Although ore bodies and, on a smaller scale, quartz ore veins often seem to be randomly oriented, it is possible to explain their distribution and orientation in terms of the simple shear deformation process under which they were developed. The progressive simple shear failure is characterized by various fracture modes (tension and shear) that intervene in sequence. The tension and shear fractures are influenced by the stress level (depth of burial beneath the paleosurface) in their structural behavior, show variable dilatancy (void openings) and extend on all scales. By making use of these characteristics, a progressive failure analysis can be applied to predicting the shape and extent of ore bodies as well as the styles of mineralization at any given location.  相似文献   

10.
A W-Mo mineralized region is located along the northern margin of the South Qinling tectonic belt of China. WMo mineralization occurs mainly in Cambrian–Ordovician clastic and carbonate rocks, and the ore bodies are structurally controlled by NW–SE-and NNE–SSW-striking faults. Evidence for magmatism in the area is widespread and is dominated by intermediate–felsic intrusives or apophyses, such as the Dongjiangkou, Yanzhiba, Lanbandeng, and Sihaiping granitic bodies. Quartz-vein-type mineralization and fault-controlled skarn-type mineralization dominate the ore systems, with additional enrichment in residual deposits. At present, there are few or insufficient studies on(1) the age of mineralization,(2) the relationship between intermediate–felsic granite and W-Mo mineralization,(3) the source of ore-forming materials,and(4) the metallogenic and tectonic setting of the mineralized area. In this paper, we present geochronology results for numerous intrusive granitic bodies in the South Qinling tectonic belt. U-Pb zircon geochronology of the Lanbandeng monzogranite and Wangjiaping biotite monzogranite yields ages of 222.7 ± 2.3 and 201.9 ± 1.8 Ma, respectively. In contrast to the Late Triassic age of the Lanbandeng monzogranite, the age of the newly discovered Wangjiaping biotite monzogranite places it at the Triassic–Jurassic boundary. Re-Os molybdenite geochronology on the Qipangou W-Mo deposit yielded a model age of 199.7 ± 3.9 Ma, indicating the deposit formed in the early Yanshanian period of the Early Jurassic. Granitoid intrusions in the mineralized area are characterized by composite granite bodies that crystallized at ca.240–190 Ma. While there were multiple stages of intrusion, most occurred at 210–220 Ma, with waning magmatic activity at 200–190 Ma. The Re-Os age of molybdenite in the region is ca. 200–190 Ma, which may represent a newly discovered period of W-Mo metallogenesis that occurred during the final stages of magmatism. The heat associated with this magmatism drove ore formation and might have provided additional ore-forming components for metallogenesis(represented by the Wangjiaping biotite monzogranite). Ore materials in the mineralized area were derived from mixed crustal and mantle sources. Enrichment of the region occurred during intracontinental orogenesis in the late Indosinian–Yanshanian, subsequent to the main Indosinian collision. At this time, the tectonic environment was dominated by extension and strike-slip motion.  相似文献   

11.
<正>The Chang'an gold ore deposit in western Yunnan is located at the southern segment of the Ailaoshan metallogenic belt.The ore bodies are preserved in fractured Ordovician sedimentary clastic rocks.The gold-bearing minerals occur dominantly in sulfide-quartz veins.Fluid inclusion analysis shows that the Chang'an gold ore deposit is characterized by epithermal gold mineralization at temperatures between 200℃and 280℃at a shallow crustal level.The mineralizing fluids have intermediate to low salinity(6%-18%) and low densities(0.72-1.27 g/cm~3).The ore minerals haveδ~(34)S in a range from -13‰to 3.57‰,concentrated from -2.06‰to 3.57‰with an average of 1.55‰.The ~(206)Pb/~(204)Pb,~(207)Pb/~(204)Pb and ~(208)Pb/~(204)Pb values are 18.9977-19.5748,15.7093-15.784,39.3814-40.2004 respectively.These isotope data suggest that the ore-forming elements were mainly derived from mixed crustal and mantle sources.The Chang'an gold ore deposit and Tongchang Cu-Mo deposit are closely related to each other in their spatial distribution and age of formation.They have similar sources of mineralizing elements and identical ore-forming metal elements,and show a close relationship in physical and chemical conditions of mineralization.The two deposits constitute an epithermal-porphyry -skarn type Cu-Mo-Au mineralization system in the Tongchang-Chang'an area,which is related to the Cenozoic high-K alkaline magmatism.  相似文献   

12.
The Longbohe Cu deposit, which is located in the southern part of the Honghe ore-forming zone, Yunnan Province, China, belongs to a typical ore field where volcanic rocks are of wide distribution and are associated with Cu mineralization in time and space. The volcanic rocks in the ore field, which have experienced varying degree of alteration or regional metamorphism, can be divided into three types, i.e., meta-andesite, meta-subvolcanic rock and meta-basic volcanic rock in accordance with their mineral assemblages. These three types of volcanic rocks in the ore field are relatively rich in Na and the main samples plot in the area of alkali basalts in the geochemical classification diagram. With the exception of very few elements, these three types of volcanic rocks are similar in the content of trace elements. In comparison to the basalts of different tectonic settings, the meta-volcanic rocks in the ore field are rich in high field strength elements (HFSE) such as Th, Nb, etc. and depleted in large ion lithophile elements (LILE) such as Sr, Ba, etc. and their primary mantle-normalized trace element patterns show remarkable negative Th and Nb anomalies and negative Sr and Ba anomalies. These three types of volcanic rocks are similar in REE content range and chondrite-normalized REE patterns with the exception of Eu anomaly. Various lines of evidence show that these three types of volcanic rocks in the ore field have the same source but are the products of different stages of magmatic evolution, their original magma is a product of partial melting of the metasomatically enriched mantle in the tensional tectonic setting within the continent plate, and the crystallization differentiation plays an important role in the process of magmatic evolution.  相似文献   

13.
The Sin Quyen-Lung Po district is an important Cu metallogenic province in Vietnam, but there are few temporal and genetic constraints on deposits from this belt. Suoi Thau is one of the representative Cu deposits associated with granitic intrusion. The deposit consists of ore bodies in altered granite or along the contact zone between granite and Proterozoic meta-sedimentary rocks. The Cu-bearing intrusion is sub-alkaline I-type granite. It has a zircon U-Pb age of ~776 Ma, and has subduction-related geochemical signatures. Geochemical analysis reveals that the intrusion may be formed by melting of mafic lower crust in a subduction regime. Three stages of alteration and mineralization are identified in the Suoi Thau deposit, i.e., potassic alteration; silicification and Cu mineralization; and phyllic alteration. Two-phase aqueous fluid inclusions in quartz from silicification stage show wide ranges of homogenization temperatures(140–383℃) and salinities(4.18wt%–19.13wt%). The high temperature and high salinity natures of some inclusions are consistent with a magmatic derivation of the fluids, which is also supported by the H-O-S isotopes. Fluids in quartz have δD values of –41.9‰ to –68.8‰. The fluids in isotopic equilibrium with quartz have δ~(18)O values ranging from 7.9‰ to 9.2‰. These values are just plotted in the compositional field of magmatichydrothermal fluids in the δD_(water) versus δ~(18)O_(water) diagram. Sulfide minerals have relatively uniform δ~(34)S values from 1.84‰ to 3.57‰, which is supportive of a magmatic derivation of sulfur. The fluid inclusions with relatively low temperatures and salinities most probably represent variably cooled magmatic-hydrothermal fluids. The magmatic derivation of fluids and the close spatial relationship between Cu ore bodies and intrusion suggest that the Cu mineralization most likely had a genetic association with granite. The Suoi Thau deposit, together with other deposits in the region, may define a Neoproterozoic subduction-related ore-forming belt.  相似文献   

14.
The Bulong gold deposit, located in the southwest Tianshan in China, occurs in the Upper Devonian finegrained clastic rocks. The gold orebodies are controlled by an gently inclined interlayer fractured zone. They are hosted only in quartz-barite veins though there are barite veins and quartz veins in the ore district. The δ34S values of pyrite in the ores range from 14.6‰ to 19.2‰ and those of barite from 35.0‰ to 39.6‰, indicating that the sulfur was derived from the strata. 3He/4He ratios of fluid inclusions in pyrite are 0.24-0.82 R/Ra, approximating to that of the crust. The 40Ar/39Ar ratios range from 338 to 471, slightly higher than that of the atmosphere. 40Ar /4He ratios of ore fluids range from 0.015 to 0.412 with a mean of 0.153. Helium and argon isotope compositions of fluid inclusions show that the ore fluids of the Bulong gold deposit were mainly derived from the crust.  相似文献   

15.
The Beizhan large iron deposit located in the east part of the Awulale metallogenic belt in the western Tianshan Mountains is hosted in the Unit 2 of the Dahalajunshan Formation as lens, veinlets and stratoid, and both of the hanging wall and footwall are quartz-monzonite; the dip is to the north with thick and high-grade ore bodies downwards. Ore minerals are mainly magnetite with minor sulfides, such as pyrite, pyrrhotite, chalcopyrite and sphalerite. Skarnization is widespread around the ore bodies, and garnet, diopside, wollastonite, actinolite, epidote, uralite, tourmaline sericite and calcite are ubiquitous as gangues. Radiating outwards from the center of the ore body the deposit can be classified into skarn, calcite, serpentinite and marble zones. LA-ICP-MS zircon U-Pb dating of the rhyolite and dacite from the Dahalajunshan Formation indicates that they were formed at 301.3±0.8 Ma and 303.7±0.9 Ma, respectively, which might have been related to the continental arc magmatism during the late stage of subduction in the western Tianshan Mountains. Iron formation is genetically related with volcanic eruption during this interval. The Dahalajunshan Formation and the quartz-monzonite intrusion jointly control the distribution of ore bodies. Both ore textures and wall rock alteration indicate that the Beizhan iron deposit is probably skarn type.  相似文献   

16.
正The Damiao Fe-Ti-P ore deposit,hosted in the~1.74 Ga Damiao anorthosite complex,is the only known anorthosite-hosted deposit in China.The deposit contains hundreds of ore bodies occurring as irregular lenses,veins  相似文献   

17.
In this paper the authors present the REE concentrations and Sr and Nd isotopic compositions of fluorites from the Bailashui tin deposit of the Furong ore field, southern Hunan Province. The results showed that the total amount of REE in fluorites is usually low, ranging from 0.705 to 8.785 μg/g with the chondrite-normalized REE distribution patterns similar to those of the Qitianling granites in the study area, characterized by LREE-enrichment patterns with pronounced negative Eu anomalies. The fluorites vary in Sr isotopic composition within the range of 0.7083-0.7091, the values are lower than those of the granites and higher than those of the host carbonate rocks in this area. The εNd(t) values of fluorites vary between -9.4 and +10.3, revealing that both the crust- and mantle-source materials were involved in the ore-forming hydrothermal fluids. Combined with previous studies on this ore deposit, the Bailashui tin deposit is temporally and spatially closely related with granitic magmatism in this area. The hydrothermal fluorites are the product of fluid/rock interactions between granitic magmatic hydrothermal fluid and marine carbonate rocks. The REE and F in the ore-forming fluid were derived from the granites, whereas Sr in the ore-forming fluid came mainly from the granitic magmatic hydrothermal fluid and marine carbonate rocks, although variations in Sr isotopic composition cannot be explained by a simple mixture of these two end-members. Evidence demonstrated that the ore-forming fluids are of crustal-mantle mixing origin, but that the fluids were probably incompletely homogenized and this may be caused by inhomogeneous mixing of the fluids of different sources.  相似文献   

18.
The Katelixi Cu-Zn deposit is a marine volcanic rock-type copper deposit discovered for the first time in the Tokuzidaban Group in eastern Kunlun Mountains area. It is hosted in the Lower Carboniferous Tokuzidaban Group volcanic strata. The orebodies are obviously controlled by the strata and their ore-bearing rocks are a suite of greyish-green mafic tuffs, generally parallel-stratiform, stratoid and lenticular in form, occurring in limestone as well as in the contact between limestone and carbon-bearing siltstone. This ore deposit possesses distinct characteristics of marine volcanic rock sedimentaion. The geological, petrochemical and REE characteristics of its occurrence pro-vide strong evidence suggesting that this deposit is of marine volcanic rock sedimention origin, basically identical to those of some typical marine volcanic rock-type copper deposits in Xinjiang and other parts of China. Marine vol-canic rocks are well developed in the Lower Carboniferous Tokuzidaban strata in eastern Kunlun Mountains area. In addition to this deposit, we have also found a number of copper polymetallic ore deposits or occurrences in associa-tion with marine volcanc activities in many places where there is a good metallogenic prospect. A breakthrough in the understanding of ore prospecting and genesis has not only filled up the gap in prospecting this type of ore depos-its in this area, but also is of great significance in directing exploration of this type of ore deposits in this area.  相似文献   

19.
The Jiama deposit is a large copper deposit in Tibet. Mineralization occurs in three different host rocks: skarn, hornfels and porphyry. A detailed fluid inclusion study was conducted for veins in the different host rocks to investigate the relationship between fluid evolution and ore-forming processes. Based on examination of cores from 36 drill holes, three types of veins(A, B and D) were identified in the porphyries, four types(Ⅰ,Ⅱ,Ⅲ andⅣ) in the skarn, and three(a, b and c) in the hornfels. The crosscutting relationships of the veins and that of the host rocks suggest two hydrothermal stages, one early and one late stage. Fluid inclusions indicate that the Jiama hydrothermal fluid system underwent at least two episodes of fluid boiling. The first boiling event occurred during the early hydrothermal stage, as recorded by fluid inclusions hosted in type A veins in the porphyries, type a veins in the hornfels, and wollastonite in the skarns. This fluid boiling event was associated with relatively weak mineralization. The second boiling event occurred in the late hydrothermal stage, as determined from fluid inclusions hosted in type B and D veins in the porphyries, type Ⅰ to Ⅳ veins in the skarns, and type b and c veins in the hornfels. This late boiling event, together with mixing with meteoric water, was responsible for more than 90% of the metal accumulation in the deposit. The first boiling only occurred in the central part of the deposit and the second boiling event took place across an entire interlayered structural zone between hornfels and marble. A spatial zoning of ore-elements is evident, and appears to be related to different migration pathways and precipitation temperatures of Cu, Mo, Pb, Zn, Au and Ag.  相似文献   

20.
Metallogenic Effect of Transition of Tectonic Dynamic System   总被引:13,自引:0,他引:13  
Tectonic dynmnic system transition, one of the main factors in metallngenesis, controls metallogenic fluid movement and ore body location in orefields and on an ore deposit scale (mainly in the continental tectonic setting), and even the formation and distribution of large-scale deposit clusters. Tectonic dynamic system transition can be classified as the spacious difference of the tectonic dynamic system in various geological units and the temporal alteration of different tectonic dynamic systems. The former results in outburst of mineralization, while the latter leads to the metallogenic diversity. Both of them are the main contents of metallogenic effect of tectonic dynamic system transition, that is, the alteration of dynamic system, the occurrence of mineralization, and the difference of regional tectonic dynamic system and metallogenic diversity. Generally speaking, the coupling of spatial difference of tectonic dynamic system and its successive alternation controlled the tempo-spatial evolution regularity of mineralization on a larger scale. In addition, the analysis of mineralization factors and processes of typical ore deposits proved that the changes of tectonic stress field, the direct appearance of tectonic dynamic system transition, way lead to the accident of mineralization physical-chemical field and the corresponding accidental interfaces were always located at ore bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号