首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Examination of separately determined helium and hydrogen bulk speeds in the solar wind show these to be equal, both on time scales of 30 min and 3 min. Observations of two interplanetary shocks and 12 discontinuities show the changes in bulk speed across them to take place simultaneously for the two species. Observations made at times of high helium abundance following an interplanetary shock, and at times of observation of colliding streams in the plasma, confirm the conclusion that, if bulk speed differences between species occur, they do so very rarely.Research supported by NASA Grant NsG 21-002-311, and computer time provided by Computer Science Center of the University of Maryland.  相似文献   

2.
Joan Feynman 《Solar physics》1975,43(1):249-252
Because of theoretical difficulties in predicting the behavior of multi-ionic plasmas, observation must serve as a guide to expectations concerning the results of further measurements of other parameters. Here we examine the support for the common belief that observations of the helium to hydrogen temperature ratio indicate that the thermal velocities of ionic species in the solar wind tend to be equal.  相似文献   

3.
In this paper we attempted to relate the relative abundance measurements of the solar wind at the earth's orbit to conditions in the solar corona. We followed the distribution of ionization stages of oxygen and helium by integrating the coupled rate equations outward from the corona to the earth's orbit. We concluded that the material observed in the solar wind at the earth's orbit must be a superposition of contributions from hotter and cooler regions of the corona.Supported in part by the National Science Foundation [GP-7976, formerly GP-5391] and the Office of Naval Research [Nonr-220(47)].  相似文献   

4.
It has previously been suggested that the very high relative abundances of helium occasionally observed in the solar wind mark the plasma accelerated by major solar flares. To confirm this hypothesis, we have studied the 43 spectra with He/H 15% that were observed among 10300 spectra collected by Vela 3 between July 1965–July 1967. The 43 spectra were distributed among 16 distinct periods of helium enhancement, 12 of which (containing 75% of the spectra) were associated with solar flares. Six new flare-enhancement events are discussed in this paper. It is concluded that the association of helium enhancements with major flares is real, non-random and very strong.With this study, there are 12 cases of reliable associations between helium enhancements (He/H 15%) and flares reported in the literature. The general characteristics of these events are discussed. It is found that the flares are typically large and bright (2B or 3B), often they produce cosmic ray protons, and they are widely distributed in solar longitude. The average transit velocity of the pistons (i.e., flare accelerated driver gas) is in excellent agreement with earlier observations of flare shock velocities. The degree to which the pistons have been slowed in transit is in good agreement with theory. The average percentage of helium in the enhanced regions is 15%, but this number should not be considered more than an extremely rough estimate because of very arbitrary decisions that had to be made as to when we would consider an enhancement had ended. The number of positively charged particles in the enhanced region is estimated to be of the order of 4 × 1039.A qualitative discussion of some of the possibilities for the source of helium enhanced plasma is presented. It is suggested that the helium enriched plasma may be the piston producing the shock causing the Type II radio emission. The size of the Type II emission region and the number of particles in the helium enhancement permit an estimate to be made of the density of the corona at the origin of the piston. From this it is estimated further that the piston must come from below about 0.5 R , in agreement with the 0.2–0.3 R often given for the initial height of the Type II emission source. Recent theoretical discussions have indicated that the corona as a whole can be expected to show helium enrichments at these levels.It is pointed out that observations of solar wind helium enhancement can be expected to be a useful tool in studying the distribution and relative abundance of helium in different layers of the solar corona, as well as mechanisms for the acceleration of plasma by solar flares.  相似文献   

5.
Relationships between the velocity of the solar wind and the electron density of the F2-layer are shown. A significant correlation-coefficient is found only forday-time data. Typical storm phenomena occur with high wind velocities.  相似文献   

6.
The interaction processes governing the penetration of the interstellar gas into the solar neighbourhood are re-examined — as well as photo-ionization and charge-exchange processes, proton elastic collisions and electron ionizations help reduce the nearby gas densities. The total destruction rate varies little during the solar cycle, by perhaps 10%. Particle heating, particularly via the elastic collisions, determines the gas characteristics in the gravitationally focussed tail—enhanced H-density is prevented, while the He-tail is effectively hotter than 103 K.Termination of the solar wind is rediscussed in the light of both electron heating and the stronger gas/plasma interaction. The spiral interplanetary field is taken to break up and the subsonic plasma flow to be controlled by the pressure of slowly cooling electrons. The terminating collisionless shock is then, if it exists at all, very weak (M 1<1.4), subcritical, and energetically unimportant. Cosmic rays are little affected by this sonic transition, but at least the electron component should be modulated by plasma turbulence throughout the ionizing flow.
. , . , . . .
  相似文献   

7.
8.
The interaction between the solar wind and cometary ionospheres downstream from the subsolar region is modeled in terms of viscous MHD flow theory. Calculations of the flow stremalines within the mixing region indicate that, as a result of viscous action, both the solar wind particles and the cometary material should be gradually directed towards the interior of the plasma wake to reinforce the formation of a type 1 tail. This behavior supports the notion that a transverse force acting on cometary plasma particles is actually responsible for the collapse of tail ray structures as suggested by Öpik (1964), Wurm (1968, 1975) and Wurm and Mammano (1972).  相似文献   

9.
The relationship between two classes of coronal holes and high-speed quasi-stationary streams of solar wind at the Earth’s orbit is investigated. “Open” coronal holes, whose area is invariable or increases with the height over the solar surface, are rated in the first class, and “closed” coronal holes with areas decreasing with the height are referred to as second-class holes. The parameters of the coronal holes are determined from IR and EUV images and spectroheliograms. It is shown that most open coronal holes can be associated with high-speed solar-wind streams, while most closed coronal holes exhibit a much lower correlation with such streams.  相似文献   

10.
11.
A. Kubičela 《Solar physics》1986,106(2):403-410
Kinematic picture concerning the solar synodic and sidereal rotation axes has been considered in some detail. Large changes in the synodic angular rotation velocity and the position of the synodic rotation pole have been found for some hypothetical cases of out-of-ecliptic intra-Mercurian orbits. The influence of solar differential rotation and variable planetary velocity along the orbit have been taken into account and a continuous set of co-existing synodic poles oscillating around a mean position has been found. The relevant numerical values for the Earth are given and the possibility of detecting the existence of the two rotation axes has been pointed out.  相似文献   

12.
Applying an Alfvén-Wave-Extended-QRH-approximation and the method of characteristics, we solve the equations of motion for outwardly propagating Alfvén waves analytically for three different cases of an azimuthal dependence of the background solar wind, (a) for a pure fast-slow stream configuration, (b) for the situation where the high-speed stream originates from a diverging magnetic field region, and (c) for the case of (b) and an initially decreasing density configuration (‘coronal hole’). The reaction of these waves on the background state as well as mode-mode coupling effects are neglected. These three solar wind models are discussed shortly. For the superimposed Alfvén waves we find, on an average, that there is a strong azimuthal dependence of all relevant wave parameters which, correlated with the azimuthal distributions of the solar wind variables, leads to good agreements with observations. The signature of high-speed streams and these correlations could clearly indicate solar wind streams originating from ‘coronal holes’. Contrary to the purely radial dependent solar wind, where outwardly propagating Alfvén waves are exclusively refracted towards the radial direction, we now find a refraction nearly perpendicular to the direction of the interplanetary magnetic field in the compression region and closely towards the magnetic field direction down the trailing edge and in the low-speed regime.  相似文献   

13.
The main results of Whitham's averaged Lagrangian method for the treatment of linear wave-trains in a weakly inhomogeneous, moving medium are presented briefly. This method is then applied to an ideal, isotropic, one-fluid plasma which can be taken for the lowest order approximation for the interplanetary solar wind expansion.  相似文献   

14.
The equations of motion of all relevant parameters of Alfvén waves propagating from the sun outwardly into the expanding interplanetary medium are discussed for the case of a quiet, ideal, isotropic, one-fluid solar wind plasma. It is found that the frequency of the wave reamains constant, while the wave vector and the amplitudes depend, in general, on the evolution of the background medium and on the angle between the wave vector and the interplanetary magnetic field. This latter dependence cancels approximately for the evolution of the amplitudes in the case of a pure, overall spiral magnetic field. It is shown that in this case the results of earlier discussions can be derived by less decisive restrictions.  相似文献   

15.
Plasma irregularities present in the solar wind are plasmoids, i.e. plasma-magnetic field entities. These actual plasmoids differ from ideal magnetohydrodynamic (MHD) filaments. Indeed, (1) their “skin” is not infinitely thin but has a physical thickness which is determined by the gyromotion of the thermal ions and electrons, (2) they are of finite extent and their magnetic flux is interconnected with the interplanetary magnetic flux, (3) when they penetrate into the magnetosphere their magnetic field lines become rooted in the ionosphere (i.e. in a medium with finite transverse conductivity), (4) the external Lorentz force acting on their boundary surface depends on the orientation of their magnetic moment with respect to the external magnetic field, (5) when their mechanical equilibrium is disturbed, hydromagnetic oscillations can be generated. It is also suggested that the front side of all solar wind plasmoids which have penetrated into the magnetosphere is the inner edge of the magnetospheric boundary layer while the magnetopause is considered to be the surface where the magnetospheric plasma ceases to have a trapped pitch angle distribution.  相似文献   

16.
Sudden phase anomalies (SPA's) observed in the phase of GBR 16 kHz VLF signals during the years 1977 to 1983 have been analysed in the light of their associated solar X-ray fluxes in the 0.5–4 Å and 1–8 Å bands. An attempt has been made to investigate the solar zenith angle () dependence of the integrated solar X-ray flux for producing SPA's. It is deduced from the observations for < 81° that the phase deviation increases linearly as a whole with increasing solar X-ray fluxes in these two bands. The threshold X-ray flux needed to produce a detectable SPA effect has been estimated to be 1.6 × 10–4 ergcm–2 s–1 and 1.8 × 10–3 ergcm–2 s–1 in the 0.5–4 Å and 1–8 Å bands, respectively. For both bands the average cross section for all atmospheric constituents at a height of 70 km is almost equal to the absorption cross section for the 3 Å X-ray emission.  相似文献   

17.
Endeve  Eirik  Leer  Egil 《Solar physics》2001,200(1-2):235-250
In coronal holes the electron (proton) density is low, and heating of the proton gas produces a rapidly increasing proton temperature in the inner corona. In models with a reasonable electron density in the upper transition region the proton gas becomes collisionless some 0.2 to 0.3 solar radii into the corona. In the collisionless region the proton heat flux is outwards, along the temperature gradient. The thermal coupling to electrons is weak in coronal holes, so the heat flux into the transition region is too small to supply the energy needed to heat the solar wind plasma to coronal temperatures. Our model studies indicate that in models with proton heating the inward heat conduction may be so inefficient that some of the energy flux must be deposited in the transition region to produce the proton fluxes that are observed in the solar wind. If we allow for coronal electron heating, the energy that is needed in the transition region to heat the solar wind to coronal temperatures, may be supplied by heat conduction from the corona.  相似文献   

18.
Tangential discontinuities in the solar wind   总被引:3,自引:0,他引:3  
This paper considers six discontinuity surfaces which were observed by magnetometers on 3 spacecraft in the solar wind. It is shown that the actual surface orientations, determined from the measured time delays and solar wind speed, are consistent with the theoretical orientations which were computed from the relation , where is the normal to the surface of a hydromagnetic tangential discontinuity across which the magnetic field direction changes from to . The plasma and magnetic field data for these discontinuities are consistent with the pressure balance condition, and the magnetic field vectors in the associated current sheets are parallel to the discontinuity surface, as required theoretically. The 6 discontinuity surfaces extended without much distortion over ∼ 0.002 AU. A seventh surface is discussed which satisfies the condition but which extended without much distortion over 0.01 AU. This latter is not a typical surface, however, and its curvature is larger than average. Most of the surfaces tended to lie along the spiral direction, but one was nearly perpendicular to the spiral direction.  相似文献   

19.
Magnetic dips in the solar wind   总被引:1,自引:0,他引:1  
Using magnetic data from the HELIOS-1 fluxgate magnetometer, with a 0.2 s resolution, we have investigated the structure of several interplanetary discontinuities involving magnetic dips and rotations of the magnetic field vector. A minimum variance analysis illustrates the behaviour of the magnetic field through the transition. Using this analysis, quite different structures have been isolated and, in particular, narrow transitions resembling almost one dimensional reconnected neutral sheets. For the thinner cases (scale lengths of the magnetic rotation of the order or smaller than 103 km), we find that the observed structures can be the nonlinear effect of a resistive tearing mode instability having developed on an originally one dimensional neutral sheet at the solar corona.  相似文献   

20.
Three parameters of the solar wind, proton number density n, Z-component of frozen-in magnetic field, in solar ecliptic coordinates and magnetic field variability ΔB, may be called geoactive parameters since each of them is responsible for a certain phase or stage of a geomagnetic storm.An undisturbed solar corpuscular stream differs from the quiet solar wind mainly in higher bulk velocity v; other parameters, in particular, n, Z and ΔB, are not enhanced in the stream. However, the examination of a number of geomagnetic storms shows that v is not a geoactive parameter. Hence the corpuscular stream itself is not more geoactive than the quiet solar wind.The retarding of corpuscular stream by the quiet solar wind results in various plasma deformations (compression, torsion, shear). This, in turn, leads to the creation, in the stream and ambient quiet solar wind, of geoactive zones. Each zone is characterized by the enhancement of some geoactive parameter. The entry of the Earth into a geoactive zone causes a corresponding phase or stage of a geomagnetic storm.The concept of geoactive zones is applied to the analysis of the geomagnetic storm of 8–10 July 1966.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号