首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evolutionary calculations are presented for spherically symmetric protoplanetary configurations with a homogeneous solar composition and with masses of 10?3, 1.5 × 10?3, 2.85 × 10?4, and 4.2 × 10?4M. Recent improvements in equation-of-state and opacity calculations are incorporated. Sequences start as subcondensations in the solar nebula with densities of ~10?10 to 10?11 g cm?3, evolve through a hydrostatic phase lasting 105 to 107 years, undergo dynamic collapse due to dissociation of molecular hydrogen, and regain hydrostatic equilibrium with densities ~1 g cm?3. The nature of the objects at the onset of the final phase of cooling and contraction is discussed and compared with previous calculations.  相似文献   

2.
We present the JHKLM photometry for five close (W Ser) binary systems obtained in the period 1996–2004. Positive phase shifts (with respect of the adopted ephemerides) have been found in the orbital infrared light curves for three binaries, RX Cas, KX And, and β Lyr; the rates of increase in their periods are ~3.5 × 10?4, ~1.6 × 10?3, and ~1.4 × 10?4 days yr?1, respectively. We have performed the spectral classification of the components of the binaries under study and estimated their parameters.  相似文献   

3.
While analyzing the archival data of the INTEGRAL observatory, we detected and localized a cosmic gamma-ray burst recorded on April 28, 2006, by the IBIS/ISGRI and SPI telescopes in their fields of view. Since the burst was not revealed by the INTEGRAL burst alert system (IBAS), information about its coordinates was not distributed in time and no search for its afterglow was conducted. The burst was recorded by the KONUS/WIND and RHES SI satellites. Its 20–200-keV fluence was 2.3 × 10?6 erg cm?2, the peak flux was 3.6 × 10?7 erg cm?2 s?1 (3.9 phot. cm?2 s?1). The burst had a complex multipeaked profile and stood out among typical bursts by an increase in its hardness with time. At the flux peak, the spectrum was characterized by a photon index α ? ?1.5 and a peak energy E p ? 95 keV. The burst lasted for ~12 s, after which its afterglow decaying as a power law with an index γ ~ ?4.5 was observed at energies 15–45 keV. The spectral hardness decreased noticeably during the afterglow.  相似文献   

4.
The results of JHKLM photometry for Nova Delphini 2013 obtained in the first sixty days after its outburst are analyzed. Analysis of the energy distribution in a wide spectral range (0.36–5 µm) has shown that the source mimics the emission of normal supergiants of spectral types B5 and A0 for two dates near its optical brightness maximum, August 15.94 UT and August 16.86 UT, respectively. The distance to the nova has been estimated to be D ≈ 3 kpc. For these dates, the following parameters have been estimated: the source’s bolometric fluxes ~9 × 10?7 and ~7.2 × 10?7 erg s?1 cm?2, luminosities L ≈ 2.5 × 105 L and ≈2 × 105 L , and radii R ≈ 6.3 × 1012 and ≈1.2 × 1013 cm. The nova’s expansion velocity near its optical brightness maximum was ~700 km s?1. An infrared (IR) excess associated with the formation of a dust shell is shown to have appeared in the energy distribution one month after the optical brightness maximum. The parameters of the dust component have been estimated for two dates of observations, JD2456557.28 (September 21, 2013) and JD2456577.18 (October 11, 2013). For these dates, the dust shell parameters have been estimated: the color temperatures ≈1500 and ≈1200 K, radii ≈6.5 × 1013 and 1.7 × 1014 cm, luminosities ~4 × 103 L and ~1.1 × 104 L , and the dust mass ~1.6 × 1024 and ~1025 g. The total mass of the material ejected in twenty days (gas + dust) could reach ~1.1 × 10?6 M . The rate of dust supply to the nova shell was ~8 × 10?8 M yr?1. The expansion velocity of the dust shell was about 600 km s?1.  相似文献   

5.
We present two-year-long observations of the flux of very-high-energy (~1012 eV) gamma rays from the active galactic nucleus Mk 501 performed with a Cherenkov detector at the Crimean Astrophysical Observatory. A gamma-ray flux from the object was shown to exist at confidence levels of 11 and 7 standard deviations for 1997 and 1998, respectively. The flux varied over a wide range. The mean flux at energies >1012 eV, as inferred from the 1997 and 1998 data, is (5.0±0.6)×10?11 and (3.7±0.6)×10?11 cm?2 s?1, respectively. The errors are the sum of statistical observational and modeling errors. The mean power released in the form of gamma rays is ~2×1043 erg s?1 sr?1.  相似文献   

6.
We analyze the observations of the transient X-ray pulsar 4U 0115+63 with the RXTE and INTEGRAL observatories in a wide X-ray (3–100 keV) energy band during its intense outbursts in 1999 and 2004. The energy of the fundamental harmonic of the cyclotron resonance absorption line near the maximum of the X-ray flux from the source (luminosity range 5 × 1037–2 × 1038 erg s?1) is ~11 keV. When the pulsar luminosity falls below ~5 × 1037 erg s?1, the energy of the fundamental harmonic is displaced sharply toward the high energies, up to ~16 keV. Under the assumption of a dipole magnetic field configuration, this change in cyclotron harmonic energy corresponds to a decrease in the height of the emitting region by ~2 km, while other spectral parameters, in particular, the cutoff energy, remain essentially constant. At a luminosity ~7 × 1037 erg s?1, four almost equidistant cyclotron line harmonics are recorded in the spectrum. This suggests that either the region where the emission originates is compact or the emergent spectrum from different (in height) segments of the accretion column is uniform. We have found significant pulse profile variations with energy, luminosity, and time. In particular, we show that the profile variations from pulse to pulse are not reduced to a simple modulation of the accretion rate specified by external conditions.  相似文献   

7.
Nitric oxide is formed in the atmosphere through the ionization and dissociation of molecular nitrogen by galactic cosmic rays. One NO molecule is formed for each ion pair produced by cosmic ray ionization.The height-integrated input (day and night) to the lower stratosphere is of the order of 6 × 107 NO molecules cm?2/sec in the auroral zone (geomagnetic latitude Φ ? 60°) during the minimum of the sunspot cycle and 4 × 107 NO molecules cm?2/sec in the subauroral belt and auroral region (Φ? 45°) at the maximum of solar activity. The tropical production is less than 10?7 NO molecules cm?2/sec above 17 km and at the equator the production is only 3 × 106NO molecules cm?2/sec.  相似文献   

8.
The Parker model is modified to describe a rapid temperature increase from the region of temperature minimum to the coronal base and to relate the electron density in the region of the temperature minimum (~0.85×1011 cm?3 according to the modified model) to that at the orbit of the Earth (~7.42 cm?3 according to the model). The coronal temperature reaches its maximum (1.8×106 K) at the Parker critical point; physical processes at this point are left beyond the scope of the model. It is suggested to consider the expanding solar corona as a self-heating system in which heating of the solar corona is related to the transonic regime of its expansion, which is maintained by the high coronal temperature.  相似文献   

9.
The rates and altitudes for the dissociation of atmospheric constituents of Titan are calculated for solar UV, solar wind protons, interplanetary electrons, Saturn magnetospheric particles, and cosmic rays. The resulting integrated synthesis rates of organic products range from 102–103 g cm?2 over 4.5 × 109 years for high-energy particle sources to 1.3 × 104 g cm?2 for UV at λ < 1550 A?, and to 5.0 × 105 g cm?2 if λ > 1550 A? (acting primarily on C2H2, C2H4, and C4H2) is included. The production rate curves show no localized maxima corresponding to observed altitudes of Titan's hazes and clouds. For simple to moderately complex organic gases in the Titanian atmosphere, condensation occurs below the top of the main cloud deck at 2825 km. Such condensates comprise the principal cloud mass, with molecules of greater complexity condensing at higher altitudes. The scattering optical depths of the condensates of molecules produced in the Titanian mesosphere are as great as ~ 102/(particulate radius, μm) if column densities of condensed and gas phases are comparable. Visible condensation hazes of more complex organic compounds may occur at altitudes up to ~ 3060 km provided only that the abundance of organic products declines with molecular mass no faster than laboratory experiments indicate. Typical organics condensing at 2900 km have molecular masses = 100–150 Da. At current rates of production the integrated depth of precipitated organic liquids, ices, and tholins produced over 4.5 × 109 years ranges from a minimum ~ 100 m to kilometers if UV at λ > 1550 A? is important. The organic nitrogen content of this layer is expected to be ~ 10?1?10?3 by mass.  相似文献   

10.
Edward Anders 《Icarus》1975,24(3):363-371
The place of origin of stony meteorites can be determined from their trapped solar-wind gases. “Gas-rich” meteorites have only 10?3?10?4 the solar noble gas content and ?10?2?10?4 the surface exposure age of lunar soils. These differences suggest that the gas implantation took place between 1 and 8 AU from the Sun, in a region where the cratering rate was 102?103 times higher than at 1 AU. Both characteristics point to the asteroid belt. The predicted Ne20 content a gas-rich meteorite formed at 2.5 AU is 1.2 × 10?5 cc STP g?1, compared to an observed mean for H-chondrites of 0.5 × 10?5 cc STP g?1. The observed prevalence of gas-rich meteorites (40–100% among carbonaceous chondrites, 2–33% among other classes) requires that the parent body remained long enough in the asteroid belt to develop a substantial regolith. This condition can be met by asteroids (~ 10% of mass converted to regolith.in 4.5 × 109 yr), but not by short period comets (~0.04% converted in 107 yr). It appears that a cometary origin can be ruled out for all stony meteorite clases that have gas-rich members. This includes carbonaceous chondrites.  相似文献   

11.
Abstract— We report in situ magnesium isotope measurements of 7 porphyritic magnesium‐rich (type I) chondrules, 1 aluminum‐rich chondrule, and 16 refractory inclusions (14 Ca‐Al‐rich inclusions [CAIs] and 2 amoeboid olivine aggregates [AOAs]) from the ungrouped carbonaceous chondrite Acfer 094 using a Cameca IMS 6f ion microprobe. Both AOAs and 9 CAIs show radiogenic 26Mg excesses corresponding to initial 26Al/27Al ratios between ~5 × 10?5 ~7 × 10?5 suggesting that formation of the Acfer 094 CAIs may have lasted for ~300,000 years. Four CAIs show no evidence for radiogenic 26Mg; three of these inclusions (a corundum‐rich, a grossite‐rich, and a pyroxene‐hibonite spherule CAI) are very refractory objects and show deficits in 26Mg, suggesting that they probably never contained 26Al. The fourth object without evidence for radiogenic 26Mg is an anorthite‐rich, igneous (type C) CAI that could have experienced late‐stage melting that reset its Al‐Mg systematics. Significant excesses in 26Mg were observed in two chondrules. The inferred 26Al/27Al ratios in these two chondrules are (10.3 ± 7.4) × 10?6 (6.0 ± 3.8) × 10?6 (errors are 2σ), suggesting formation 1.6+1.2‐0.6 and 2.2+0.4‐0.3 Myr after CAIs with the canonical 26Al/27Al ratio of 5 × 10?5. These age differences are consistent with the inferred age differences between CAIs and chondrules in primitive ordinary (LL3.0–LL3.1) and carbonaceous (CO3.0) chondrites.  相似文献   

12.
The giant post-flare arch of 6 November 1980 revived 11 hr and 25 hr after its formation. Both these revivals were caused by two-ribbon flares with growing systems of loops. The first two brightenings of the arch were homologous events with brightness maxima moving upwards through the corona with rather constant speed; during all three brightenings the arch showed a velocity pattern with two components: a slow one (8–12 km?1), related to the moving maxima of brightness, and a fast one (~ 35 km s?1), the source of which is unknown. During the first revival, at an altitude of 100000 km, temperature in the arch peaked ~ 1 hr, brightness ~ 2 hr, and emission measure ~ 3.5 hr after the onset of the brightening. Thus the arch looks like a magnified flare, with the scales both in size and time increased by an order of magnitude. At ~ 100000 km altitude the maximum temperature was ?14 × 106K, max.n e? 2.5 × 109cm?3, and max. energy density ? 11.2 erg cm?3. The volume of the whole arch can be estimated to 1.1 × 1030 cm3, total energy ?1.2 × 1031 erg, and total mass ?4.4 × 1015g. The density decreased with the increasing altitude and remained below 7 × 109 cm?3 anywhere in the arch. The arch cooled very slowly through radiation whereas conductive cooling was inhibited. Since its onset the revived arch was subject to energy input within the whole extent of the preexisting arch while a thermal disturbance (a new arch?) propagated slowly from below. We suggest that the first heating of the revived arch was due to reconnection of some of the distended flare loops with the magnetic field of the old preexisting arch. The formation of the ‘post’-flare loop system was delayed and started only some 30–40 min later. Since that time a new arch began to be formed above the loops and the velocities we found reflect this formation.  相似文献   

13.
This paper discusses SPA's measured at long VLF propagation paths in the lower ionosphere and their association with solar X-ray bursts observed by USNRL satellites in the 0–3 Å, 0–8 Å and 8–20 Å bands. Excellent correlations were found between the SPA importances (in degrees per Mm) and the logarithm of the X-ray burst peak intensities. A hardening of the X-ray burst spectra is evident for increasing importance of SPA's; the threshold energy required for the occurrence of such anomalies was estimated, it is 4.3×10?5 ergs cm?2 sec?1 in the main ionizing band of 0–3 Å. It was also possible to derive the effective recombination coefficient at the normal D-region height of 70 km, this beingα r≈6×10?6 cm3 sec?1; furthermore ion production rates were estimated during SPA's at heights below the reference level.  相似文献   

14.
The accumulation and distribution of rare-light elements in the Galaxy is investigated according to a model of the galaxy at which center there exists a pulsating active nucleus with decreasing activity with time. The abundances of rare-light elements rapidly decrease with approaching to the galactic center whereas the most abundant region of these elements is the annular region of the radial distance ofr=8~14 kpc from the galactic center. In the inner region ofr?8 kpc the abundances of these elements have varied by two to three orders of magnitude from the early days of the galactic history till now, but inr?8 kpc they have been almost constant within a factor of 2. It has become clear that if the nuclides D,3He,7Li,10B and11B have been produced mainly by the shock process taking place in the outer envelope of type-II supernova, they must have been created by the mass fractions of the supernova of some 2.7×10?3, 1.7×10?4, 6.9×10?8, 1.7×10?7 and 7.9×10?7, respectively, to account for the solar system abundances.  相似文献   

15.
In an updating of energy characteristics of lightnings on Venus obtained from Venera-9 and -10 optical observations, the flash energy is given as 8 × 108 J and the mean energy release of lightnings is 1 erg cm?2 s which is 25 times as high as that on the Earth. Lightnings were observed in the cloud layer. The stroke rate in the near-surface atmosphere is less than 5 s?1 over the entire planet if the light energy of the stroke exceeds 4 × 105 J and less than 15 s?1 for (1–4) × 105 J.The average NO production due to lightnings equals 5 × 108 cm?2 s?1, the atomic nitrogen production is equal to 7 × 109 cm?2s?1,the N flux toward the nightside is 3.2 × 109 cm?2s?1, the number densities [N] = 3 × 107cm?3 and [NO] = 1.8 × 106cm?3 at 135 km. Almost all NO molecules in the upper atmosphere vanish interacting with N and the resulting NO flux at 90-80 km equals 5 × 105cm?2s?1, which is negligibly small as compared with lightning production. If the predissociation at 80–90 km is regarded as the single sink of NO, its mixing ratio, fNO, is 4 × 10?8, for the case of a surface sink fNO = 0.8 × 10?9 at 50 km. Excess amounts, fNO ? 4 × 10?8, may exist in the thunderstorm region.  相似文献   

16.
We carried out the first 21-cm line observations of an extended region around the Wolf-Rayet star WR 102 and the associated nebula G2.4+1.4 with the RATAN-600 radio telescope. An irregular H I shell was identified. Its maximum expansion velocity reaches ~50 km s?1, and its outer diameter (at a distance of 3 kpc) is 56 pc. The mechanical luminosity of the stellar wind required to produce the observed shell is estimated to be ~0.8×1038 erg s?1; the age of the shell is ~3.4×105 yr. We compare the inferred parameters of the H I shell with the structure and kinematics of the ionized nebula and with the dust distribution in the region.  相似文献   

17.
In this paper, we modify our previous research carefully, and derive a new expression of electron energy density in superhigh magnetic fields. Based on our improved model, we re-compute the electron capture rates and the magnetic fields’ evolutionary timescales t of magnetars. According to the calculated results, the superhigh magnetic fields may evolve on timescales ~(106?107) yrs for common magnetars, and the maximum timescale of the field decay, t≈2.9507×106 yrs, corresponding to an initial internal magnetic field B 0=3.0×1015 G and an initial inner temperature T 0=2.6×108 K. Motivated by the results of the neutron star-supernova remnant (SNR) association of Zhang and Xie (2011), we calculate the maximum B 0 of magnetar progenitors, B max~(2.0×1014?2.93×1015) G when T 0=2.6×108 K. When T 0~2.75×108?1.75×108 K, the maximum B 0 will also be in the range of ~1014?1015 G, not exceeding the upper limit of magnetic field of a magnetar under our magnetar model. We also investigate the relationship between the spin-down ages of magnetars and the ages of their SNRs, and explain why all AXPs associated with SNRs look older than their real ages, whereas all SGRs associated with SNRs appear younger than they are.  相似文献   

18.
A parametric study was performed of electron temperature variation in the wake of a conducting sphere in a streaming plasma. The flow conditions were varied as follows: the ambient electron temperatures in the range 850–2450 K; the ambient electron densities in the range 5 × 104?7 × 105/cm3; and body potentials relative to plasma potential in the range of + 1.7 to ?2.8 V for an ion beam energy of ~4 eV. Electron temperature enhancements were observed which ranged up to 200 per cent above ambient in the nearest proximity of the body surface. The magnitude of the enhancement depends upon the ambient density, temperature and body potential.  相似文献   

19.
Using recently published determinations of the diameters and orbital elements of the uranian satellites and assuming reasonable dissipation functions and rigidities for icy satellites, the eccentricity decay times for the satellites were calculated. For the inner three, decay times are on the order of 107–108 years, making it difficult to understand why these satellites still have their observed eccentricities. The three inner satellites have a near-commensurability in their mean motions that may be able to force their eccentricities at some time in the future, but cannot force them now. Several possible explanations exist: (1) The reported eccentricities are incorrect, and are in fact near-zero. (2) The reported mean motions are incorrect, and an exact commensurability exists. (3) The physical properties that we have assumed for the satellites are grossly in error (e.g., dissipation function Q is in reality very large). (4) The system is evolving very rapidly, perhaps from a previous state of higher eccentricity. Cases 1 and 2 are unlikely when one considers the quality of existing data. Case 3 would be more consistent with non-icy compositions. Cases 2 and 4 would imply some tidal heating of the satellites, particularly Ariel. A new lower bound of ~ 1.7 × 104 on the Q of Uranus is calculated from the mass of Ariel and its proximity to Uranus.  相似文献   

20.
Material from the Galilean satellites of Jupiter ejected by energetic particles in the Jovian magnetosphere may provide large sources of oxygen to the parent planet. Formation of a CO molecule is the ultimate fate of an oxygen atom in the upper Jovian atmosphere. This high altitude source of CO supports Beer and Taylor's (1978, Astrophys. J.221) observations and analysis, provided that the globally averaged O atom input flux is ~107 cm?2 sec?1 and the eddy diffusion coefficient at the tropopause is ~103 cm2 sec?1. Implications for the possible presence of other atoms and molecules derived from the satellites are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号