首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A reliable estimation of sediment transport in gravel‐bed streams is important for various practical engineering and biological studies (e.g., channel stability design, bed degradation/aggradation, restoration of spawning habitat). In the present work, we report original laboratory experiments investigating the transport of gravel particles at low bed shear stresses. The laboratory tests were conducted under unsteady flow conditions inducing low bed shear stresses, with detailed monitoring of the bed topography using a laser scanner. Effects of bed surface arrangements were documented by testing loose and packed bed configurations. Effects of fine sediments were examined by testing beds with sand, artificial fine sand or cohesive silt infiltrated in the gravel matrix. Analysis of the experimental data revealed that the transport of gravel particles depends upon the bed arrangement, the bed material properties (e.g., size and shape, consolidation index, permeability) and the concentration of fine sediments within the surface layer of moving grains. This concentration is directly related to the distribution of fine particles within the gravel matrix (i.e., bottom‐up infiltration or bridging) and their transport mode (i.e., bedload or suspended load). Compared to loose beds, the mobility of gravel is reduced for packed beds and for beds clogged from the bottom up with cohesive fine sediments; in both cases, the bed shear stress for gravel entrainment increases by about 12%. On the other hand, the mobility of gravel increases significantly (bed shear stress for particle motion decreasing up to 40%) for beds clogged at the surface by non‐cohesive sand particles. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
A computer-based study of the impact of the proposed Wabo hydroelectric scheme on the Purari River, Papua New Guinea was carried out. The HEC-6 model, Scour and Deposition in Rivers and Reservoirs developed by the Hydrologic Engineering Centre was used to simulate the effect of the dam on sediment transport and erosion in the lower Purari. Two runs with the model were carried out. The first one was used to establish baseline conditions and the second modelled dam impact. Before the study was carried out, data had to be collected on channel geometry, sediment input, river bed material size composition and hydraulic conditions in the river. Supplementary models also had to be developed to fill in gaps in runoff records and to describe flow in the river during power generation. Results of the investigation indicate that limited erosion will occur because of bed-armouring and the river will adjust towards a new equilibrium condition quite rapidly. The sediment output of the river into the Purari delta will change, load in the clay, silt and sand/gravel fractions decreasing by 22, 53 and 78 per cent respectively.  相似文献   

3.
We explore the link between channel‐bed texture and river basin concavity in equilibrium catchments using a numerical landscape evolution model. Theory from homogeneous sediment transport predicts that river basin concavity directly increases with bed sediment size. If the effective grain size on a river bed governs its concavity, then natural phenomena such as grain‐size sorting and channel armouring should be linked to concavity. We examine this hypothesis by allowing the bed sediment texture to evolve in a transport‐limited regime using a two grain‐size mixture of sand and gravel. Downstream ?ning through selective particle erosion is produced in equilibrium. As the channel‐bed texture adjusts downstream so does the local slope. Our model predicts that it is not the texture of the original sediment mixture that governs basin concavity. Rather, concavity is linked to the texture of the sorted surface layer. Two different textural regimes are produced in the experiments: a transitional regime where the mobility of sand and gravel changes with channel‐bed texture, and a sand‐dominated region where the mobility of sand and gravel is constant. The concavity of these regions varies depending on the median gravel‐ or sand‐grain size, erosion rate, and precipitation rate. The results highlight the importance of adjustments in both surface texture and slope in natural rivers in response to changes in ?uvial and sediment inputs throughout a drainage network. This adjustment can only be captured numerically using multiple grain sizes or empirical downstream ?ning rules. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
Channelization of the lowermost part of Vedder River in 1922 initiated a natural experiment relevant to the unresolved question of how abrupt gravel–sand transitions develop along rivers. The new channel (Vedder Canal) had a fine bed and a much lower slope than the gravel‐bed river immediately upstream. Changes in morphology and sedimentology as gravel advanced into and along the Canal are documented using air photos, historical surveys, and fieldwork. The channel aggraded and steepened until stabilized by occasional gravel extraction in recent decades. The deposited material fines progressively along the Canal but the gravel front has retained an abrupt appearance because it has advanced by the sequential development of discrete gravel tops on initially sandy alternate bars. Near the gravel front the bed is highly bimodal and there is a sharper drop in the extent of gravel‐framework surface facies than in bulk gravel content. Ahead of the front, gravel is restricted to thin ribbons which often become buried by migrating sand. Calculations show that even though the gravel bed at the head of the Canal is almost unimodal, size‐selective transport during floods can account for the strong bimodality farther downstream. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
The papers in this special issue reflect several of the major themes and topics from the 7th International Workshop on Gravel‐Bed Rivers. The papers focus primarily on aspects of bed material transport in gravel‐bed rivers and larger scale morpho‐dynamics. Research in gravel‐bed rivers is increasingly integrating processes over a wide range of temporal and spatial scales by combining field observation, lab experimentation, numerical modeling and theory testing in a range of river types, aided by new technological developments in particle tracking, computational modeling and high resolution spatial data. This is leading to greater understanding of the processes leading to distinctive morpho‐dynamics of river types and a more reliable basis for river management. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Since 1992, the Federal Institute of Hydrology (Bundesanstalt für Gewässerkunde – BfG) performs morphological investigations in the river Odra downstream from the confluence of the river Neiße (Nysa Luzycka). The results of these investigations give a clear insight into the morphodynamic behaviour of this part of the river and indicate that on average 380 000 t of suspended solids and 130 000 t of bed load are transported by the river Odra at Hohensaaten per year, with a distinct seasonal variability in the case of suspended solids. Detailed studies on type and composition of the bed substrates have revealed that the river bottom is composed of very fine material: at Ratzdorf already 75 % of the bed material is finer than 2 mm, at Widuchowa almost all of the river bed material consists of sand finer than 0.63 mm. Because of the high sensitivity of the river bottom to discharge increases and the corresponding increases of bottom shear stress sand was found to be the dominating fraction of the suspended load in case of extreme flood events.  相似文献   

7.
IINTRODUCTIONRiversareanimportantcomponentofournatUralworld.ForthePurposeoffloodprotection,inlandshippingandlandutilization,manyrivershavebeenregulatedornarrowedinaschematic,monotonousmanner.Theriverbedandbanksaresmoothedinordertoreducetheflowresistanceandtoincreasetheflowcapacity.Thesetraditionalrivertrainingmeasures,whichcontradictnlderalevolutionlawofrivers,exertharmfuleffectsontheriverecosystemand"thealenvironmentalongtherivers.Theprimaryequilibriumofthebedloadtransportofriversaredam…  相似文献   

8.
Suspended load transport can strongly impact ecosystems, dam filling and water resources. However, contrary to bedload, the use of physically based predicting equations is very challenging because of the complexity of interactions between suspended load and the river system. Through the analysis of extensive data sets, we investigated extent to which one or several river bed or flow parameters could be used as a proxy for quantifying suspended fluxes in gravel bed rivers. For this purpose, we gathered in the literature nearly 2400 instantaneous field measurements collected in 56 gravel bed rivers. Among all standard dimensionless parameters tested, the strongest correlation was observed between the suspended sediment concentration and the dimensionless bedload rate. An empirical relation between these two parameters was calibrated. Used with a reach average bedload transport formula, the approach allowed to successfully reproduce suspended fluxes measured during major flood events in seven gravel bed alpine rivers, morphodynamically active and distant from hillslope sources. These results are discussed in light of the complexity of the processes potentially influencing suspended load in a mountainous context. The approach proposed in this paper will never replace direct field measurements, which can be considered the only confident method to assess sediment fluxes in alpine streams; however, it can increment existing panel tools that help river managers to estimate even rough but not unrealistic suspended fluxes when measurements are totally absent. © 2019 John Wiley & Sons, Ltd.  相似文献   

9.
Field experiments were conducted on total load transport in the Chelichay River Basin,a mountainous catchment (1,400 km~2) located in north eastern of Iran,to evaluate total load formulas including four gravel bed rivers and a sand bed river(Qaresoo River).Gravel bed rivers in Chelichay River Basin can be grouped into two types;steep slope rivers with high shear values(Chehelchay River and Khormaloo River) and mild slope rivers with low shear values(Narmab River and Soosara River).Two depth integrating suspended load samplers(DH-48 and D-49),and two bed load samplers(Helley-Smith and BLSH) were used to measure total load.The performance is tested of 8 total load transport formulae including 4 macroscopic and 4 microscopic methods.A systematic and thorough analysis of 59 sets of data collected from sand bed river indicate that Yang and Engelund and Hansen reach to the better results, and from four gravel bed rivers confirmed that the methods of Karim and Kennedy and Engelund and Hansen yields the best results for steep slope rivers,and the methods of Einstein and Bijker are ranked highest in gradual slope rivers.  相似文献   

10.
Hans A. Einstein initiated a probabilistic approach to modelling sediment transport in rivers. His formulae were based on theory and were stimulated by laboratory investigations. The theory assumes that bed load movement occurs in individual steps of rolling, sliding or saltation and rest periods. So far very few attempts have been made to measure stochastic elements in nature. For the first time this paper presents results of radio‐tracing the travel path of individual particles in a large braided gravel bed river: the Waimakariri River of New Zealand. As proposed by Einstein, it was found that rest periods can be modelled by an exponential distribution, but particle step lengths are better represented by a gamma distribution. Einstein assumed an average travel distance of 100 grain‐diameters for any bed load particle between consecutive points of deposition, but larger values of 6·7 m or 150 grain‐diameters and 6·1 m or 120 grain‐diameters were measured for two test particle sizes. Together with other available large scale field data, a dependence of the mean step length on particle diameter relative to the D50 of the bed surface was found. During small floods the time used for movement represents only 2·7% of the total time from erosion to deposition. The increase in percentage of time being used for transport means that it then has to be regarded in stochastic transport models. Tracing the flow path of bed load particles between erosion and deposition sites is a step towards explaining the interactions between sediment transport and river morphology. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
The operational time distribution (OTD) defines the time for bed‐load sediment spent in motion, which is needed to characterize the random nature of sediment transport. This study explores the influence of bed clusters and size gradation on OTD for non‐uniform bed‐loads. First, both static and mobile bed armouring experiments were conducted in laboratorial flumes to monitor the transport of mixed sand/gravel sediments. Only in the mobile armouring experiment did apparent bed clusters develop, because of stable feeding and a longer transport period. Second, a generalized subordinated advection (GSA) model was applied to quantify the observed dynamics of tracer particles. Results show that for the static armour layer (without sediment feed), the best‐fit OTD assigns more weight to the large displacement of small particles, likely because of the size‐selective entrainment process. The capacity coefficient in the GSA model, which affects the width of the OTD, is space dependent only for small particles whose dynamics can be significantly affected by larger particles and whose distribution is more likely to be space dependent in a mixed sand and gravel system. However, the OTD for the mobile armour layer (with sediment recirculation) exhibited longer tails for larger particles. This is because the trailing edge of larger particles is more resistant to erosion, and their leading front may not be easily trapped by self‐organized bed clusters. The strong interaction between particle–bed may cause the capacity coefficient to be space‐dependent for bed‐load transport along mobile armour layers. Therefore, the combined laboratory experiments and stochastic model analysis show that the OTD may be affected more by particle–bed interactions (such as clusters) than by particle–particle interactions (e.g. hiding and exposing), and that the GSA model can quantify mixed‐size sand/gravel transport along river beds within either static or mobile armour layers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
《国际泥沙研究》2016,(2):131-138
Lateral migration is an important form of morphological changes on the Middle Yangtze River (MYR), particularly for the lower Jingjiang reach. The Three Gorges Reservoir (TGR) has substantially reduced sediment supply to the downstream river channels since its impoundment in June 2003. The scientific understanding of how decrease of sediment influences the processes of bank erosion and channel adjustments is complex and limited. In the present paper, the morphological responses in a typical meandering and island-braided river segment of the MYR to the filling of the TGR were investigated by a 3-D morphodynamic model. The potential of the 3-D model has been demonstrated by the observed data. The morphological evolutions in the Shishou bend during the first 12 years of the TGR impound-ment were predicted. The effects of the TGR operation on the planform evolutions in the study reach were analyzed based on the simulated results. Sediment load is decreased by 75%due to the early filling of the TGR. The magnitude of bed degradation with less sediment load due to the TGR operation is increased compared with the pre-dam situation. Qualitatively, the overall planform evolution trends in the Shishou bend after the TGR operation are similar to that without the TGR operation. The magnitude of lateral migration has been increased in some part of the channel bend, where the morphological response of the TGR operation exhibits more lateral migration rather than vertical degradation. Scouring at the bank toe enhances bank failure. Decrease of sediment load and weak bank anti-scour ability as well as the significant helical flow can be responsible for intensified bank erosion in the channel bend.  相似文献   

13.
Laboratory flume experiments were done to investigate bed load sediment transport by both steady and unsteady flows in a degrading channel. The bed, respectively composed of uniform sand, uniform gravel, or sand-gravel mixtures, always undergoes bulk degradation. It is found that both uniform and non-uniform bed load transport is enhanced greatly by unsteady flows as compared to their volume-equivalent steady flows. This enhancement effect is evaluated by means of an enhancement factor, which is shown to be larger with a coarser bed and lower discharges. Also, the fractional transport rates of gravel and sand in non-uniform sand-gravel mixtures are compared with their uniform counterparts under both steady and unsteady flows. The sand is found to be able to greatly promote the transport of gravel, whilst the gravel considerably hinders the transport of sand. Particularly, the promoting and hindering impacts are more pronounced at lower discharges and tend to be weakened by flow unsteadiness.  相似文献   

14.
The mining of alluvial tin in the Ringarooma basin began in 1875, reached a peak in 1900–20, and had virtually ceased by 1982. During that time 40 million m3 of mining waste were supplied to the main river, quickly replacing the natural bed material and requiring major adjustments to the channel. Based on estimates of sediment supply from more than 50 widely scattered mines and the frequency of flows capable of transporting the introduced load, the river's transport history is reconstructed using a mass-conservation model. Because of the lengthy time period (110 years) and river distance (75 km) involved, the model cannot predict detailed change but it does reproduce the main pattern of sediment movement in which successive phases of aggradation and degradation progress downstream. Peak storage is predicted in that part of the river where braiding and anastomosis are best developed. Aggradation was most rapid in the upper reaches close to major supply points, becoming slower and later with distance downstream. Channel width increased by up to 300 per cent where the valley floor was broad and braiding became relatively common. Bridges had frequently to be replaced. While bed levels were still rising in lower reaches, degradation began in upper ones, notably after 1950, and by 1984 had progressed downriver over 30 km. Rates of incision reached 0·5 m yr?1, especially in the early 1970s when record high flows occurred. As a result of degradation the bed material became gravelly through either reexposure of the original bed or lag concentration of coarser fractions. Also a narrower unbraided channel has developed. The river is beginning to heal itself and upper reaches now have reasonably stable beds but at least another 50 years will be required for the river to cleanse its channel of mining debris.  相似文献   

15.
1 INTRODUCTIONNdsral rivers entering reservoirs carry also sediment, partly as bedload and patly in suspension. At theentrance of the reservoir flow velocity is considerably reduced and the capability of sediment transport isdrashcally fading. Bedload maerial is deposited totally at the reservoir entrance fondng a delta, material...in suspension is cAned further intO the reservoir ulh.. it is partly deposited and partly dischargedthrough the dam towards downstreaxn (depending on the trapp…  相似文献   

16.
《国际泥沙研究》2016,(4):376-385
Twenty runs of experiments are carried out to investigate non-equilibrium transport of graded and uniform bed load sediment in a degrading channel. Well-sorted gravel and sand are employed to compose four kinds of sediment beds with different gravel/sand contents, i.e., uniform 100%gravel bed, uniform 100% sand bed, and two graded sediment beds respectively with 53% gravel and 47% sand as well as 22%gravel and 78%sand. For different sediment beds, the experiments are conducted under the same discharges, thereby allowing for the role of sediment composition in dictating the bed load transport rate to be identified. A new observed dataset is generated concerning the flow, sediment transport and evolution of bed elevation and composition, which can be exploited to underpin devel-opments of mathematical river models. The data shows that in a degrading channel, the sand greatly promotes the transport of gravel, whilst the gravel considerably hinders the transport of sand. The promoting and hindering effects are evaluated by means of impact factors defined based on sediment transport rates. The impact factors are shown to vary with flow discharge by orders of magnitude, being most pronounced at the lowest discharge. It is characterized that variations in sand or gravel inputs as a result of human activities and climate change may lead to severe morphological changes in degrading channels.  相似文献   

17.
Although alluvial cutoffs record accurately the geometry, bedforms, and bed material of the channel when last active, few attempts have been made to use cutoffs in studies of channel changes. A detailed record of historical channel changes on the lower Hunter River in southeastern Australia has shown that this channel responds to naturally alternating periods of high and low flood activity, called flood- and drought-dominated regimes respectively. Sinuosity decreased from 3·84 in 1870, to 2·66 in 1893 and to 1·38 in 1970 through the development of eight cutoffs. The channel also aggraded with medium sand burying the former bed material of mixed mud, coarse sand, and gravel. Channel straightening was a response to increased flood frequencies during the flood-dominated regimes of the late 19th and 20th centuries, combined with localized river engineering works and increased sand load. Detailed stratigraphic studies were carried out on three neck cutoffs and one chute cutoff which were abandoned in 1890, 1950, 1952, and 1956. A comparison of former and present bed elevations and bed material size showed similar trends to those determined by the historical record, confirming the reliability of cutoffs as indicators of former channel conditions. The sedimentary infills of the cutoffs are not uniformly fine grained as recorded previously in the literature. Relatively thin, fine-grained fills were deposited during the drought-dominated regime of the first half of this century but thick, coarser-grained fills were deposited after 1949 during the flood-dominated regime. All fills fine upwards. Cutoff infills provide a record of changing flood activity and sediment loads.  相似文献   

18.
Erosion pattern of artificial gravel deposits   总被引:1,自引:1,他引:0  
Sediment replenishment with artificial gravel deposits is an option to compensate for sediment deficits in rivers and to improve their ecological conditions. Predicting and quantifying the erosion rate of an artificial gravel deposit is important to successfully perform river restoration projects. Laboratory experiments have been done to investigate the influence of various parameters on the erosion pattern of artificial gravel deposits. In the present paper the effects of deposit geometry, bulk density, grain size distribution, and hydraulic load on the erosion process are described. The temporal evolution of the deposit geometry and the corresponding mean erosion rates were studied. The mean erosion rate increases with deposit height, deposit width, and decreasing grain size. Furthermore, no significant impact of the bulk density was observed. Equations to predict the mean erosion rate are proposed. This investigation helps to determine the design frequency of gravel dumping and deposit volumes for restoration projects.  相似文献   

19.
Taking as an example six main rivers that drain the western flank of the Eastern Carpathians, a conceptual model has been developed, according to which fluvial bed sediment bimodality can be explained by the overlapping of two grain size distribution curves of different origins. Thus, for Carpathian tributaries of the Siret, coarse gravel joins an unimodal distribution presenting a right skewness with enhanced downstream fining. The source of the coarse material distributions is autohtonous (by abrasion and hydraulic sorting mechanisms). A second distribution with a sandy mode is, in general, skewed to the left. The source of the second distribution is allohtonous (the quantity of sand that reaches the river‐bed through the erosion of the hillslope basin terrains). The intersection of the two distributions occurs in the area of the 0·5–8 mm fractions, where, in fact, the right skewness (for gravel) and left skewness (for sand) histogram tails meet. This also explains the lack of particles in the 0·5–8 mm interval. For rivers where fine sediment sources are low, the 0·5–8 mm fractions have a higher proportion than the fractions under 1 mm. For the Siret River itself, bed sediment bimodality is greatly enhanced due to the fact that the second mode is more than 25% of the full sample. As opposed to its tributaries, the source of the first mode, of gravel, is allohtonous to the Siret river, generated by the massive input of coarse sediment through the Carpathian tributaries, while the second mode, of the sands, is local. In this case we can also observe that the two distributions of particles of different origins overlap in the 0·5–8 mm fraction domain, creating the illusion of ‘particle lack’ in the fluvial bed sediments. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
The hyporheic zone is a layer of substrate on a river bed where benthic animals normally live,grow,feed,reproduce,and exist for any portion of their life cycle.The hyporheic zone was studied by samplin...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号